2021-01-14 21:32:09 +08:00
|
|
|
|
'''
|
|
|
|
|
@ Date: 2021-01-13 20:38:33
|
|
|
|
|
@ Author: Qing Shuai
|
|
|
|
|
@ LastEditors: Qing Shuai
|
2021-04-14 15:22:51 +08:00
|
|
|
|
@ LastEditTime: 2021-04-13 21:43:52
|
|
|
|
|
@ FilePath: /EasyMocapRelease/scripts/preprocess/extract_video.py
|
2021-01-14 21:32:09 +08:00
|
|
|
|
'''
|
2021-01-24 22:33:08 +08:00
|
|
|
|
import os, sys
|
2021-01-14 21:32:09 +08:00
|
|
|
|
import cv2
|
|
|
|
|
from os.path import join
|
|
|
|
|
from tqdm import tqdm
|
|
|
|
|
from glob import glob
|
|
|
|
|
import numpy as np
|
|
|
|
|
|
|
|
|
|
mkdir = lambda x: os.makedirs(x, exist_ok=True)
|
|
|
|
|
|
2021-01-25 19:37:23 +08:00
|
|
|
|
def extract_video(videoname, path, start, end, step):
|
2021-01-14 21:32:09 +08:00
|
|
|
|
base = os.path.basename(videoname).replace('.mp4', '')
|
|
|
|
|
if not os.path.exists(videoname):
|
|
|
|
|
return base
|
|
|
|
|
outpath = join(path, 'images', base)
|
|
|
|
|
if os.path.exists(outpath) and len(os.listdir(outpath)) > 0:
|
2021-04-14 15:22:51 +08:00
|
|
|
|
num_images = len(os.listdir(outpath))
|
|
|
|
|
print('>> exists {} frames'.format(num_images))
|
2021-01-14 21:32:09 +08:00
|
|
|
|
return base
|
|
|
|
|
else:
|
2021-04-14 15:22:51 +08:00
|
|
|
|
os.makedirs(outpath, exist_ok=True)
|
2021-01-24 22:33:08 +08:00
|
|
|
|
video = cv2.VideoCapture(videoname)
|
2021-01-14 21:32:09 +08:00
|
|
|
|
totalFrames = int(video.get(cv2.CAP_PROP_FRAME_COUNT))
|
2021-04-21 23:09:54 +08:00
|
|
|
|
for cnt in tqdm(range(totalFrames), desc='{:10s}'.format(os.path.basename(videoname))):
|
2021-01-14 21:32:09 +08:00
|
|
|
|
ret, frame = video.read()
|
|
|
|
|
if cnt < start:continue
|
2021-04-14 15:22:51 +08:00
|
|
|
|
if cnt >= end:break
|
|
|
|
|
if not ret:continue
|
2021-01-14 21:32:09 +08:00
|
|
|
|
cv2.imwrite(join(outpath, '{:06d}.jpg'.format(cnt)), frame)
|
|
|
|
|
video.release()
|
|
|
|
|
return base
|
|
|
|
|
|
2021-04-14 15:22:51 +08:00
|
|
|
|
def extract_2d(openpose, image, keypoints, render, args):
|
|
|
|
|
skip = False
|
|
|
|
|
if os.path.exists(keypoints):
|
|
|
|
|
# check the number of images and keypoints
|
|
|
|
|
if len(os.listdir(image)) == len(os.listdir(keypoints)):
|
|
|
|
|
skip = True
|
|
|
|
|
if not skip:
|
2021-01-24 22:33:08 +08:00
|
|
|
|
os.makedirs(keypoints, exist_ok=True)
|
2021-04-23 01:13:37 +08:00
|
|
|
|
if os.name != 'nt':
|
|
|
|
|
cmd = './build/examples/openpose/openpose.bin --image_dir {} --write_json {} --display 0'.format(image, keypoints)
|
|
|
|
|
else:
|
|
|
|
|
cmd = 'bin\\OpenPoseDemo.exe --image_dir {} --write_json {} --display 0'.format(join(os.getcwd(),image), join(os.getcwd(),keypoints))
|
2021-04-14 15:22:51 +08:00
|
|
|
|
if args.highres!=1:
|
|
|
|
|
cmd = cmd + ' --net_resolution -1x{}'.format(int(16*((368*args.highres)//16)))
