181 lines
6.3 KiB
Python
181 lines
6.3 KiB
Python
|
import torch
|
||
|
import torch.nn as nn
|
||
|
import torchvision.models.resnet as resnet
|
||
|
import numpy as np
|
||
|
import math
|
||
|
from torch.nn import functional as F
|
||
|
|
||
|
def rot6d_to_rotmat(x):
|
||
|
"""Convert 6D rotation representation to 3x3 rotation matrix.
|
||
|
Based on Zhou et al., "On the Continuity of Rotation Representations in Neural Networks", CVPR 2019
|
||
|
Input:
|
||
|
(B,6) Batch of 6-D rotation representations
|
||
|
Output:
|
||
|
(B,3,3) Batch of corresponding rotation matrices
|
||
|
"""
|
||
|
x = x.view(-1,3,2)
|
||
|
a1 = x[:, :, 0]
|
||
|
a2 = x[:, :, 1]
|
||
|
b1 = F.normalize(a1)
|
||
|
b2 = F.normalize(a2 - torch.einsum('bi,bi->b', b1, a2).unsqueeze(-1) * b1)
|
||
|
b3 = torch.cross(b1, b2)
|
||
|
return torch.stack((b1, b2, b3), dim=-1)
|
||
|
|
||
|
class Bottleneck(nn.Module):
|
||
|
""" Redefinition of Bottleneck residual block
|
||
|
Adapted from the official PyTorch implementation
|
||
|
"""
|
||
|
expansion = 4
|
||
|
|
||
|
def __init__(self, inplanes, planes, stride=1, downsample=None):
|
||
|
super(Bottleneck, self).__init__()
|
||
|
self.conv1 = nn.Conv2d(inplanes, planes, kernel_size=1, bias=False)
|
||
|
self.bn1 = nn.BatchNorm2d(planes)
|
||
|
self.conv2 = nn.Conv2d(planes, planes, kernel_size=3, stride=stride,
|
||
|
padding=1, bias=False)
|
||
|
self.bn2 = nn.BatchNorm2d(planes)
|
||
|
self.conv3 = nn.Conv2d(planes, planes * 4, kernel_size=1, bias=False)
|
||
|
self.bn3 = nn.BatchNorm2d(planes * 4)
|
||
|
self.relu = nn.ReLU(inplace=True)
|
||
|
self.downsample = downsample
|
||
|
self.stride = stride
|
||
|
|
||
|
def forward(self, x):
|
||
|
residual = x
|
||
|
|
||
|
out = self.conv1(x)
|
||
|
out = self.bn1(out)
|
||
|
out = self.relu(out)
|
||
|
|
||
|
out = self.conv2(out)
|
||
|
out = self.bn2(out)
|
||
|
out = self.relu(out)
|
||
|
|
||
|
out = self.conv3(out)
|
||
|
out = self.bn3(out)
|
||
|
|
||
|
if self.downsample is not None:
|
||
|
residual = self.downsample(x)
|
||
|
|
||
|
out += residual
|
||
|
out = self.relu(out)
|
||
|
|
||
|
return out
|
||
|
|
||
|
class HMR(nn.Module):
|
||
|
""" SMPL Iterative Regressor with ResNet50 backbone
|
||
|
"""
|
||
|
|
||
|
def __init__(self, block, layers, smpl_mean_params):
|
||
|
self.inplanes = 64
|
||
|
super(HMR, self).__init__()
|
||
|
npose = 24 * 6
|
||
|
self.conv1 = nn.Conv2d(3, 64, kernel_size=7, stride=2, padding=3,
|
||
|
bias=False)
|
||
|
self.bn1 = nn.BatchNorm2d(64)
|
||
|
self.relu = nn.ReLU(inplace=True)
|
||
|
self.maxpool = nn.MaxPool2d(kernel_size=3, stride=2, padding=1)
|
||
|
self.layer1 = self._make_layer(block, 64, layers[0])
|
||
|
self.layer2 = self._make_layer(block, 128, layers[1], stride=2)
|
||
|
self.layer3 = self._make_layer(block, 256, layers[2], stride=2)
|
||
|
self.layer4 = self._make_layer(block, 512, layers[3], stride=2)
|
||
|
self.avgpool = nn.AvgPool2d(7, stride=1)
|
||
|
self.fc1 = nn.Linear(512 * block.expansion + npose + 13, 1024)
|
||
|
self.drop1 = nn.Dropout()
|
||
|
self.fc2 = nn.Linear(1024, 1024)
|
||
|
self.drop2 = nn.Dropout()
|
||
|
self.decpose = nn.Linear(1024, npose)
|
||
|
self.decshape = nn.Linear(1024, 10)
|
||
|
self.deccam = nn.Linear(1024, 3)
|
||
|
nn.init.xavier_uniform_(self.decpose.weight, gain=0.01)
