469 lines
16 KiB
Python
469 lines
16 KiB
Python
|
'''
|
||
|
@ Date: 2022-06-20 15:03:50
|
||
|
@ Author: Qing Shuai
|
||
|
@ Mail: s_q@zju.edu.cn
|
||
|
@ LastEditors: Qing Shuai
|
||
|
@ LastEditTime: 2022-08-16 20:24:07
|
||
|
@ FilePath: /EasyMocapPublic/easymocap/mytools/colmap_wrapper.py
|
||
|
'''
|
||
|
|
||
|
import shutil
|
||
|
import sys
|
||
|
import os
|
||
|
import sqlite3
|
||
|
import numpy as np
|
||
|
from os.path import join
|
||
|
import cv2
|
||
|
from .debug_utils import mkdir, run_cmd, log, mywarn
|
||
|
from .colmap_structure import Camera, Image, CAMERA_MODEL_NAMES
|
||
|
from .colmap_structure import rotmat2qvec
|
||
|
from .colmap_structure import read_points3d_binary
|
||
|
|
||
|
IS_PYTHON3 = sys.version_info[0] >= 3
|
||
|
|
||
|
MAX_IMAGE_ID = 2**31 - 1
|
||
|
|
||
|
CREATE_CAMERAS_TABLE = """CREATE TABLE IF NOT EXISTS cameras (
|
||
|
camera_id INTEGER PRIMARY KEY AUTOINCREMENT NOT NULL,
|
||
|
model INTEGER NOT NULL,
|
||
|
width INTEGER NOT NULL,
|
||
|
height INTEGER NOT NULL,
|
||
|
params BLOB,
|
||
|
prior_focal_length INTEGER NOT NULL)"""
|
||
|
|
||
|
CREATE_DESCRIPTORS_TABLE = """CREATE TABLE IF NOT EXISTS descriptors (
|
||
|
image_id INTEGER PRIMARY KEY NOT NULL,
|
||
|
rows INTEGER NOT NULL,
|
||
|
cols INTEGER NOT NULL,
|
||
|
data BLOB,
|
||
|
FOREIGN KEY(image_id) REFERENCES images(image_id) ON DELETE CASCADE)"""
|
||
|
|
||
|
CREATE_IMAGES_TABLE = """CREATE TABLE IF NOT EXISTS images (
|
||
|
image_id INTEGER PRIMARY KEY AUTOINCREMENT NOT NULL,
|
||
|
name TEXT NOT NULL UNIQUE,
|
||
|
camera_id INTEGER NOT NULL,
|
||
|
prior_qw REAL,
|
||
|
prior_qx REAL,
|
||
|
prior_qy REAL,
|
||
|
prior_qz REAL,
|
||
|
prior_tx REAL,
|
||
|
prior_ty REAL,
|
||
|
prior_tz REAL,
|
||
|
CONSTRAINT image_id_check CHECK(image_id >= 0 and image_id < {}),
|
||
|
FOREIGN KEY(camera_id) REFERENCES cameras(camera_id))
|
||
|
""".format(MAX_IMAGE_ID)
|
||
|
|
||
|
CREATE_TWO_VIEW_GEOMETRIES_TABLE = """
|
||
|
CREATE TABLE IF NOT EXISTS two_view_geometries (
|
||
|
pair_id INTEGER PRIMARY KEY NOT NULL,
|
||
|
rows INTEGER NOT NULL,
|
||
|
cols INTEGER NOT NULL,
|
||
|
data BLOB,
|
||
|
config INTEGER NOT NULL,
|
||
|
F BLOB,
|
||
|
E BLOB,
|
||
|
H BLOB)
|
||
|
"""
|
||
|
|
||
|
CREATE_KEYPOINTS_TABLE = """CREATE TABLE IF NOT EXISTS keypoints (
|
||
|
image_id INTEGER PRIMARY KEY NOT NULL,
|
||
|
rows INTEGER NOT NULL,
|
||
|
cols INTEGER NOT NULL,
|
||
|
data BLOB,
|
||
|
FOREIGN KEY(image_id) REFERENCES images(image_id) ON DELETE CASCADE)
