317 lines
14 KiB
Python
317 lines
14 KiB
Python
|
'''
|
|||
|
@ Date: 2021-03-05 15:21:33
|
|||
|
@ Author: Qing Shuai
|
|||
|
@ LastEditors: Qing Shuai
|
|||
|
@ LastEditTime: 2021-03-31 23:02:58
|
|||
|
@ FilePath: /EasyMocap/easymocap/pyfitting/optimize_mirror.py
|
|||
|
'''
|
|||
|
from .optimize_simple import _optimizeSMPL, deepcopy_tensor, get_prepare_smplx, dict_of_tensor_to_numpy
|
|||
|
from .lossfactory import LossRepro, LossInit, LossSmoothBody, LossSmoothPoses, LossSmoothBodyMulti, LossSmoothPosesMulti
|
|||
|
from ..dataset.mirror import flipSMPLPoses, flipPoint2D, flipSMPLParams
|
|||
|
import torch
|
|||
|
import numpy as np
|
|||
|
# 这里存在几种技术方案:
|
|||
|
# 1. theta, beta, R, T, (a, b, c, d) || L_r
|
|||
|
# 2. theta, beta, R, T, R', T' || L_r, L_s
|
|||
|
# 3. theta, beta, R, T, theta', beta', R', T' || L_r, L_s
|
|||
|
|
|||
|
def flipSMPLPosesV(params, reverse=False):
|
|||
|
# 前面部分是外面的人,后面部分是镜子里的人
|
|||
|
nFrames = params['poses'].shape[0] // 2
|
|||
|
if reverse:
|
|||
|
params['poses'][:nFrames] = flipSMPLPoses(params['poses'][nFrames:])
|
|||
|
else:
|
|||
|
params['poses'][nFrames:] = flipSMPLPoses(params['poses'][:nFrames])
|
|||
|
return params
|
|||
|
|
|||
|
def flipSMPLParamsV(params, mirror):
|
|||
|
params_mirror = flipSMPLParams(params, mirror)
|
|||
|
params_new = {}
|
|||
|
for key in params.keys():
|
|||
|
if key == 'shapes':
|
|||
|
params_new['shapes'] = params['shapes']
|
|||
|
else:
|
|||
|
params_new[key] = np.vstack([params[key], params_mirror[key]])
|
|||
|
return params_new
|
|||
|
|
|||
|
def calc_mirror_transform(m_):
|
|||
|
""" From mirror vector to mirror matrix
|
|||
|
|
|||
|
Args:
|
|||
|
m (bn, 4): (a, b, c, d)
|
|||
|
|
|||
|
Returns:
|
|||
|
M: (bn, 3, 4)
|
|||
|
"""
|
|||
|
norm = torch.norm(m_[:, :3], dim=1, keepdim=True)
|
|||
|
m = m_[:, :3] / norm
|
|||
|
d = m_[:, 3]
|
|||
|
coeff_mat = torch.zeros((m.shape[0], 3, 4), device=m.device)
|
|||
|
coeff_mat[:, 0, 0] = 1 - 2*m[:, 0]**2
|
|||
|
coeff_mat[:, 0, 1] = -2*m[:, 0]*m[:, 1]
|
|||
|
coeff_mat[:, 0, 2] = -2*m[:, 0]*m[:, 2]
|
|||
|
coeff_mat[:, 0, 3] = -2*m[:, 0]*d
|
|||
|
coeff_mat[:, 1, 0] = -2*m[:, 1]*m[:, 0]
|
|||
|
coeff_mat[:, 1, 1] = 1-2*m[:, 1]**2
|
|||
|
coeff_mat[:, 1, 2] = -2*m[:, 1]*m[:, 2]
|
|||
|
coeff_mat[:, 1, 3] = -2*m[:, 1]*d
|
|||
|
coeff_mat[:, 2, 0] = -2*m[:, 2]*m[:, 0]
|
|||
|
coeff_mat[:, 2, 1] = -2*m[:, 2]*m[:, 1]
|
|||
|
coeff_mat[:, 2, 2] = 1-2*m[:, 2]**2
|
|||
|
coeff_mat[:, 2, 3] = -2*m[:, 2]*d
|
|||
|
return coeff_mat
|
|||
|
|
|||
|
class LossKeypointsMirror2D(LossRepro):
|
|||
|
def __init__(self, keypoints2d, bboxes, Pall, cfg) -> None:
|
|||
|
super().__init__(bboxes, keypoints2d, cfg)
|
|||
|
self.Pall = torch.Tensor(Pall).to(cfg.device)
|
|||
|
self.nJoints = keypoints2d.shape[-2]
|
|||
|
self.nViews, self.nFrames = self.keypoints2d.shape[0], self.keypoints2d.shape[1]
|
|||
|
self.kpt_homo = torch.ones((keypoints2d.shape[0]*keypoints2d.shape[1], keypoints2d.shape[2], 1), device=cfg.device)
