2021-01-14 21:32:09 +08:00
|
|
|
'''
|
|
|
|
@ Date: 2020-11-20 13:34:54
|
|
|
|
@ Author: Qing Shuai
|
|
|
|
@ LastEditors: Qing Shuai
|
2021-01-24 22:33:08 +08:00
|
|
|
@ LastEditTime: 2021-01-24 18:39:45
|
|
|
|
@ FilePath: /EasyMocapRelease/code/smplmodel/body_param.py
|
2021-01-14 21:32:09 +08:00
|
|
|
'''
|
|
|
|
import numpy as np
|
|
|
|
|
|
|
|
def merge_params(param_list, share_shape=True):
|
|
|
|
output = {}
|
2021-01-24 22:33:08 +08:00
|
|
|
for key in ['poses', 'shapes', 'Rh', 'Th', 'expression']:
|
|
|
|
if key in param_list[0].keys():
|
|
|
|
output[key] = np.vstack([v[key] for v in param_list])
|
2021-01-14 21:32:09 +08:00
|
|
|
if share_shape:
|
|
|
|
output['shapes'] = output['shapes'].mean(axis=0, keepdims=True)
|
|
|
|
return output
|
|
|
|
|
|
|
|
def select_nf(params_all, nf):
|
|
|
|
output = {}
|
|
|
|
for key in ['poses', 'Rh', 'Th']:
|
|
|
|
output[key] = params_all[key][nf:nf+1, :]
|
2021-01-24 22:33:08 +08:00
|
|
|
if 'expression' in params_all.keys():
|
|
|
|
output['expression'] = params_all['expression'][nf:nf+1, :]
|
2021-01-14 21:32:09 +08:00
|
|
|
if params_all['shapes'].shape[0] == 1:
|
|
|
|
output['shapes'] = params_all['shapes']
|
|
|
|
else:
|
|
|
|
output['shapes'] = params_all['shapes'][nf:nf+1, :]
|
|
|
|
return output
|
|
|
|
|
2021-01-24 22:33:08 +08:00
|
|
|
NUM_POSES = {'smpl': 72, 'smplh': 78, 'smplx': 66 + 12 + 9}
|
|
|
|
NUM_EXPR = 10
|
|
|
|
|
|
|
|
def init_params(nFrames=1, model_type='smpl'):
|
2021-01-14 21:32:09 +08:00
|
|
|
params = {
|
2021-01-24 22:33:08 +08:00
|
|
|
'poses': np.zeros((nFrames, NUM_POSES[model_type])),
|
2021-01-14 21:32:09 +08:00
|
|
|
'shapes': np.zeros((1, 10)),
|
|
|
|
'Rh': np.zeros((nFrames, 3)),
|
|
|
|
'Th': np.zeros((nFrames, 3)),
|
|
|
|
}
|
2021-01-24 22:33:08 +08:00
|
|
|
if model_type == 'smplx':
|
|
|
|
params['expression'] = np.zeros((nFrames, NUM_EXPR))
|
2021-01-14 21:32:09 +08:00
|
|
|
return params
|
|
|
|
|
2021-01-24 22:33:08 +08:00
|
|
|
def check_params(body_params, model_type):
|
|
|
|
nFrames = body_params['poses'].shape[0]
|
|
|
|
if body_params['poses'].shape[1] != NUM_POSES[model_type]:
|
|
|
|
body_params['poses'] = np.hstack((body_params['poses'], np.zeros((nFrames, NUM_POSES[model_type] - body_params['poses'].shape[1]))))
|
|
|
|
if model_type == 'smplx' and 'expression' not in body_params.keys():
|
|
|
|
body_params['expression'] = np.zeros((nFrames, NUM_EXPR))
|
|
|
|
return body_params
|
|
|
|
|
2021-01-14 21:32:09 +08:00
|
|
|
class Config:
|
|
|
|
OPT_R = False
|
|
|
|
OPT_T = False
|
|
|
|
OPT_POSE = False
|
|
|
|
OPT_SHAPE = False
|
2021-01-24 22:33:08 +08:00
|
|
|
OPT_HAND = False
|
|
|
|
OPT_EXPR = False
|
|
|
|
VERBOSE = False
|
|
|
|
MODEL = 'smpl'
|
|
|
|
|
|
|
|
def load_model(gender='neutral', use_cuda=True, model_type='smpl'):
|
|
|
|
# prepare SMPL model
|
|
|
|
import torch
|
|
|
|
if use_cuda:
|
|
|
|
device = torch.device('cuda')
|
|
|
|
else:
|
|
|
|
device = torch.device('cpu')
|
|
|
|
from .body_model import SMPLlayer
|
|
|
|
if model_type == 'smpl':
|
|
|
|
body_model = SMPLlayer('data/smplx/smpl', gender=gender, device=device,
|
|
|
|
regressor_path='data/smplx/J_regressor_body25.npy')
|
|
|
|
elif model_type == 'smplh':
|
|
|
|
body_model = SMPLlayer('data/smplx/smplh/SMPLH_MALE.pkl', model_type='smplh', gender=gender, device=device,
|
|
|
|
regressor_path='data/smplx/J_regressor_body25_smplh.txt')
|
|
|
|
elif model_type == 'smplx':
|
|
|
|
body_model = SMPLlayer('data/smplx/smplx/SMPLX_{}.pkl'.format(gender.upper()), model_type='smplx', gender=gender, device=device,
|
|
|
|
regressor_path='data/smplx/J_regressor_body25_smplx.txt')
|
|
|
|
else:
|
|
|
|
body_model = None
|
|
|
|
body_model.to(device)
|
|
|
|
return body_model
|
|
|
|
|
|
|
|
def check_keypoints(keypoints2d, WEIGHT_DEBUFF=1.2):
|
|
|
|
# keypoints2d: nFrames, nJoints, 3
|
|
|
|
#
|
|
|
|
# wrong feet
|
|
|
|
# if keypoints2d.shape[-2] > 25 + 42:
|
|
|
|
# keypoints2d[..., 0, 2] = 0
|
|
|
|
# keypoints2d[..., [15, 16, 17, 18], -1] = 0
|
|
|
|
# keypoints2d[..., [19, 20, 21, 22, 23, 24], -1] /= 2
|
|
|
|
if keypoints2d.shape[-2] > 25:
|
|
|
|
# set the hand keypoints
|
|
|
|
keypoints2d[..., 25, :] = keypoints2d[..., 7, :]
|
|
|
|
keypoints2d[..., 46, :] = keypoints2d[..., 4, :]
|
|
|
|
keypoints2d[..., 25:, -1] *= WEIGHT_DEBUFF
|
|
|
|
# reduce the confidence of hand and face
|
|
|
|
MIN_CONF = 0.3
|
|
|
|
conf = keypoints2d[..., -1]
|
|
|
|
conf[conf<MIN_CONF] = 0
|
|
|
|
return keypoints2d
|