|
||
|
"""
|
||
|
|
||
|
CREATE_MATCHES_TABLE = """CREATE TABLE IF NOT EXISTS matches (
|
||
|
pair_id INTEGER PRIMARY KEY NOT NULL,
|
||
|
rows INTEGER NOT NULL,
|
||
|
cols INTEGER NOT NULL,
|
||
|
data BLOB)"""
|
||
|
|
||
|
CREATE_NAME_INDEX = \
|
||
|
"CREATE UNIQUE INDEX IF NOT EXISTS index_name ON images(name)"
|
||
|
|
||
|
CREATE_ALL = "; ".join([
|
||
|
CREATE_CAMERAS_TABLE,
|
||
|
CREATE_IMAGES_TABLE,
|
||
|
CREATE_KEYPOINTS_TABLE,
|
||
|
CREATE_DESCRIPTORS_TABLE,
|
||
|
CREATE_MATCHES_TABLE,
|
||
|
CREATE_TWO_VIEW_GEOMETRIES_TABLE,
|
||
|
CREATE_NAME_INDEX
|
||
|
])
|
||
|
|
||
|
def image_ids_to_pair_id(image_id1, image_id2):
|
||
|
if image_id1 > image_id2:
|
||
|
image_id1, image_id2 = image_id2, image_id1
|
||
|
return image_id1 * MAX_IMAGE_ID + image_id2
|
||
|
|
||
|
|
||
|
def pair_id_to_image_ids(pair_id):
|
||
|
image_id2 = pair_id % MAX_IMAGE_ID
|
||
|
image_id1 = (pair_id - image_id2) // MAX_IMAGE_ID
|
||
|
return image_id1, image_id2
|
||
|
|
||
|
def array_to_blob(array):
|
||
|
if IS_PYTHON3:
|
||
|
return array.tobytes()
|
||
|
else:
|
||
|
return np.getbuffer(array)
|
||
|
|
||
|
def blob_to_array(blob, dtype, shape=(-1,)):
|
||
|
if blob is None:
|
||
|
return np.empty((0, 2), dtype=dtype)
|
||
|
if IS_PYTHON3:
|
||
|
return np.frombuffer(blob, dtype=dtype).reshape(*shape)
|
||
|
else:
|
||
|
return np.frombuffer(blob, dtype=dtype).reshape(*shape)
|
||
|
|
||
|
|
||
|
class COLMAPDatabase(sqlite3.Connection):
|
||
|
|
||
|
@staticmethod
|
||
|
def connect(database_path):
|
||
|
return sqlite3.connect(database_path, factory=COLMAPDatabase)
|
||
|
|
||
|
|
||
|
def __init__(self, *args, **kwargs):
|
||
|
super(COLMAPDatabase, self).__init__(*args, **kwargs)
|
||
|
|
||
|
self.create_tables = lambda: self.executescript(CREATE_ALL)
|
||
|
self.create_cameras_table = \
|
||
|
lambda: self.executescript(CREATE_CAMERAS_TABLE)
|
||
|
self.create_descriptors_table = \
|
||
|
lambda: self.executescript(CREATE_DESCRIPTORS_TABLE)
|
||
|
self.create_images_table = \
|
||
|
lambda: self.executescript(CREATE_IMAGES_TABLE)
|
||
|
self.create_two_view_geometries_table = \
|
||
|
lambda: self.executescript(CREATE_TWO_VIEW_GEOMETRIES_TABLE)
|
||
|
self.create_keypoints_table = \
|
||
|
lambda: self.executescript(CREATE_KEYPOINTS_TABLE)
|
||
|
self.create_matches_table = \
|
||
|
lambda: self.executescript(CREATE_MATCHES_TABLE)
|
||
|
self.create_name_index = lambda: self.executescript(CREATE_NAME_INDEX)
|
||
|
|
||
|
def add_camera(self, model, width, height, params,