|
|||
|
self.norm = 'l2'
|
|||
|
|
|||
|
def residual(self, kpts_est):
|
|||
|
# kpts_est: (2xnFrames, nJoints, 3)
|
|||
|
kpts_homo = torch.cat([kpts_est[..., :self.nJoints, :], self.kpt_homo], dim=2)
|
|||
|
point_cam = torch.einsum('ab,fnb->fna', self.Pall, kpts_homo)
|
|||
|
img_points = point_cam[..., :2]/point_cam[..., 2:]
|
|||
|
img_points = img_points.view(self.nViews, self.nFrames, self.nJoints, 2)
|
|||
|
residual = (img_points - self.keypoints2d) * self.conf
|
|||
|
return residual
|
|||
|
|
|||
|
def __call__(self, kpts_est, **kwargs):
|
|||
|
"reprojection error for mirror"
|
|||
|
# kpts_est: (2xnFrames, 25, 3)
|
|||
|
kpts_homo = torch.cat([kpts_est[..., :self.nJoints, :], self.kpt_homo], dim=2)
|
|||
|
point_cam = torch.einsum('ab,fnb->fna', self.Pall, kpts_homo)
|
|||
|
img_points = point_cam[..., :2]/point_cam[..., 2:]
|
|||
|
img_points = img_points.view(self.nViews, self.nFrames, self.nJoints, 2)
|
|||
|
return super().__call__(img_points)/self.nViews/self.nFrames
|
|||
|
|
|||
|
def __str__(self) -> str:
|
|||
|
return 'Loss function for Reprojection error of Mirror'
|
|||
|
|
|||
|
class LossKeypointsMirror2DDirect(LossKeypointsMirror2D):
|
|||
|
def __init__(self, keypoints2d, bboxes, Pall, normal=None, cfg=None, mirror=None) -> None:
|
|||
|
super().__init__(keypoints2d, bboxes, Pall, cfg)
|
|||
|
nFrames = 1
|
|||
|
if mirror is None:
|
|||
|
self.mirror = torch.zeros([nFrames, 4], device=cfg.device)
|
|||
|
if normal is not None:
|
|||
|
self.mirror[:, :3] = torch.Tensor(normal).to(cfg.device)
|
|||
|
else:
|
|||
|
# roughly initialize the mirror => n = (0, -1, 0)
|
|||
|
self.mirror[:, 2] = 1.
|
|||
|
self.mirror[:, 3] = -10.
|
|||
|
else:
|
|||
|
self.mirror = torch.Tensor(mirror).to(cfg.device)
|
|||
|
self.norm = 'l2'
|
|||
|
|
|||
|
def __call__(self, kpts_est, **kwargs):
|
|||
|
"reprojection error for direct mirror ="
|
|||
|
# kpts_est: (nFrames, 25, 3)
|
|||
|
M = calc_mirror_transform(self.mirror)
|
|||
|
if M.shape[0] != kpts_est.shape[0]:
|
|||
|
M = M.expand(kpts_est.shape[0], -1, -1)
|
|||
|
homo = torch.ones((kpts_est.shape[0], kpts_est.shape[1], 1), device=kpts_est.device)
|
|||
|
kpts_homo = torch.cat([kpts_est, homo], dim=2)
|
|||
|
kpts_mirror = flipPoint2D(torch.bmm(M, kpts_homo.transpose(1, 2)).transpose(1, 2))
|
|||
|
# 视频的时候注意拼接的顺序
|
|||
|
kpts_new = torch.cat([kpts_est, kpts_mirror])
|
|||
|
# 使用镜像进行翻转
|
|||
|
return super().__call__(kpts_new)
|
|||
|
|
|||
|
def __str__(self) -> str:
|
|||
|
return 'Loss function for Reprojection error of Mirror '
|
|||
|
|
|||
|
class LossMirrorSymmetry:
|
|||
|
def __init__(self, N_JOINTS=25, normal=None, cfg=None) -> None:
|
|||
|
idx0, idx1 = np.meshgrid(np.arange(N_JOINTS), np.arange(N_JOINTS))
|
|||
|
idx0, idx1 = idx0.reshape(-1), idx1.reshape(-1)
|
|||
|
idx_diff = np.where(idx0!=idx1)[0]
|
|||
|
self.idx00, self.idx11 = idx0[idx_diff], idx1[idx_diff]
|
|||
|
