136 lines
5.3 KiB
Python
136 lines
5.3 KiB
Python
|
from .basedata import ImageDataBase, read_mv_images, find_best_people
|
|||
|
from easymocap.mytools.debug_utils import log, myerror, mywarn
|
|||
|
from easymocap.mytools.camera_utils import read_cameras
|
|||
|
from easymocap.mytools.file_utils import read_json
|
|||
|
import os
|
|||
|
import numpy as np
|
|||
|
import cv2
|
|||
|
|
|||
|
class SVDataset(ImageDataBase):
|
|||
|
'''
|
|||
|
这个数据只用来返回单段的视频数据,不用来返回多段的视频数据
|
|||
|
'''
|
|||
|
def __init__(self, root, subs, ranges, read_image=False, reader={}) -> None:
|
|||
|
super().__init__(root, subs, ranges, read_image)
|
|||
|
assert len(subs) == 1, 'SVDataset only support one subject'
|
|||
|
for key, value in reader.items():
|
|||
|
if key == 'images':
|
|||
|
self.try_to_extract_images(root, value)
|
|||
|
data, meta = read_mv_images(root, value['root'], value['ext'], subs)
|
|||
|
data = [d[0] for d in data]
|
|||
|
self.length = len(data)
|
|||
|
elif key == 'image_shape':
|
|||
|
imgname = self.infos['images'][0]
|
|||
|
shapes = []
|
|||
|
assert os.path.exists(imgname), "image {} not exists".format(imgname)
|
|||
|
img = cv2.imread(imgname)
|
|||
|
assert img is not None, "image {} read failed".format(imgname)
|
|||
|
height, width, _ = img.shape
|
|||
|
log('[{}] sub {} shape {}'.format(self.__class__.__name__, imgname, img.shape))
|
|||
|
shapes.append([height, width])
|
|||
|
data = shapes
|
|||
|
elif key == 'annots':
|
|||
|
data, meta = read_mv_images(root, value['root'], value['ext'], subs)
|
|||
|
data = [d[0] for d in data]
|
|||
|
if self.length > 0:
|
|||
|
assert self.length == len(data), \
|
|||
|
myerror('annots length {} not equal to images length {}.'.format(len(data), self.length))
|
|||
|
else:
|
|||
|
self.length = len(data)
|
|||
|
elif key == 'cameras':
|
|||
|
myerror('暂时没有实现相机参数')
|
|||
|
raise NotImplementedError
|
|||
|
else:
|
|||
|
raise ValueError(f'Unknown reader: {key}')
|
|||
|
self.infos[key] = data
|
|||
|
self.meta.update(meta)
|
|||
|
# check cameras:
|
|||
|
if 'cameras' not in self.infos:
|
|||
|
mywarn('[{}] No camera info, use default camera'.format(self.__class__.__name__))
|
|||
|
imgname0 = self.infos['images'][0]
|
|||
|
img = self.read_image(imgname0)
|
|||
|
height, width = img.shape[:2]
|
|||
|
log('[{}] Read shape {} from image {}'.format(self.__class__.__name__, img.shape, imgname0))
|
|||
|
focal = 1.2*min(height, width) # as colmap
|
|||
|
log('[{}] Set a fix focal length {}'.format(self.__class__.__name__, focal))
|
|||
|
K = np.array([focal, 0., width/2, 0., focal, height/2, 0. ,0., 1.]).reshape(3, 3)
|
|||
|
camera = {'K':K ,'R': np.eye(3), 'T': np.zeros((3, 1)), 'dist': np.zeros((1, 5))}
|
|||
|
for key, val in camera.items():
|
|||
|
camera[key] = val.astype(np.float32)
|
|||
|
self.infos['cameras'] = [camera]
|
|||
|
self.check_frames_length()
|
|||
|
self.find_best_people = find_best_people
|
|||
|
|
|||
|
def __getitem__(self, index):
|
|||
|
frame = self.frames[index]
|
|||
|
ret = {}
|
|||
|
for key, value in self.infos.items():
|
|||
|
if len(value) == 1:
|
|||
|
ret[key] = value[0]
|
|||
|
elif index >= len(value):
|
|||
|
myerror(f'[{self.__class__.__name__}] {key}: index {frame} out of range {len(value)}')
|
|||
|
else:
|
|||
|
ret[key] = value[frame]
|
|||
|
ret_new = {}
|
|||
|
for key, val in ret.items():
|
|||
|
if key == 'annots':
|
|||
|
annots = read_json(val)['annots']
|
|||
|
# select the best people
|
|||
|
annots = self.find_best_people(annots)
|
|||
|
ret_new.update(annots)
|
|||
|
elif key == 'cameras':
|
|||
|
ret_new[key] = val
|
|||
|
elif key == 'images':
|
|||
|
ret_new['imgnames'] = val
|
|||
|
if self.flag_read_image:
|
|||
|
img = self.read_image(val)
|
|||
|
ret_new[key] = img
|
|||
|
else:
|
|||
|
ret_new[key] = val
|
|||
|
elif key == 'image_shape':
|
|||
|
ret_new['image_shape'] = val
|
|||
|
ret_new['meta'] = {
|
|||
|
'subs': self.subs,
|
|||
|
'index': index,
|
|||
|
'frame': self.frames[index],
|
|||
|
'image_shape': ret_new['image_shape'],
|
|||
|
'imgnames': ret_new['imgnames'],
|
|||
|
}
|
|||
|
return ret_new
|
|||
|
|
|||
|
class SVHandL(SVDataset):
|
|||
|
def __init__(self, **kwargs):
|
|||
|
super().__init__(**kwargs)
|
|||
|
self.find_best_people = self._find_best_hand
|
|||
|
|
|||
|
def _find_best_hand(self, annots):
|
|||
|
assert len(annots) == 1, 'SVHandL only support one person'
|
|||
|
annot = annots[0]
|
|||
|
ret = {
|
|||
|
'bbox': np.array(annot['bbox_handl2d'], dtype=np.float32),
|
|||
|
'keypoints': np.array(annot['handl2d'], dtype=np.float32),
|
|||
|
}
|
|||
|
return ret
|
|||
|
|
|||
|
if __name__ == '__main__':
|
|||
|
cfg = '''
|
|||
|
module: myeasymocap.datasets.1v1p.MonoDataset
|
|||
|
args:
|
|||
|
root: /nas/home/shuaiqing/EasyMocapDoc/demo/1v1p
|
|||
|
subs: ['0+000553+000965']
|
|||
|
ranges: [0, 99999, 1]
|
|||
|
read_image: True
|
|||
|
reader:
|
|||
|
images:
|
|||
|
root: images
|
|||
|
ext: .jpg
|
|||
|
annots:
|
|||
|
root: annots
|
|||
|
ext: .json
|
|||
|
'''
|
|||
|
import yaml
|
|||
|
cfg = yaml.load(cfg, Loader=yaml.FullLoader)
|
|||
|
dataset = SVDataset(**cfg['args'])
|
|||
|
print(dataset)
|
|||
|
for i in range(len(dataset)):
|
|||
|
data = dataset[i]
|