|
||
|
prior_focal_length=False, camera_id=None):
|
||
|
params = np.asarray(params, np.float64)
|
||
|
cursor = self.execute(
|
||
|
"INSERT INTO cameras VALUES (?, ?, ?, ?, ?, ?)",
|
||
|
(camera_id, model, width, height, array_to_blob(params),
|
||
|
prior_focal_length))
|
||
|
return cursor.lastrowid
|
||
|
|
||
|
def add_image(self, name, camera_id,
|
||
|
prior_q=np.full(4, np.NaN), prior_t=np.full(3, np.NaN), image_id=None):
|
||
|
cursor = self.execute(
|
||
|
"INSERT INTO images VALUES (?, ?, ?, ?, ?, ?, ?, ?, ?, ?)",
|
||
|
(image_id, name, camera_id, prior_q[0], prior_q[1], prior_q[2],
|
||
|
prior_q[3], prior_t[0], prior_t[1], prior_t[2]))
|
||
|
return cursor.lastrowid
|
||
|
|
||
|
def add_keypoints(self, image_id, keypoints):
|
||
|
assert(len(keypoints.shape) == 2)
|
||
|
assert(keypoints.shape[1] in [2, 4, 6])
|
||
|
|
||
|
keypoints = np.asarray(keypoints, np.float32)
|
||
|
self.execute(
|
||
|
"INSERT INTO keypoints VALUES (?, ?, ?, ?)",
|
||
|
(image_id,) + keypoints.shape + (array_to_blob(keypoints),))
|
||
|
|
||
|
def add_descriptors(self, image_id, descriptors):
|
||
|
descriptors = np.ascontiguousarray(descriptors, np.uint8)
|
||
|
self.execute(
|
||
|
"INSERT INTO descriptors VALUES (?, ?, ?, ?)",
|
||
|
(image_id,) + descriptors.shape + (array_to_blob(descriptors),))
|
||
|
|
||
|
def add_matches(self, image_id1, image_id2, matches):
|
||
|
assert(len(matches.shape) == 2)
|
||
|
assert(matches.shape[1] == 2)
|
||
|
|
||
|
if image_id1 > image_id2:
|
||
|
matches = matches[:,::-1]
|
||
|
|
||
|
pair_id = image_ids_to_pair_id(image_id1, image_id2)
|
||
|
matches = np.asarray(matches, np.uint32)
|
||
|
self.execute(
|
||
|
"INSERT INTO matches VALUES (?, ?, ?, ?)",
|
||
|
(pair_id,) + matches.shape + (array_to_blob(matches),))
|
||
|
|
||
|
def add_two_view_geometry(self, image_id1, image_id2, matches,
|
||
|
F=np.eye(3), E=np.eye(3), H=np.eye(3), config=2):
|
||
|
assert(len(matches.shape) == 2)
|
||
|
assert(matches.shape[1] == 2)
|
||
|
|
||
|
if image_id1 > image_id2:
|
||
|
matches = matches[:,::-1]
|
||
|
|
||
|
pair_id = image_ids_to_pair_id(image_id1, image_id2)
|
||
|
matches = np.asarray(matches, np.uint32)
|
||
|
F = np.asarray(F, dtype=np.float64)
|
||
|
E = np.asarray(E, dtype=np.float64)
|
||
|
H = np.asarray(H, dtype=np.float64)
|
||
|
self.execute(
|
||
|
"INSERT INTO two_view_geometries VALUES (?, ?, ?, ?, ?, ?, ?, ?)",
|
||
|
(pair_id,) + matches.shape + (array_to_blob(matches), config,
|
||
|