|
2021-01-14 21:32:09 +08:00
|
|
|
|
if args.handface:
|
|
|
|
|
cmd = cmd + ' --hand --face'
|
|
|
|
|
if args.render:
|
2021-04-23 05:51:12 +08:00
|
|
|
|
if os.path.exists(join(os.getcwd(),render)):
|
|
|
|
|
cmd = cmd + ' --write_images {}'.format(join(os.getcwd(),render))
|
|
|
|
|
else:
|
|
|
|
|
os.makedirs(join(os.getcwd(),render), exist_ok=True)
|
|
|
|
|
cmd = cmd + ' --write_images {}'.format(join(os.getcwd(),render))
|
2021-01-14 21:32:09 +08:00
|
|
|
|
else:
|
|
|
|
|
cmd = cmd + ' --render_pose 0'
|
|
|
|
|
os.chdir(openpose)
|
|
|
|
|
os.system(cmd)
|
|
|
|
|
|
2021-04-23 05:51:12 +08:00
|
|
|
|
|
2021-01-14 21:32:09 +08:00
|
|
|
|
import json
|
|
|
|
|
def read_json(path):
|
|
|
|
|
with open(path) as f:
|
|
|
|
|
data = json.load(f)
|
|
|
|
|
return data
|
|
|
|
|
|
|
|
|
|
def save_json(file, data):
|
|
|
|
|
if not os.path.exists(os.path.dirname(file)):
|
|
|
|
|
os.makedirs(os.path.dirname(file))
|
|
|
|
|
with open(file, 'w') as f:
|
|
|
|
|
json.dump(data, f, indent=4)
|
|
|
|
|
|
|
|
|
|
def create_annot_file(annotname, imgname):
|
|
|
|
|
assert os.path.exists(imgname), imgname
|
|
|
|
|
img = cv2.imread(imgname)
|
|
|
|
|
height, width = img.shape[0], img.shape[1]
|
|
|
|
|
imgnamesep = imgname.split(os.sep)
|
|
|
|
|
filename = os.sep.join(imgnamesep[imgnamesep.index('images'):])
|
|
|
|
|
annot = {
|
|
|
|
|
'filename':filename,
|
|
|
|
|
'height':height,
|
|
|
|
|
'width':width,
|
|
|
|
|
'annots': [],
|
|
|
|
|
'isKeyframe': False
|
|
|
|
|
}
|
|
|
|
|
save_json(annotname, annot)
|
|
|
|
|
return annot
|
|
|
|
|
|
|
|
|
|
def bbox_from_openpose(keypoints, rescale=1.2, detection_thresh=0.01):
|
|
|
|
|
"""Get center and scale for bounding box from openpose detections."""
|
|
|
|
|
valid = keypoints[:,-1] > detection_thresh
|
|
|
|
|
valid_keypoints = keypoints[valid][:,:-1]
|
|
|
|
|
center = valid_keypoints.mean(axis=0)
|
|
|
|
|
bbox_size = valid_keypoints.max(axis=0) - valid_keypoints.min(axis=0)
|
|
|
|
|
# adjust bounding box tightness
|
|
|
|
|
bbox_size = bbox_size * rescale
|
|
|
|
|
bbox = [
|
|
|
|
|
center[0] - bbox_size[0]/2,
|
|
|
|
|
center[1] - bbox_size[1]/2,
|
|
|
|
|
center[0] + bbox_size[0]/2,
|
|
|
|
|
center[1] + bbox_size[1]/2,
|
2021-01-24 22:33:08 +08:00
|
|
|
|
keypoints[valid, 2].mean()
|
2021-01-14 21:32:09 +08:00
|
|
|
|
]
|
|
|
|
|
return bbox
|
|
|
|
|
|
|
|
|
|
def load_openpose(opname):
|
|
|
|
|
mapname = {'face_keypoints_2d':'face2d', 'hand_left_keypoints_2d':'handl2d', 'hand_right_keypoints_2d':'handr2d'}
|
|
|
|
|
assert os.path.exists(opname), opname
|
|
|
|
|
data = read_json(opname)
|
|
|
|
|
out = []
|
|
|
|
|
pid = 0
|
|
|
|
|
for i, d in enumerate(data['people']):
|
|
|
|
|
keypoints = d['pose_keypoints_2d']
|
|
|
|
|
keypoints = np.array(keypoints).reshape(-1, 3)