|
||
|
nn.init.xavier_uniform_(self.decshape.weight, gain=0.01)
|
||
|
nn.init.xavier_uniform_(self.deccam.weight, gain=0.01)
|
||
|
|
||
|
for m in self.modules():
|
||
|
if isinstance(m, nn.Conv2d):
|
||
|
n = m.kernel_size[0] * m.kernel_size[1] * m.out_channels
|
||
|
m.weight.data.normal_(0, math.sqrt(2. / n))
|
||
|
elif isinstance(m, nn.BatchNorm2d):
|
||
|
m.weight.data.fill_(1)
|
||
|
m.bias.data.zero_()
|
||
|
|
||
|
mean_params = np.load(smpl_mean_params)
|
||
|
init_pose = torch.from_numpy(mean_params['pose'][:]).unsqueeze(0)
|
||
|
init_shape = torch.from_numpy(mean_params['shape'][:].astype('float32')).unsqueeze(0)
|
||
|
init_cam = torch.from_numpy(mean_params['cam']).unsqueeze(0)
|
||
|
self.register_buffer('init_pose', init_pose)
|
||
|
self.register_buffer('init_shape', init_shape)
|
||
|
self.register_buffer('init_cam', init_cam)
|
||
|
|
||
|
|
||
|
def _make_layer(self, block, planes, blocks, stride=1):
|
||
|
downsample = None
|
||
|
if stride != 1 or self.inplanes != planes * block.expansion:
|
||
|
downsample = nn.Sequential(
|
||
|
nn.Conv2d(self.inplanes, planes * block.expansion,
|
||
|
kernel_size=1, stride=stride, bias=False),
|
||
|
nn.BatchNorm2d(planes * block.expansion),
|
||
|
)
|
||
|
|
||
|
layers = []
|
||
|
layers.append(block(self.inplanes, planes, stride, downsample))
|
||
|
self.inplanes = planes * block.expansion
|
||
|
for i in range(1, blocks):
|
||
|
layers.append(block(self.inplanes, planes))
|
||
|
|
||
|
return nn.Sequential(*layers)
|
||
|
|
||
|
|
||
|
def forward(self, x, init_pose=None, init_shape=None, init_cam=None, n_iter=3):
|
||
|
|
||
|
batch_size = x.shape[0]
|
||
|
|
||
|
if init_pose is None:
|
||
|
init_pose = self.init_pose.expand(batch_size, -1)
|
||
|
if init_shape is None:
|
||
|
init_shape = self.init_shape.expand(batch_size, -1)
|
||
|
if init_cam is None:
|
||
|
init_cam = self.init_cam.expand(batch_size, -1)
|
||
|
|
||
|
x = self.conv1(x)
|
||
|
x = self.bn1(x)
|
||
|
x = self.relu(x)
|
||
|
x = self.maxpool(x)
|
||
|
|
||
|
x1 = self.layer1(x)
|
||
|
x2 = self.layer2(x1)
|
||
|
x3 = self.layer3(x2)
|
||
|
x4 = self.layer4(x3)
|
||
|
|
||
|
xf = self.avgpool(x4)
|
||
|
xf = xf.view(xf.size(0), -1)
|
||
|
|
||
|
pred_pose = init_pose
|
||
|
pred_shape = init_shape
|
||
|
pred_cam = init_cam
|
||
|
for i in range(n_iter):
|
||
|
xc = torch.cat([xf, pred_pose, pred_shape, pred_cam],1)
|
||
|
xc = self.fc1(xc)
|
||
|
xc = self.drop1(xc)
|
||
|
xc = self.fc2(xc)
|
||
|
xc = self.drop2(xc)
|
||
|
pred_pose = self.decpose(xc) + pred_pose
|
||
|
pred_shape = self.decshape(xc) + pred_shape
|
||
|
pred_cam = self.deccam(xc) + pred_cam
|
||
|
|
||
|
pred_rotmat = rot6d_to_rotmat(pred_pose).view(batch_size, 24, 3, 3)
|
||
|
|
||
|
return pred_rotmat, pred_shape, pred_cam
|
||
|
|
||
|
def hmr(smpl_mean_params, pretrained=True, **kwargs):
|
||
|
""" Constructs an HMR model with ResNet50 backbone.
|
||
|
Args:
|
||
|
pretrained (bool): If True, returns a model pre-trained on ImageNet
|
||
|
"""
|
||
|
model = HMR(Bottleneck, [3, 4, 6, 3], smpl_mean_params, **kwargs)
|
||
|
if pretrained:
|
||
|
resnet_imagenet = resnet.resnet50(pretrained=True)
|
||
|
model.load_state_dict(resnet_imagenet.state_dict(),strict=False)
|
||
|
return model
|
||
|
|