array_to_blob(F), array_to_blob(E), array_to_blob(H)))
|
||
|
|
||
|
def read_images(self):
|
||
|
image_id_to_name, name_to_image_id = {}, {}
|
||
|
image_results = self.execute("SELECT * FROM images")
|
||
|
for result in image_results:
|
||
|
image_id, name, camera_id, q0, q1, q2, q3, t0, t1, t2 = result
|
||
|
image_id_to_name[image_id] = name
|
||
|
name_to_image_id[name] = image_id
|
||
|
return image_id_to_name, name_to_image_id
|
||
|
|
||
|
def read_keypoints(self, mapping=None):
|
||
|
image_id_to_keypoints = {}
|
||
|
keypoints_results = self.execute("SELECT * FROM keypoints")
|
||
|
for keypoints_result in keypoints_results:
|
||
|
image_id, rows, cols, keypoints = keypoints_result
|
||
|
keypoints = blob_to_array(keypoints, np.float32, (rows, cols))
|
||
|
if mapping is None:
|
||
|
image_id_to_keypoints[image_id] = keypoints
|
||
|
else:
|
||
|
image_id_to_keypoints[mapping[image_id]] = keypoints
|
||
|
return image_id_to_keypoints
|
||
|
|
||
|
def read_matches(self, mapping=None):
|
||
|
matches_results = self.execute("SELECT * FROM matches")
|
||
|
matches = {}
|
||
|
for matches_result in matches_results:
|
||
|
pair_id, rows, cols, match = matches_result
|
||
|
image_id0, image_id1 = pair_id_to_image_ids(pair_id)
|
||
|
if rows == 0:
|
||
|
continue
|
||
|
match = blob_to_array(match, dtype=np.uint32, shape=(rows, cols))
|
||
|
if mapping is not None:
|
||
|
image_id0 = mapping[image_id0]
|
||
|
image_id1 = mapping[image_id1]
|
||
|
matches[(image_id0, image_id1)] = match
|
||
|
return matches
|
||
|
|
||
|
def read_two_view_geometry(self, mapping=None):
|
||
|
geometry = self.execute("SELECT * FROM two_view_geometries")
|
||
|
geometries = {}
|
||
|
for pair_id, rows, cols, data, config, F, E, H in geometry:
|
||
|
F = blob_to_array(F, dtype=np.float64)
|
||
|
E = blob_to_array(E, dtype=np.float64)
|
||
|
H = blob_to_array(H, dtype=np.float64)
|
||
|
image_id0, image_id1 = pair_id_to_image_ids(pair_id)
|
||
|
match = blob_to_array(data, dtype=np.uint32, shape=(rows, cols))
|
||
|
if rows == 0:continue
|
||
|
if mapping is not None:
|
||
|
image_id0 = mapping[image_id0]
|
||
|
image_id1 = mapping[image_id1]
|
||
|
geometries[(image_id0, image_id1)] = {'matches': match, 'F':F, 'E':E, 'H':H, 'config': config}
|
||
|
return geometries
|
||
|
|
||
|
def create_empty_db(database_path):
|
||
|
if os.path.exists(database_path):
|
||
|
mywarn('Removing old database: {}'.format(database_path))
|
||
|
os.remove(database_path)
|
||
|
print('Creating an empty database...')
