EasyMocap/easymocap/neuralbody/trainer/dataloader.py

99 lines
3.7 KiB
Python
Raw Permalink Normal View History

2022-10-25 20:06:04 +08:00
'''
@ Date: 2021-07-20 12:32:29
@ Author: Qing Shuai
@ LastEditors: Qing Shuai
@ LastEditTime: 2021-09-05 20:19:11
@ FilePath: /EasyMocap/easymocap/neuralbody/trainer/dataloader.py
'''
from easymocap.config.baseconfig import load_object
import torch
def make_data_sampler(cfg, dataset, shuffle, is_distributed, is_train):
if not is_train and cfg.test.sampler == 'FrameSampler':
from .samplers import FrameSampler
sampler = FrameSampler(dataset)
return sampler
if is_distributed:
from .samplers import DistributedSampler
return DistributedSampler(dataset, shuffle=shuffle)
if shuffle:
sampler = torch.utils.data.sampler.RandomSampler(dataset)
else:
sampler = torch.utils.data.sampler.SequentialSampler(dataset)
return sampler
def make_batch_data_sampler(cfg, sampler, batch_size, drop_last, max_iter,
is_train):
if is_train:
batch_sampler = cfg.train.batch_sampler
else:
batch_sampler = cfg.test.batch_sampler
if batch_sampler == 'default':
batch_sampler = torch.utils.data.sampler.BatchSampler(
sampler, batch_size, drop_last)
elif batch_sampler == 'image_size':
raise NotImplementedError
if max_iter != -1:
from .samplers import IterationBasedBatchSampler
batch_sampler = IterationBasedBatchSampler(
batch_sampler, max_iter)
return batch_sampler
def worker_init_fn(worker_id):
import numpy as np
import time
# np.random.seed(worker_id + (int(round(time.time() * 1000) % (2**16))))
def make_collator(cfg, is_train):
_collators = {
}
from torch.utils.data.dataloader import default_collate
collator = cfg.train.collator if is_train else cfg.test.collator
if collator in _collators:
return _collators[collator]
else:
return default_collate
def Dataloader(cfg, split='train', is_train=True, start=0):
is_distributed = cfg.distributed
if split == 'train' and is_train:
batch_size = cfg.train.batch_size
max_iter = cfg.train.ep_iter
# shuffle = True
shuffle = cfg.train.shuffle
drop_last = False
else:
batch_size = cfg.test.batch_size
shuffle = True if is_distributed else False
drop_last = False
max_iter = -1
if split == 'train' and is_train:
dataset = load_object(cfg.data_train_module, cfg.data_train_args)
elif split == 'train' and not is_train:
cfg.data_train_args.split = 'test'
dataset = load_object(cfg.data_train_module, cfg.data_train_args)
elif split in ['test', 'val']:
dataset = load_object(cfg.data_val_module, cfg.data_val_args)
elif split == 'demo':
dataset = load_object(cfg.data_demo_module, cfg.data_demo_args)
elif split == 'mesh':
dataset = load_object(cfg.data_mesh_module, cfg.data_mesh_args)
else:
raise NotImplementedError
is_train = (split == 'train') and is_train
sampler = make_data_sampler(cfg, dataset, shuffle, is_distributed, is_train)
batch_sampler = make_batch_data_sampler(cfg, sampler, batch_size,
drop_last, max_iter, is_train)
num_workers = cfg.train.num_workers if is_train else cfg.test.num_workers
collator = make_collator(cfg, is_train)
data_loader = torch.utils.data.DataLoader(dataset,
batch_sampler=batch_sampler,
num_workers=num_workers,
collate_fn=collator,
worker_init_fn=worker_init_fn)
return data_loader