400 lines
15 KiB
Python
400 lines
15 KiB
Python
|
'''
|
||
|
@ Date: 2021-09-03 16:52:42
|
||
|
@ Author: Qing Shuai
|
||
|
@ LastEditors: Qing Shuai
|
||
|
@ LastEditTime: 2021-09-03 22:41:50
|
||
|
@ FilePath: /EasyMocap/easymocap/neuralbody/model/neuralbody.py
|
||
|
'''
|
||
|
from .nerf import Nerf, EmbedMLP
|
||
|
import torch
|
||
|
import spconv
|
||
|
try:
|
||
|
if spconv.__version__.split('.')[0] == '2':
|
||
|
import spconv.pytorch as spconv
|
||
|
except:
|
||
|
pass
|
||
|
import torch.nn as nn
|
||
|
import torch.nn.functional as F
|
||
|
|
||
|
def pts_to_can_pts(pts, sp_input):
|
||
|
"""transform pts from the world coordinate to the smpl coordinate"""
|
||
|
Th = sp_input['Th']
|
||
|
pts = pts - Th
|
||
|
R = sp_input['R']
|
||
|
pts = torch.matmul(pts, R)
|
||
|
if 'scale' in sp_input.keys():
|
||
|
pts = pts / sp_input['scale'].float()
|
||
|
return pts
|
||
|
|
||
|
def get_grid_coords(pts, sp_input, voxel_size):
|
||
|
# convert xyz to the voxel coordinate dhw
|
||
|
dhw = pts[..., [2, 1, 0]]
|
||
|
# min_dhw = sp_input['bounds'][:, 0, [2, 1, 0]]
|
||
|
min_dhw = sp_input['min_dhw']
|
||
|
dhw = dhw - min_dhw[:, None]
|
||
|
dhw = dhw / voxel_size
|
||
|
# convert the voxel coordinate to [-1, 1]
|
||
|
out_sh = torch.tensor(sp_input['out_sh']).to(dhw)
|
||
|
dhw = dhw / out_sh * 2 - 1
|
||
|
# convert dhw to whd, since the occupancy is indexed by dhw
|
||
|
grid_coords = dhw[..., [2, 1, 0]]
|
||
|
if True: # clamp points
|
||
|
grid_coords[grid_coords>1.] = 1.
|
||
|
grid_coords[grid_coords<-1.] = -1
|
||
|
return grid_coords
|
||
|
|
||
|
def encode_sparse_voxels(xyzc_net, sp_input, code):
|
||
|
coord = sp_input['coord']
|
||
|
out_sh = sp_input['out_sh']
|
||
|
batch_size = sp_input['batch_size']
|
||
|
|
||
|
xyzc = spconv.SparseConvTensor(code, coord, out_sh, batch_size)
|
||
|
feature_volume = xyzc_net(xyzc)
|
||
|
|
||
|
return feature_volume
|
||
|
|
||
|
def my_grid_sample(feat, grid, mode='bilinear', align_corners=True, padding_mode='border'):
|
||
|
B, C, ID, IH, IW = feat.shape
|
||
|
assert(B==1)
|
||
|
feat = feat[0]
|
||
|
grid = grid[0, 0, 0]
|
||
|
N_g, _ = grid.shape
|
||
|
ix, iy, iz = grid[..., 0], grid[..., 1], grid[..., 2]
|
||
|
|
||
|
ix = ((ix+1)/2) * (IW-1)
|
||
|
iy = ((iy+1)/2) * (IH-1)
|
||
|
iz = ((iz+1)/2) * (ID-1)
|
||
|
with torch.no_grad():
|
||
|
ix_floor = torch.floor(ix).long()
|
||
|
iy_floor = torch.floor(iy).long()
|
||
|
iz_floor = torch.floor(iz).long()
|
||
|
ix_ceil = ix_floor + 1
|
||
|
iy_ceil = iy_floor + 1
|
||
|
iz_ceil = iz_floor + 1
|
||
|
# w_000: xyz
|
||
|
w_111 = (ix-ix_floor) * (iy-iy_floor) * (iz-iz_floor)
|
||
|
|
||
|
w_110 = (ix-ix_floor) * (iy-iy_floor) * (iz_ceil-iz)
|
||
|
w_101 = (ix-ix_floor) * (iy_ceil-iy) * (iz-iz_floor)
|
||
|
w_011 = (ix_ceil-ix) * (iy-iy_floor) * (iz-iz_floor)
|
||
|
|
||
|
w_100 = (ix-ix_floor) * (iy_ceil-iy) * (iz_ceil-iz)
|
||
|
w_010 = (ix_ceil-ix) * (iy-iy_floor) * (iz_ceil-iz)
|
||
|
w_001 = (ix_ceil-ix) * (iy_ceil-iy) * (iz-iz_floor)