self.N_JOINTS = N_JOINTS
|
|||
|
self.idx0 = idx0
|
|||
|
self.idx1 = idx1
|
|||
|
if normal is not None:
|
|||
|
self.normal = torch.Tensor(normal).to(cfg.device)
|
|||
|
self.normal = self.normal.expand(-1, N_JOINTS, -1)
|
|||
|
else:
|
|||
|
self.normal = None
|
|||
|
self.device = cfg.device
|
|||
|
|
|||
|
def parallel_mirror(self, kpts_est, **kwargs):
|
|||
|
"encourage parallel to mirror"
|
|||
|
# kpts_est: (nFramesxnViews, nJoints, 3)
|
|||
|
if self.normal is None:
|
|||
|
return torch.tensor(0.).to(self.device)
|
|||
|
nFrames = kpts_est.shape[0] // 2
|
|||
|
kpts_out = kpts_est[:nFrames, ...]
|
|||
|
kpts_in = kpts_est[nFrames:, ...]
|
|||
|
kpts_in = flipPoint2D(kpts_in)
|
|||
|
direct = kpts_in - kpts_out
|
|||
|
direct_norm = direct/torch.norm(direct, dim=-1, keepdim=True)
|
|||
|
loss = torch.sum(torch.norm(torch.cross(self.normal, direct_norm), dim=2))
|
|||
|
return loss / nFrames / kpts_est.shape[1]
|
|||
|
|
|||
|
def parallel_self(self, kpts_est, **kwargs):
|
|||
|
"encourage parallel to self"
|
|||
|
# kpts_est: (nFramesxnViews, nJoints, 3)
|
|||
|
nFrames = kpts_est.shape[0] // 2
|
|||
|
kpts_out = kpts_est[:nFrames, ...]
|
|||
|
kpts_in = kpts_est[nFrames:, ...]
|
|||
|
kpts_in = flipPoint2D(kpts_in)
|
|||
|
direct = kpts_in - kpts_out
|
|||
|
direct_norm = direct/torch.norm(direct, dim=-1, keepdim=True)
|
|||
|
loss = torch.sum(torch.norm(
|
|||
|
torch.cross(direct_norm[:, self.idx0, :], direct_norm[:, self.idx1, :]), dim=2))/self.idx0.shape[0]
|
|||
|
return loss / nFrames
|
|||
|
|
|||
|
def vertical_self(self, kpts_est, **kwargs):
|
|||
|
"encourage vertical to self"
|
|||
|
# kpts_est: (nFramesxnViews, nJoints, 3)
|
|||
|
nFrames = kpts_est.shape[0] // 2
|
|||
|
kpts_out = kpts_est[:nFrames, ...]
|
|||
|
kpts_in = kpts_est[nFrames:, ...]
|
|||
|
kpts_in = flipPoint2D(kpts_in)
|
|||
|
direct = kpts_in - kpts_out
|
|||
|
direct_norm = direct/torch.norm(direct, dim=-1, keepdim=True)
|
|||
|
mid_point = (kpts_in + kpts_out)/2
|
|||
|
|
|||
|
inner = torch.abs(torch.sum((mid_point[:, self.idx00, :] - mid_point[:, self.idx11, :])*direct_norm[:, self.idx11, :], dim=2))
|
|||
|
loss = torch.sum(inner)/self.idx00.shape[0]
|
|||
|
return loss / nFrames
|
|||
|
|
|||
|
def __str__(self) -> str:
|
|||
|
return 'Loss function for Mirror Symmetry'
|
|||
|
|
|||
|
class MirrorLoss():
|
|||
|
def __init__(self, N_JOINTS=25) -> None:
|
|||
|
N_JOINTS = min(N_JOINTS, 25)
|
|||
|
idx0, idx1 = np.meshgrid(np.arange(N_JOINTS), np.arange(N_JOINTS))
|
|||
|
idx0, idx1 = idx0.reshape(-1), idx1.reshape(-1)
|
|||
|
idx_diff = np.where(idx0!=idx1)[0]
|
|||
|
self.idx00, self.idx11 = idx0[idx_diff], idx1[idx_diff]
|
|||
|
self.N_JOINTS = N_JOINTS
|
|||
|
self.idx0 = idx0
|
|||
|
self.idx1 = idx1
|
|||
|
|
|||
|
def loss(self, lKeypoints, weight_loss):
|
|||
|
loss_dict = {}
|
|||
|
for key in ['parallel_self', 'parallel_mirror', 'vertical_self']:
|
|||
|
if weight_loss[key] > 0.:
|
|||
|
loss_dict[key] = 0.