|
||
|
db = COLMAPDatabase.connect(database_path)
|
||
|
db.create_tables()
|
||
|
db.commit()
|
||
|
db.close()
|
||
|
|
||
|
def create_cameras(db, cameras, subs, width, height, share_intri=True):
|
||
|
model = 'OPENCV'
|
||
|
if share_intri:
|
||
|
cam_id = 1
|
||
|
K = cameras[subs[0]]['K']
|
||
|
D = cameras[subs[0]]['dist'].reshape(1, 5)
|
||
|
fx, fy, cx, cy, k1, k2, p1, p2, k3, k4, k5, k6 = K[0, 0], K[1, 1], K[0, 2], K[1, 2], D[0, 0], D[0, 1], D[0, 2], D[0, 3], D[0, 4], 0, 0, 0
|
||
|
|
||
|
params = [fx, fy, cx, cy, k1, k2, p1, p2]
|
||
|
# params = [fx, fy, cx, cy, 0, 0, 0, 0]
|
||
|
camera = Camera(
|
||
|
id=cam_id,
|
||
|
model=model,
|
||
|
width=width,
|
||
|
height=height,
|
||
|
params=params
|
||
|
)
|
||
|
cameras_colmap = {cam_id: camera}
|
||
|
cameras_map = {sub:cam_id for sub in subs}
|
||
|
#
|
||
|
db.add_camera(CAMERA_MODEL_NAMES[model].model_id, width, height, params,
|
||
|
prior_focal_length=False, camera_id=cam_id)
|
||
|
else:
|
||
|
raise NotImplementedError
|
||
|
return cameras_colmap, cameras_map
|
||
|
|
||
|
def create_images(db, cameras, cameras_map, image_names):
|
||
|
subs = sorted(list(image_names.keys()))
|
||
|
images = {}
|
||
|
for sub, image_name in image_names.items():
|
||
|
img_id = subs.index(sub) + 1
|
||
|
R = cameras[sub]['R']
|
||
|
T = cameras[sub]['T']
|
||
|
qvec = rotmat2qvec(R)
|
||
|
tvec = T.T[0]
|
||
|
image = Image(
|
||
|
id=img_id,
|
||
|
qvec=qvec,
|
||
|
tvec=tvec,
|
||
|
camera_id=cameras_map[sub],
|
||
|
name=os.path.basename(image_name),
|
||
|
xys=[],
|
||
|
point3D_ids=[]
|
||
|
)
|
||
|
images[img_id] = image
|
||
|
db.add_image(image.name, camera_id=image.camera_id,
|
||
|
prior_q=image.qvec, prior_t=image.tvec, image_id=img_id)
|
||
|
return images
|
||
|
|
||
|
def copy_images(data, out, nf=0, copy_func=shutil.copyfile, mask='mask', add_mask=True):
|
||
|
subs = sorted(os.listdir(join(data, 'images')))
|
||
|
image_names = {}
|
||
|
for sub in subs:
|
||
|
srcname = join(data, 'images', sub, '{:06d}.jpg'.format(nf))
|
||
|
if not os.path.exists(srcname):
|
||
|
mywarn('{} not exists, skip'.format(srcname))
|
||
|
return False
|
||
|
dstname = join(out, 'images', '{}.jpg'.format(sub))
|
||
|
image_names[sub] = dstname
|
||
|
if os.path.exists(dstname):
|
||
|
continue
|
||
|
os.makedirs(os.path.dirname(dstname), exist_ok=True)
|
||
|
copy_func(srcname, dstname)
|
||
|
mskname = join(data, mask, sub, '{:06d}.png'.format(nf))
|
||
|
dstname = join(out, 'mask', '{}.jpg.png'.format(sub))
|
||
|
if os.path.exists(mskname) and add_mask:
|
||
|
os.makedirs(os.path.dirname(dstname), exist_ok=True)
|
||
|
copy_func(mskname, dstname)
|
||
|
return True, image_names
|
||
|
|
||
|
def colmap_feature_extract(colmap, path, share_camera, add_mask):
|
||
|
'''
|
||
|
struct SiftMatchingOptions {
|
||
|
// Number of threads for feature matching and geometric verification.
|
||
|
int num_threads = -1;
|
||
|
|
||
|
// Whether to use the GPU for feature matching.
|
||
|
bool use_gpu = true;
|
||
|
|
||
|
// Index of the GPU used for feature matching. For multi-GPU matching,
|
||
|
// you should separate multiple GPU indices by comma, e.g., "0,1,2,3".
|
||
|
std::string gpu_index = "-1";
|
||
|
|
||
|
// Maximum distance ratio between first and second best match.