|
||
|
|
||
|
w_000 = (ix_ceil-ix) * (iy_ceil-iy) * (iz_ceil-iz)
|
||
|
|
||
|
weights = [w_000, w_001, w_010, w_100, w_011, w_101, w_110, w_111]
|
||
|
with torch.no_grad():
|
||
|
torch.clamp(ix_floor, 0, IW-1, out=ix_floor)
|
||
|
torch.clamp(iy_floor, 0, IH-1, out=iy_floor)
|
||
|
torch.clamp(iz_floor, 0, ID-1, out=iz_floor)
|
||
|
torch.clamp(ix_ceil, 0, IW-1, out=ix_ceil)
|
||
|
torch.clamp(iy_ceil, 0, IH-1, out=iy_ceil)
|
||
|
torch.clamp(iz_ceil, 0, ID-1, out=iz_ceil)
|
||
|
v_000 = feat[:, iz_floor, iy_floor, ix_floor]
|
||
|
|
||
|
v_001 = feat[:, iz_ceil, iy_floor, ix_floor]
|
||
|
v_010 = feat[:, iz_floor, iy_ceil, ix_floor]
|
||
|
v_100 = feat[:, iz_floor, iy_floor, ix_ceil]
|
||
|
|
||
|
v_011 = feat[:, iz_ceil, iy_ceil, ix_floor]
|
||
|
v_101 = feat[:, iz_ceil, iy_floor, ix_ceil]
|
||
|
v_110 = feat[:, iz_floor, iy_ceil, ix_ceil]
|
||
|
|
||
|
v_111 = feat[:, iz_ceil, iy_ceil, ix_ceil]
|
||
|
|
||
|
val = v_000 * w_000[None] + v_001 * w_001[None] + v_010 * w_010[None] + v_100 * w_100[None] + \
|
||
|
v_011 * w_011[None] + v_101 * w_101[None] + v_110 * w_110[None] + v_111 * w_111[None]
|
||
|
return val[None, :, None, None]
|
||
|
|
||
|
def interpolate_features(grid_coords, feature_volume, padding_mode):
|
||
|
features = []
|
||
|
for volume in feature_volume:
|
||
|
feature = F.grid_sample(volume,
|
||
|
grid_coords,
|
||
|
padding_mode=padding_mode,
|
||
|
align_corners=True)
|
||
|
# feature = my_grid_sample(volume, grid_coords)
|
||
|
features.append(feature)
|
||
|
features = torch.cat(features, dim=1)
|
||
|
# features: (nFeatures, nPoints)
|
||
|
features = features.view(-1, features.size(4))
|
||
|
features = features.transpose(0, 1)
|
||
|
return features
|
||
|
|
||
|
def prepare_sp_input(batch, voxel_pad, voxel_size):
|
||
|
vertices = batch['vertices'][0]
|
||
|
R, Th = batch['R'][0], batch['Th'][0]
|
||
|
# Here: R^-1 @ (X - T) => (X - T) @ R^-1.T
|
||
|
can_xyz = torch.matmul(vertices - Th, R.transpose(0, 1).transpose(0, 1))
|
||
|
# construct the coordinate
|
||
|
min_xyz, _ = torch.min(can_xyz - voxel_pad, dim=0)
|
||
|
max_xyz, _ = torch.max(can_xyz + voxel_pad, dim=0)
|
||
|
dhw = can_xyz[:, [2, 1, 0]]
|
||
|
min_dhw = min_xyz[[2, 1, 0]]
|
||
|
max_dhw = max_xyz[[2, 1, 0]]
|
||
|
# coordinate in the canonical space
|
||
|
coord = torch.round((dhw - min_dhw)/voxel_size).to(torch.int)
|
||
|
# construct the output shape
|
||
|
out_sh = torch.ceil((max_dhw - min_dhw) / voxel_size).to(torch.int)
|
||
|
x = 32
|
||
|
out_sh = (out_sh | (x - 1)) + 1
|
||
|
|
||
|
# feature, coordinate, shape, batch size
|
||
|
sp_input = {}
|
||
|
# coordinate: [N, 4], batch_idx, z, y, x
|
||
|
coord = coord[None]
|
||
|
sh = coord.shape
|
||
|
idx = [torch.full([sh[1]], i, dtype=torch.long) for i in range(sh[0])]
|
||
|
idx = torch.cat(idx).to(coord)
|
||
|
|
||
|
out_sh, _ = torch.max(out_sh, dim=0)
|
||
|
sp_input = {
|
||
|
'coord': torch.cat([idx[:, None], coord[0]], dim=1),
|
||
|
'out_sh': out_sh.tolist(),
|
||