|
|||
|
# mirror loss for two person
|
|||
|
kpts0 = lKeypoints[0][..., :self.N_JOINTS, :]
|
|||
|
kpts1 = flipPoint(lKeypoints[1][..., :self.N_JOINTS, :])
|
|||
|
# direct: (N, 25, 3)
|
|||
|
direct = kpts1 - kpts0
|
|||
|
direct_norm = direct/torch.norm(direct, dim=2, keepdim=True)
|
|||
|
if weight_loss['parallel_self'] > 0.:
|
|||
|
loss_dict['parallel_self'] += torch.sum(torch.norm(
|
|||
|
torch.cross(direct_norm[:, self.idx0, :], direct_norm[:, self.idx1, :]), dim=2))/self.idx0.shape[0]
|
|||
|
mid_point = (kpts0 + kpts1)/2
|
|||
|
if weight_loss['vertical_self'] > 0:
|
|||
|
inner = torch.abs(torch.sum((mid_point[:, self.idx00, :] - mid_point[:, self.idx11, :])*direct_norm[:, self.idx11, :], dim=2))
|
|||
|
loss_dict['vertical_self'] += torch.sum(inner)/self.idx00.shape[0]
|
|||
|
return loss_dict
|
|||
|
|
|||
|
def optimizeMirrorDirect(body_model, params, bboxes, keypoints2d, Pall, normal, weight, cfg):
|
|||
|
"""
|
|||
|
simple function for optimizing mirror
|
|||
|
# 先写图片的
|
|||
|
Args:
|
|||
|
body_model (SMPL model)
|
|||
|
params (DictParam): poses(2, 72), shapes(1, 10), Rh(2, 3), Th(2, 3)
|
|||
|
bboxes (nFrames, nViews, nJoints, 4): 2D bbox of each view,输入的时候是按照时序叠起来的
|
|||
|
keypoints2d (nFrames, nViews, nJoints, 4): 2D keypoints of each view,输入的时候是按照时序叠起来的
|
|||
|
weight (Dict): string:float
|
|||
|
cfg (Config): Config Node controling running mode
|
|||
|
"""
|
|||
|
nViews, nFrames = keypoints2d.shape[:2]
|
|||
|
assert nViews == 2, 'Please make sure that there exists only 2 views'
|
|||
|
# keep the parameters of the real person
|
|||
|
for key in ['poses', 'Rh', 'Th']:
|
|||
|
# select the parameters of first person
|
|||
|
params[key] = params[key][:nFrames]
|
|||
|
prepare_funcs = [
|
|||
|
deepcopy_tensor,
|
|||
|
get_prepare_smplx(params, cfg, nFrames),
|
|||
|
]
|
|||
|
loss_repro = LossKeypointsMirror2DDirect(keypoints2d, bboxes, Pall, normal, cfg,
|
|||
|
mirror=params.pop('mirror', None))
|
|||
|
loss_funcs = {
|
|||
|
'k2d': loss_repro,
|
|||
|
'init_poses': LossInit(params, cfg).init_poses,
|
|||
|
'init_shapes': LossInit(params, cfg).init_shapes,
|
|||
|
}
|
|||
|
postprocess_funcs = [
|
|||
|
dict_of_tensor_to_numpy,
|
|||
|
]
|
|||
|
params = _optimizeSMPL(body_model, params, prepare_funcs, postprocess_funcs, loss_funcs,
|
|||
|
extra_params=[loss_repro.mirror],
|
|||
|
weight_loss=weight, cfg=cfg)
|
|||
|
mirror = loss_repro.mirror.detach().cpu().numpy()
|
|||
|
params = flipSMPLParamsV(params, mirror)
|
|||
|
params['mirror'] = mirror
|
|||
|
return params
|
|||
|
|
|||
|
def viewSelection(params, body_model, loss_repro, nFrames):
|
|||
|
# view selection
|
|||
|
params_inp = {key: val.copy() for key, val in params.items()}
