78 lines
2.2 KiB
Markdown
78 lines
2.2 KiB
Markdown
|
<!--
|
||
|
* @Date: 2021-06-28 14:09:50
|
||
|
* @Author: Qing Shuai
|
||
|
* @LastEditors: Qing Shuai
|
||
|
* @LastEditTime: 2021-06-28 19:28:14
|
||
|
* @FilePath: /EasyMocapRelease/doc/mvmp.md
|
||
|
-->
|
||
|
# EasyMocap - mvmp
|
||
|
|
||
|
This code aims to solve the problem of reconstructing multiple persons from multiple calibrated cameras. The released code is an easy-to-use version. See [Advanced](#Advanced) for more details.
|
||
|
|
||
|
## 0. Preparation
|
||
|
|
||
|
Prepare your calibrated and synchronized system by yourself.
|
||
|
|
||
|
You can download our dataset [here](https://zjueducn-my.sharepoint.com/:u:/g/personal/s_q_zju_edu_cn/EZFGgpK2Y6RBkPbGvny_PC0BIS08qJvxGYEHYopjhHX_TQ?e=LY3pgm).
|
||
|
|
||
|
```bash
|
||
|
├── intri.yml
|
||
|
├── extri.yml
|
||
|
├── annots
|
||
|
│ ├── 0
|
||
|
│ ├── 1
|
||
|
│ ├── 2
|
||
|
│ ├── 3
|
||
|
│ ├── 4
|
||
|
│ ├── 5
|
||
|
│ ├── 6
|
||
|
│ └── 7
|
||
|
└── videos
|
||
|
├── 0.mp4
|
||
|
├── 1.mp4
|
||
|
├── 2.mp4
|
||
|
├── 3.mp4
|
||
|
├── 4.mp4
|
||
|
├── 5.mp4
|
||
|
├── 6.mp4
|
||
|
└── 7.mp4
|
||
|
```
|
||
|
|
||
|
Extract the images from videos:
|
||
|
```bash
|
||
|
data=/path/to/data
|
||
|
python3 scripts/preprocess/extract_video.py ${data} --no2d
|
||
|
```
|
||
|
|
||
|
## 1. Reconstucting human pose
|
||
|
This step will reconstruct the human pose in each frame.
|
||
|
```bash
|
||
|
python3 apps/demo/mvmp.py ${data} --out ${data}/output --annot annots --cfg config/exp/mvmp1f.yml --undis --vis_det --vis_repro
|
||
|
```
|
||
|
|
||
|
## 2. Recovering SMPL body model
|
||
|
First we should tract the human pose in each frame. This step will track and interpolate missing frames.
|
||
|
```bash
|
||
|
python3 apps/demo/auto_track.py ${data}/output ${data}/output-track --track3d
|
||
|
```
|
||
|
|
||
|
Then we can fit SMPL model to the tracked keyponts:
|
||
|
|
||
|
```bash
|
||
|
python3 apps/demo/smpl_from_keypoints.py ${data} --skel ${data}/output-track/keypoints3d --out ${data}/output-track/smpl --verbose --opts smooth_poses 1e1
|
||
|
```
|
||
|
|
||
|
To visualize the results, see [visualization tutorial](./doc/realtime_visualization.md)
|
||
|
|
||
|
|
||
|
## Advanced
|
||
|
|
||
|
For more complicated scenes, our lab has a real-time version of this algorithm, which can perform 3D reconstruction and tracking simultaneously.
|
||
|
|
||
|
If you want to use this part for commercial queries, please contact [Xiaowei Zhou](mailto:xwzhou@zju.edu.cn).
|
||
|
|
||
|
|
||
|
|
||
|
https://user-images.githubusercontent.com/22812405/123629197-968c0080-d846-11eb-8417-4e6d3a65466d.mp4
|
||
|
|