|
|
|
|
|
annot = {
|
|
|
|
|
'bbox': bbox_from_openpose(keypoints),
|
|
|
|
|
'personID': pid + i,
|
|
|
|
|
'keypoints': keypoints.tolist(),
|
|
|
|
|
'isKeyframe': False
|
|
|
|
|
}
|
|
|
|
|
for key in ['face_keypoints_2d', 'hand_left_keypoints_2d', 'hand_right_keypoints_2d']:
|
|
|
|
|
if len(d[key]) == 0:
|
|
|
|
|
continue
|
|
|
|
|
kpts = np.array(d[key]).reshape(-1, 3)
|
|
|
|
|
annot[mapname[key]] = kpts.tolist()
|
|
|
|
|
out.append(annot)
|
|
|
|
|
return out
|
|
|
|
|
|
2021-04-23 01:13:37 +08:00
|
|
|
|
def convert_from_openpose(path_orig, src, dst, annotdir):
|
2021-01-14 21:32:09 +08:00
|
|
|
|
# convert the 2d pose from openpose
|
2021-04-23 01:13:37 +08:00
|
|
|
|
os.chdir(path_orig)
|
2021-01-14 21:32:09 +08:00
|
|
|
|
inputlist = sorted(os.listdir(src))
|
2021-04-21 23:09:54 +08:00
|
|
|
|
for inp in tqdm(inputlist, desc='{:10s}'.format(os.path.basename(dst))):
|
2021-01-14 21:32:09 +08:00
|
|
|
|
annots = load_openpose(join(src, inp))
|
|
|
|
|
base = inp.replace('_keypoints.json', '')
|
|
|
|
|
annotname = join(dst, base+'.json')
|
2021-04-14 15:22:51 +08:00
|
|
|
|
imgname = annotname.replace(annotdir, 'images').replace('.json', '.jpg')
|
2021-01-14 21:32:09 +08:00
|
|
|
|
annot = create_annot_file(annotname, imgname)
|
|
|
|
|
annot['annots'] = annots
|
|
|
|
|
save_json(annotname, annot)
|
|
|
|
|
|
2021-01-24 22:33:08 +08:00
|
|
|
|
def detect_frame(detector, img, pid=0):
|
|
|
|
|
lDetections = detector.detect([img])[0]
|
|
|
|
|
annots = []
|
|
|
|
|
for i in range(len(lDetections)):
|
|
|
|
|
annot = {
|
|
|
|
|
'bbox': [float(d) for d in lDetections[i]['bbox']],
|
|
|
|
|
'personID': pid + i,
|
|
|
|
|
'keypoints': lDetections[i]['keypoints'].tolist(),
|
|
|
|
|
'isKeyframe': True
|
|
|
|
|
}
|
|
|
|
|
annots.append(annot)
|
|
|
|
|
return annots
|
2021-04-14 15:22:51 +08:00
|
|
|
|
|
|
|
|
|
config_high = {
|
|
|
|
|
'yolov4': {
|
|
|
|
|
'ckpt_path': 'data/models/yolov4.weights',
|
|
|
|
|
'conf_thres': 0.3,
|
|
|
|
|
'box_nms_thres': 0.5 # 阈值=0.9,表示IOU 0.9的不会被筛掉
|
|
|
|
|
},
|
|
|
|
|
'hrnet':{
|
|
|
|
|
'nof_joints': 17,
|
|
|
|
|
'c': 48,
|
|
|
|
|
'checkpoint_path': 'data/models/pose_hrnet_w48_384x288.pth'
|
|
|
|
|
},
|
|
|
|
|
'detect':{
|
|
|
|
|
'MIN_PERSON_JOINTS': 10,
|
|
|
|
|
'MIN_BBOX_AREA': 5000,
|
|
|
|
|
'MIN_JOINTS_CONF': 0.3,
|
|
|
|
|
'MIN_BBOX_LEN': 150
|
|
|
|
|
}
|
|
|
|
|
}
|
|
|
|
|
|
|
|
|
|
config_low = {
|
|
|
|
|
'yolov4': {
|
|
|
|
|
'ckpt_path': 'data/models/yolov4.weights',
|
|
|
|
|
'conf_thres': 0.1,
|
|
|
|
|
'box_nms_thres': 0.9 # 阈值=0.9,表示IOU 0.9的不会被筛掉
|
|
|
|
|
},
|
|
|
|
|
'hrnet':{
|
|
|
|
|
'nof_joints': 17,
|
|
|
|
|
'c': 48,
|
|
|
|
|
'checkpoint_path': 'data/models/pose_hrnet_w48_384x288.pth'
|
|
|
|
|
},
|
|
|
|
|
'detect':{
|
|
|
|
|
'MIN_PERSON_JOINTS': 0,
|
|