|
'batch_size': sh[0],
|
||
|
# used for feature interpolation
|
||
|
'min_dhw': min_dhw[None],
|
||
|
'max_dhw': max_dhw[None],
|
||
|
'min_xyz': min_xyz[None],
|
||
|
'max_xyz': max_xyz[None],
|
||
|
'R': R,
|
||
|
'Th': Th,
|
||
|
# 'scale': ,
|
||
|
}
|
||
|
return sp_input
|
||
|
|
||
|
class Network(Nerf):
|
||
|
def __init__(self, nerf, embed_vert, embed_time, sparse, use_mlp_vert=False, start_embed_time=0,
|
||
|
use_canonical_viewdirs=True, use_viewdirs=False,
|
||
|
padding_mode='zeros',
|
||
|
voxel_size = [0.005, 0.005, 0.005], voxel_pad = [0.05, 0.05, 0.05],
|
||
|
pretrain=None) -> None:
|
||
|
nerf['ch_pts_extra'] = sparse['dims'][-1]*2 + sparse['dims'][-2] + sparse['dims'][-3]
|
||
|
nerf['latent'] = {'time': embed_time.shape[1]}
|
||
|
if use_canonical_viewdirs and use_viewdirs:
|
||
|
# 注意:这里不能写*2, 因为多个人的时候这个字典没有拷贝
|
||
|
nerf['dim_dir'] = 6
|
||
|
self.use_canonical_viewdirs = use_canonical_viewdirs
|
||
|
print('- [Load Network](Neuralbody) use_viewdirs={}, use_canonical_viewdirs={}'.format(use_viewdirs, use_canonical_viewdirs))
|
||
|
self.use_world_viewdirs = use_viewdirs
|
||
|
super().__init__(**nerf)
|
||
|
self.sp_input = None
|
||
|
self.feature_volume = None
|
||
|
# add embedding
|
||
|
self.nVertices = embed_vert[0]
|
||
|
self.nFrames = embed_time.shape[0]
|
||
|
self.embed_vert = nn.Embedding(embed_vert[0], embed_vert[1])
|
||
|
self.padding_mode = padding_mode
|
||
|
if embed_time.mode == 'dense':
|
||
|
self.embed_time = nn.Embedding(embed_time.shape[0], embed_time.shape[1])
|
||
|
elif embed_time.mode == 'mlp':
|
||
|
if 'res' not in embed_time.keys():
|
||
|
self.embed_time = EmbedMLP(
|
||
|
input_ch=1,
|
||
|
multi_res=32,
|
||
|
W=128,
|
||
|
D=2,
|
||
|
bounds=embed_time.shape[0],
|
||
|
output_ch=embed_time.shape[1])
|
||
|
else:
|
||
|
self.embed_time = EmbedMLP(
|
||
|
input_ch=1,
|
||
|
multi_res=embed_time['res'],
|
||
|
W=128,
|
||
|
D=embed_time.D,
|
||
|
bounds=embed_time.shape[0],
|
||
|
output_ch=embed_time.shape[1])
|
||
|
self.start_embed_time = start_embed_time
|
||
|
vert_idx = torch.arange(0, embed_vert[0])
|
||
|
self.xyzc_net = SparseConvNet(**sparse)
|
||
|
self.register_buffer('vert_idx', vert_idx)
|
||
|
self.register_buffer('voxel_size', torch.tensor(voxel_size).reshape(1, 3))
|
||
|
self.register_buffer('voxel_pad', torch.tensor(voxel_pad).reshape(1, 3))
|
||
|
if pretrain is not None:
|
||
|
print('[nerf] load from {}'.format(pretrain))
|
||
|
checkpoint = torch.load(pretrain)
|
||
|
self.load_state_dict(checkpoint['net'], strict=True)
|
||
|
self.current = None
|
||
|
self.sparse_feature = {}
|
||
|
|
||
|
def clear_cache(self):
|
||
|
self.sparse_feature = {}
|
||
|
|
||
|
def model(self, key):
|
||
|
self.current = key
|
||
|
return self
|
||
|
|
||
|
def before(self, batch, name):
|
||
|
self.current = name
|
||
|
datas = {key.replace(name+'_', ''):val for key,val in batch.items() if key.startswith(name)}
|
||
|
device = datas['ray_o'].device
|
||
|
