103 lines
2.7 KiB
Markdown
103 lines
2.7 KiB
Markdown
|
<!--
|
||
|
* @Date: 2021-06-07 11:57:34
|
||
|
* @Author: Qing Shuai
|
||
|
* @LastEditors: Qing Shuai
|
||
|
* @LastEditTime: 2021-06-07 14:45:17
|
||
|
* @FilePath: /EasyMocapRelease/doc/dataset.md
|
||
|
-->
|
||
|
# EasyMoCap - Dataset
|
||
|
|
||
|
For convenience, all of the data used by EasyMoCap share the same format.
|
||
|
|
||
|
## Input structure
|
||
|
|
||
|
```bash
|
||
|
<seq>
|
||
|
├── intri.yml
|
||
|
├── extri.yml
|
||
|
└── videos
|
||
|
├── 1.mp4
|
||
|
├── 2.mp4
|
||
|
├── ...
|
||
|
├── 8.mp4
|
||
|
└── 9.mp4
|
||
|
```
|
||
|
|
||
|
You can use this commond to extract the videos to images:
|
||
|
```bash
|
||
|
python3 scripts/preprocess/extract_video.py ${data} --no2d
|
||
|
```
|
||
|
|
||
|
After this, the folder will be like:
|
||
|
```bash
|
||
|
<seq>
|
||
|
├── intri.yml
|
||
|
├── extri.yml
|
||
|
└── images
|
||
|
├── 1
|
||
|
│ ├── 000000.jpg
|
||
|
│ ├── 000001.jpg
|
||
|
│ ├── 000002.jpg
|
||
|
│ └── ...
|
||
|
├── 2
|
||
|
│ ├── 000000.jpg
|
||
|
│ ├── 000001.jpg
|
||
|
│ ├── 000002.jpg
|
||
|
│ └── ...
|
||
|
├── ...
|
||
|
├── ...
|
||
|
├── 8
|
||
|
│ ├── 000000.jpg
|
||
|
│ ├── 000001.jpg
|
||
|
│ ├── 000002.jpg
|
||
|
│ └── ...
|
||
|
└── 9
|
||
|
├── 000000.jpg
|
||
|
├── 000001.jpg
|
||
|
├── 000002.jpg
|
||
|
└── ...
|
||
|
```
|
||
|
|
||
|
## 2D Pose
|
||
|
|
||
|
For each image, we record its 2D pose in a `json` file. For an image at `root/images/1/000000.jpg`, the 2D pose willl store at `root/annots/1/000000.json`. The content of the annotation file is:
|
||
|
|
||
|
```bash
|
||
|
{
|
||
|
"filename": "images/0/000000.jpg",
|
||
|
"height": <the height of image>,
|
||
|
"width": <the width of image>,
|
||
|
"annots:[
|
||
|
{
|
||
|
'personID': 0, # ID of person
|
||
|
'bbox': [l, t, r, b, conf],
|
||
|
'keypoints': [[x0, y0, c0], [x1, y1, c1], ..., [xn, yn, cn]],
|
||
|
'area': <the area of bbox>
|
||
|
},
|
||
|
{
|
||
|
'personID': 1, # ID of person
|
||
|
'bbox': [l, t, r, b, conf],
|
||
|
'keypoints': [[x0, y0, c0], [x1, y1, c1], ..., [xn, yn, cn]],
|
||
|
'area': <the area of bbox>
|
||
|
}
|
||
|
]
|
||
|
}
|
||
|
```
|
||
|
|
||
|
The definition of the `keypoints` is `body25`. If you want to use other definitions, you should add it to `easymocap/dataset/config.py`
|
||
|
|
||
|
## 3D Pose
|
||
|
|
||
|
```bash
|
||
|
[
|
||
|
{
|
||
|
'id': <id>, # the person ID
|
||
|
'keypoints3d': [[x0, y0, z0, c0], [x1, y1, z0, c1], ..., [xn, yn, zn, cn]], # x,y,z is the 3D coordinates, c means the confidence of this joint. If the c=0, it means this joint is invisible.
|
||
|
},
|
||
|
{
|
||
|
'id': <id>, # the person ID
|
||
|
'keypoints3d': [[x0, y0, z0, c0], [x1, y1, z0, c1], ..., [xn, yn, zn, cn]], # x,y,z is the 3D coordinates, c means the confidence of this joint. If the c=0, it means this joint is invisible.
|
||
|
}
|
||
|
]
|
||
|
```
|