|
|||
|
params_inp = flipSMPLPosesV(params_inp)
|
|||
|
kpts_est = body_model(return_verts=False, return_tensor=True, **params_inp)
|
|||
|
residual = loss_repro.residual(kpts_est)
|
|||
|
res_i = torch.norm(residual, dim=-1).mean(dim=-1).sum(dim=0)
|
|||
|
params_rev = {key: val.copy() for key, val in params.items()}
|
|||
|
params_rev = flipSMPLPosesV(params_rev, reverse=True)
|
|||
|
kpts_est = body_model(return_verts=False, return_tensor=True, **params_rev)
|
|||
|
residual = loss_repro.residual(kpts_est)
|
|||
|
res_o = torch.norm(residual, dim=-1).mean(dim=-1).sum(dim=0)
|
|||
|
for nf in range(res_i.shape[0]):
|
|||
|
if res_i[nf] < res_o[nf]: # 使用外面的
|
|||
|
params['poses'][[nFrames+nf]] = flipSMPLPoses(params['poses'][[nf]])
|
|||
|
else:
|
|||
|
params['poses'][[nf]] = flipSMPLPoses(params['poses'][[nFrames+nf]])
|
|||
|
return params
|
|||
|
|
|||
|
def optimizeMirrorSoft(body_model, params, bboxes, keypoints2d, Pall, normal, weight, cfg):
|
|||
|
"""
|
|||
|
simple function for optimizing mirror
|
|||
|
|
|||
|
Args:
|
|||
|
body_model (SMPL model)
|
|||
|
params (DictParam): poses(2, 72), shapes(1, 10), Rh(2, 3), Th(2, 3)
|
|||
|
bboxes (nViews, nFrames, 5): 2D bbox of each view,输入的时候是按照时序叠起来的
|
|||
|
keypoints2d (nViews, nFrames, nJoints, 3): 2D keypoints of each view,输入的时候是按照时序叠起来的
|
|||
|
weight (Dict): string:float
|
|||
|
cfg (Config): Config Node controling running mode
|
|||
|
"""
|
|||
|
nViews, nFrames = keypoints2d.shape[:2]
|
|||
|
assert nViews == 2, 'Please make sure that there exists only 2 views'
|
|||
|
prepare_funcs = [
|
|||
|
deepcopy_tensor,
|
|||
|
flipSMPLPosesV, #
|
|||
|
get_prepare_smplx(params, cfg, nFrames*nViews)
|
|||
|
]
|
|||
|
loss_sym = LossMirrorSymmetry(normal=normal, cfg=cfg)
|
|||
|
loss_repro = LossKeypointsMirror2D(keypoints2d, bboxes, Pall, cfg)
|
|||
|
params = viewSelection(params, body_model, loss_repro, nFrames)
|
|||
|
init = LossInit(params, cfg)
|
|||
|
loss_funcs = {
|
|||
|
'k2d': loss_repro.__call__,
|
|||
|
'init_poses': init.init_poses,
|
|||
|
'init_shapes': init.init_shapes,
|
|||
|
'par_self': loss_sym.parallel_self,
|
|||
|
'ver_self': loss_sym.vertical_self,
|
|||
|
'par_mirror': loss_sym.parallel_mirror,
|
|||
|
}
|
|||
|
if nFrames > 1:
|
|||
|
loss_funcs['smooth_body'] = LossSmoothBodyMulti([0, nFrames, nFrames*2], cfg)
|
|||
|
loss_funcs['smooth_poses'] = LossSmoothPosesMulti([0, nFrames, nFrames*2], cfg)
|
|||
|
postprocess_funcs = [
|
|||
|
dict_of_tensor_to_numpy,
|
|||
|
flipSMPLPosesV
|
|||
|
]
|
|||
|
params = _optimizeSMPL(body_model, params, prepare_funcs, postprocess_funcs, loss_funcs, weight_loss=weight, cfg=cfg)
|
|||
|
return params
|