sp_input = prepare_sp_input(datas, self.voxel_pad, self.voxel_size)
|
||
|
pid = int(name.split('_')[1])
|
||
|
sp_input['latent_person'] = torch.IntTensor([pid]).to(device)
|
||
|
frame = batch['meta']['time'].to(device)
|
||
|
if 'frame' in name:
|
||
|
frame = frame + batch[name+'_frame'] - batch['meta']['nframe']
|
||
|
latent_time = self.embed_time(frame)
|
||
|
self.latent_time = latent_time
|
||
|
code = self.embed_vert(self.vert_idx)
|
||
|
feature_volume = encode_sparse_voxels(self.xyzc_net, sp_input, code)
|
||
|
self.sparse_feature[self.current] = {
|
||
|
'pid': pid,
|
||
|
'sp_input': sp_input,
|
||
|
'feature_volume': feature_volume,
|
||
|
'latent_time': latent_time
|
||
|
}
|
||
|
return datas
|
||
|
|
||
|
def calculate_density(self, wpts, **kwargs):
|
||
|
raise NotImplementedError
|
||
|
|
||
|
def calculate_density_color(self, wpts, viewdir, **kwargs):
|
||
|
# interpolate features
|
||
|
wpts_flat = wpts.reshape(-1, 3)
|
||
|
# convert viewdir to canonical space
|
||
|
sparse_feature = self.sparse_feature[self.current]
|
||
|
viewdir_canonical = torch.matmul(viewdir, sparse_feature['sp_input']['R'])
|
||
|
if self.use_canonical_viewdirs and not self.use_world_viewdirs:
|
||
|
viewdir = viewdir_canonical
|
||
|
elif self.use_canonical_viewdirs and self.use_world_viewdirs:
|
||
|
viewdir = torch.cat([viewdir, viewdir_canonical], dim=-1)
|
||
|
viewdir_flat = viewdir.reshape(-1, viewdir.shape[-1])
|
||
|
ppts = pts_to_can_pts(wpts_flat, sparse_feature['sp_input'])
|
||
|
valid = (ppts>sparse_feature['sp_input']['min_xyz'])&(ppts<sparse_feature['sp_input']['max_xyz'])
|
||
|
valid = valid.all(dim=-1)
|
||
|
if valid.sum() == 0:
|
||
|
outputs = {
|
||
|
'occupancy': torch.zeros((*wpts.shape[:-1], 1), device=wpts.device, dtype=wpts.dtype),
|
||
|
'rgb': torch.zeros((*wpts.shape[:-1], 3), device=wpts.device, dtype=wpts.dtype)
|
||
|
}
|
||
|
outputs['raw_rgb'] = outputs['rgb']
|
||
|
outputs['raw_alpha'] = outputs['occupancy']
|
||
|
return outputs
|
||
|
ppts_inlier = ppts[valid]
|
||
|
viewdir_inlier = viewdir_flat[valid]
|
||
|
grid_coords = get_grid_coords(ppts_inlier, sparse_feature['sp_input'], self.voxel_size)
|
||
|
grid_coords = grid_coords[:, None, None]
|
||
|
# xyzc_features: (nPoints, nFeatures)
|
||
|
xyzc_features = interpolate_features(grid_coords, sparse_feature['feature_volume'], self.padding_mode)
|
||
|
# latent_time: (1, nTime)
|
||
|
outputs = super().calculate_density_color(ppts_inlier, viewdir_inlier,
|
||
|
extra_density=xyzc_features, latents={'time': sparse_feature['latent_time'][0]})
|
||
|
outputs_all = {}
|
||
|
for key, val in outputs.items():
|
||
|
padding = torch.zeros((wpts_flat.shape[0], val.shape[-1]), device=val.device, dtype=val.dtype)
|
||
|
padding[valid] = val
|
||
|
outputs_all[key] = padding.view(*wpts.shape[:-1], val.shape[-1])
|
||
|
return outputs_all
|
||
|
|
||
|
class SparseConvNet(nn.Module):
|
||
|
def __init__(self, dims=[16, 32, 64, 128]):
|
||
|
super(SparseConvNet, self).__init__()
|
||
|
|