|
|
|
'MIN_BBOX_AREA': 0,
|
|
|
|
|
'MIN_JOINTS_CONF': 0.0,
|
|
|
|
|
'MIN_BBOX_LEN': 0
|
|
|
|
|
}
|
|
|
|
|
}
|
|
|
|
|
|
|
|
|
|
def extract_yolo_hrnet(image_root, annot_root, ext='jpg', use_low=False):
|
2021-01-29 21:30:29 +08:00
|
|
|
|
imgnames = sorted(glob(join(image_root, '*.{}'.format(ext))))
|
2021-01-24 22:33:08 +08:00
|
|
|
|
import torch
|
|
|
|
|
device = torch.device('cuda')
|
2021-04-14 15:22:51 +08:00
|
|
|
|
from easymocap.estimator import Detector
|
|
|
|
|
config = config_low if use_low else config_high
|
|
|
|
|
print(config)
|
2021-01-24 22:33:08 +08:00
|
|
|
|
detector = Detector('yolo', 'hrnet', device, config)
|
|
|
|
|
for nf, imgname in enumerate(tqdm(imgnames)):
|
2021-01-29 21:30:29 +08:00
|
|
|
|
annotname = join(annot_root, os.path.basename(imgname).replace('.{}'.format(ext), '.json'))
|
2021-01-24 22:33:08 +08:00
|
|
|
|
annot = create_annot_file(annotname, imgname)
|
|
|
|
|
img0 = cv2.imread(imgname)
|
|
|
|
|
annot['annots'] = detect_frame(detector, img0, 0)
|
|
|
|
|
for i in range(len(annot['annots'])):
|
|
|
|
|
x = annot['annots'][i]
|
|
|
|
|
x['area'] = max(x['bbox'][2] - x['bbox'][0], x['bbox'][3] - x['bbox'][1])**2
|
|
|
|
|
annot['annots'].sort(key=lambda x:-x['area'])
|
|
|
|
|
# 重新赋值人的ID
|
|
|
|
|
for i in range(len(annot['annots'])):
|
|
|
|
|
annot['annots'][i]['personID'] = i
|
|
|
|
|
save_json(annotname, annot)
|
|
|
|
|
|
2021-01-14 21:32:09 +08:00
|
|
|
|
if __name__ == "__main__":
|
|
|
|
|
import argparse
|
|
|
|
|
parser = argparse.ArgumentParser()
|
2021-04-23 05:51:12 +08:00
|
|
|
|
parser.add_argument('path', type=str, help="the path of data")
|
2021-04-14 15:22:51 +08:00
|
|
|
|
parser.add_argument('--mode', type=str, default='openpose', choices=['openpose', 'yolo-hrnet'], help="model to extract joints from image")
|
|
|
|
|
parser.add_argument('--ext', type=str, default='jpg', choices=['jpg', 'png'], help="image file extension")
|
|
|
|
|
parser.add_argument('--annot', type=str, default='annots', help="sub directory name to store the generated annotation files, default to be annots")
|
|
|
|
|
parser.add_argument('--highres', type=float, default=1)
|
2021-01-14 21:32:09 +08:00
|
|
|
|
parser.add_argument('--handface', action='store_true')
|
|
|
|
|
parser.add_argument('--openpose', type=str,
|
|
|
|
|
default='/media/qing/Project/openpose')
|
2021-04-14 15:22:51 +08:00
|
|
|
|
parser.add_argument('--render', action='store_true',
|
|
|
|
|
help='use to render the openpose 2d')
|
|
|
|
|
parser.add_argument('--no2d', action='store_true',
|
|
|
|
|
help='only extract the images')
|
2021-01-25 19:37:23 +08:00
|
|
|
|
parser.add_argument('--start', type=int, default=0,
|
|
|
|
|
help='frame start')
|
|
|
|
|
parser.add_argument('--end', type=int, default=10000,
|
|
|
|
|
help='frame end')