||
|
self.conv0 = double_conv(dims[0], dims[0], 'subm0')
|
||
|
self.down0 = stride_conv(dims[0], dims[1], 'down0')
|
||
|
|
||
|
self.conv1 = double_conv(dims[1], dims[1], 'subm1')
|
||
|
self.down1 = stride_conv(dims[1], dims[2], 'down1')
|
||
|
|
||
|
self.conv2 = triple_conv(dims[2], dims[2], 'subm2')
|
||
|
self.down2 = stride_conv(dims[2], dims[3], 'down2')
|
||
|
|
||
|
self.conv3 = triple_conv(dims[3], dims[3], 'subm3')
|
||
|
self.down3 = stride_conv(dims[3], dims[3], 'down3')
|
||
|
|
||
|
self.conv4 = triple_conv(dims[3], dims[3], 'subm4')
|
||
|
|
||
|
def forward(self, x):
|
||
|
net = self.conv0(x)
|
||
|
net = self.down0(net)
|
||
|
|
||
|
net = self.conv1(net)
|
||
|
net1 = net.dense()
|
||
|
net = self.down1(net)
|
||
|
|
||
|
net = self.conv2(net)
|
||
|
net2 = net.dense()
|
||
|
net = self.down2(net)
|
||
|
|
||
|
net = self.conv3(net)
|
||
|
net3 = net.dense()
|
||
|
net = self.down3(net)
|
||
|
|
||
|
net = self.conv4(net)
|
||
|
net4 = net.dense()
|
||
|
|
||
|
volumes = [net1, net2, net3, net4]
|
||
|
|
||
|
return volumes
|
||
|
|
||
|
|
||
|
def single_conv(in_channels, out_channels, indice_key=None):
|
||
|
return spconv.SparseSequential(
|
||
|
spconv.SubMConv3d(in_channels,
|
||
|
out_channels,
|
||
|
1,
|
||
|
bias=False,
|
||
|
indice_key=indice_key),
|
||
|
nn.BatchNorm1d(out_channels, eps=1e-3, momentum=0.01),
|
||
|
nn.ReLU(),
|
||
|
)
|
||
|
|
||
|
|
||
|
def double_conv(in_channels, out_channels, indice_key=None):
|
||
|
return spconv.SparseSequential(
|
||
|
spconv.SubMConv3d(in_channels,
|
||
|
out_channels,
|
||
|
3,
|
||
|
bias=False,
|
||
|
indice_key=indice_key),
|
||
|
nn.BatchNorm1d(out_channels, eps=1e-3, momentum=0.01),
|
||
|
nn.ReLU(),
|
||
|
spconv.SubMConv3d(out_channels,
|
||
|
out_channels,
|
||
|
3,
|
||
|
bias=False,
|
||
|
indice_key=indice_key),
|
||
|
nn.BatchNorm1d(out_channels, eps=1e-3, momentum=0.01),
|
||
|
nn.ReLU(),
|
||
|
)
|
||
|
|
||
|
|
||
|
def triple_conv(in_channels, out_channels, indice_key=None):
|
||
|
return spconv.SparseSequential(
|
||
|
spconv.SubMConv3d(in_channels,
|
||
|
out_channels,
|
||
|
3,
|
||
|
bias=False,
|
||
|
indice_key=indice_key),
|
||
|
nn.BatchNorm1d(out_channels, eps=1e-3, momentum=0.01),
|
||
|
nn.ReLU(),
|
||
|
spconv.SubMConv3d(out_channels,
|
||
|
out_channels,
|
||
|
3,
|
||
|
bias=False,
|
||
|
indice_key=indice_key),
|
||
|
nn.BatchNorm1d(out_channels, eps=1e-3, momentum=0.01),
|
||
|
nn.ReLU(),
|
||
|
spconv.SubMConv3d(out_channels,
|
||
|
out_channels,
|
||
|
3,
|
||
|
bias=False,
|
||
|
indice_key=indice_key),
|
||
|
nn.BatchNorm1d(out_channels, eps=1e-3, momentum=0.01),
|
||
|
nn.ReLU(),
|
||
|
)
|
||
|
|
||
|
|
||
|
def stride_conv(in_channels, out_channels, indice_key=None):
|
||
|
return spconv.SparseSequential(
|
||
|
spconv.SparseConv3d(in_channels,
|
||
|
out_channels,
|
||
|
3,
|
||
|
2,
|
||
|
padding=1,
|
||
|
bias=False,
|
||
|
indice_key=indice_key),
|
||
|
nn.BatchNorm1d(out_channels, eps=1e-3, momentum=0.01), nn.ReLU())
|