|
|
|
|
|
parser.add_argument('--step', type=int, default=1,
|
|
|
|
|
help='frame step')
|
2021-04-14 15:22:51 +08:00
|
|
|
|
parser.add_argument('--low', action='store_true',
|
|
|
|
|
help='decrease the threshold of human detector')
|
|
|
|
|
parser.add_argument('--gtbbox', action='store_true',
|
|
|
|
|
help='use the ground-truth bounding box, and hrnet to estimate human pose')
|
2021-01-14 21:32:09 +08:00
|
|
|
|
parser.add_argument('--debug', action='store_true')
|
2021-04-23 01:13:37 +08:00
|
|
|
|
parser.add_argument('--path_origin', default=os.getcwd())
|
2021-01-14 21:32:09 +08:00
|
|
|
|
args = parser.parse_args()
|
2021-01-24 22:33:08 +08:00
|
|
|
|
mode = args.mode
|
2021-04-14 15:22:51 +08:00
|
|
|
|
|
2021-01-14 21:32:09 +08:00
|
|
|
|
if os.path.isdir(args.path):
|
2021-04-14 15:22:51 +08:00
|
|
|
|
image_path = join(args.path, 'images')
|
|
|
|
|
os.makedirs(image_path, exist_ok=True)
|
|
|
|
|
subs_image = sorted(os.listdir(image_path))
|
|
|
|
|
subs_videos = sorted(glob(join(args.path, 'videos', '*.mp4')))
|
|
|
|
|
if len(subs_videos) > len(subs_image):
|
|
|
|
|
videos = sorted(glob(join(args.path, 'videos', '*.mp4')))
|
|
|
|
|
subs = []
|
|
|
|
|
for video in videos:
|
|
|
|
|
basename = extract_video(video, args.path, start=args.start, end=args.end, step=args.step)
|
|
|
|
|
subs.append(basename)
|
|
|
|
|
else:
|
|
|
|
|
subs = sorted(os.listdir(image_path))
|
2021-01-24 22:33:08 +08:00
|
|
|
|
print('cameras: ', ' '.join(subs))
|
2021-01-14 21:32:09 +08:00
|
|
|
|
if not args.no2d:
|
|
|
|
|
for sub in subs:
|
2021-01-24 22:33:08 +08:00
|
|
|
|
image_root = join(args.path, 'images', sub)
|
2021-04-14 15:22:51 +08:00
|
|
|
|
annot_root = join(args.path, args.annot, sub)
|
2021-01-14 21:32:09 +08:00
|
|
|
|
if os.path.exists(annot_root):
|
2021-04-14 15:22:51 +08:00
|
|
|
|
# check the number of annots and images
|
|
|
|
|
if len(os.listdir(image_root)) == len(os.listdir(annot_root)):
|
|
|
|
|
print('skip ', annot_root)
|
|
|
|
|
continue
|
2021-01-24 22:33:08 +08:00
|
|
|
|
if mode == 'openpose':
|
|
|
|
|
extract_2d(args.openpose, image_root,
|
|
|
|
|
join(args.path, 'openpose', sub),
|
2021-04-14 15:22:51 +08:00
|
|
|
|
join(args.path, 'openpose_render', sub), args)
|
2021-01-24 22:33:08 +08:00
|
|
|
|
convert_from_openpose(
|
2021-04-23 01:13:37 +08:00
|
|
|
|
path_orig=args.path_origin,
|
2021-01-24 22:33:08 +08:00
|
|
|
|
src=join(args.path, 'openpose', sub),
|
2021-04-14 15:22:51 +08:00
|
|
|
|
dst=annot_root,
|
|
|
|
|
annotdir=args.annot
|
2021-01-24 22:33:08 +08:00
|
|
|
|
)
|
|
|
|
|
elif mode == 'yolo-hrnet':
|
2021-04-14 15:22:51 +08:00
|
|
|
|
extract_yolo_hrnet(image_root, annot_root, args.ext, args.low)
|
2021-01-14 21:32:09 +08:00
|
|
|
|
else:
|
|
|
|
|
print(args.path, ' not exists')
|