|
||
|
double max_ratio = 0.8;
|
||
|
|
||
|
// Maximum distance to best match.
|
||
|
double max_distance = 0.7;
|
||
|
|
||
|
// Whether to enable cross checking in matching.
|
||
|
bool cross_check = true;
|
||
|
|
||
|
// Maximum number of matches.
|
||
|
int max_num_matches = 32768;
|
||
|
|
||
|
// Maximum epipolar error in pixels for geometric verification.
|
||
|
double max_error = 4.0;
|
||
|
|
||
|
// Confidence threshold for geometric verification.
|
||
|
double confidence = 0.999;
|
||
|
|
||
|
// Minimum/maximum number of RANSAC iterations. Note that this option
|
||
|
// overrules the min_inlier_ratio option.
|
||
|
int min_num_trials = 100;
|
||
|
int max_num_trials = 10000;
|
||
|
|
||
|
// A priori assumed minimum inlier ratio, which determines the maximum
|
||
|
// number of iterations.
|
||
|
double min_inlier_ratio = 0.25;
|
||
|
|
||
|
// Minimum number of inliers for an image pair to be considered as
|
||
|
// geometrically verified.
|
||
|
int min_num_inliers = 15;
|
||
|
|
||
|
// Whether to attempt to estimate multiple geometric models per image pair.
|
||
|
bool multiple_models = false;
|
||
|
|
||
|
// Whether to perform guided matching, if geometric verification succeeds.
|
||
|
bool guided_matching = false;
|
||
|
|
||
|
bool Check() const;
|
||
|
};
|
||
|
'''
|
||
|
cmd = f'{colmap} feature_extractor --database_path {path}/database.db \
|
||
|
--image_path {path}/images \
|
||
|
--SiftExtraction.peak_threshold 0.006 \
|
||
|
--ImageReader.camera_model OPENCV \
|
||
|
'
|
||
|
if share_camera:
|
||
|
cmd += ' --ImageReader.single_camera 1'
|
||
|
|
||
|
if add_mask:
|
||
|
cmd += f' --ImageReader.mask_path {path}/mask'
|
||
|
cmd += f' >> {path}/log.txt'
|
||
|
run_cmd(cmd)
|
||
|
|
||
|
def colmap_feature_match(colmap, path):
|
||
|
cmd = f'{colmap} exhaustive_matcher --database_path {path}/database.db \
|
||
|
--SiftMatching.guided_matching 0 \
|
||
|
--SiftMatching.max_ratio 0.8 \
|
||
|
--SiftMatching.max_distance 0.5 \
|
||
|
--SiftMatching.cross_check 1 \
|
||
|
--SiftMatching.max_error 4 \
|
||
|
--SiftMatching.max_num_matches 32768 \
|
||
|
--SiftMatching.confidence 0.9999 \
|
||
|
--SiftMatching.max_num_trials 10000 \
|
||
|
--SiftMatching.min_inlier_ratio 0.25 \
|
||
|
--SiftMatching.min_num_inliers 30 \
|
||
|
>> {path}/log.txt'
|
||
|
run_cmd(cmd)
|
||
|
|
||
|
def colmap_ba(colmap, path, with_init=False):
|
||
|
if with_init:
|
||
|
cmd = f'{colmap} point_triangulator --database_path {path}/database.db \
|
||
|
--image_path {path}/images \
|
||
|
--input_path {path}/sparse/0 \
|
||
|
--output_path {path}/sparse/0 \
|
||
|
--Mapper.tri_merge_max_reproj_error 3 \
|
||
|
--Mapper.ignore_watermarks 1 \
|
||
|
--Mapper.filter_max_reproj_error 2 \
|
||
|
>> {path}/log.txt'
|
||
|
run_cmd(cmd)
|
||
|
cmd = f'{colmap} bundle_adjuster \
|
||
|
--input_path {path}/sparse/0 \
|
||
|
--output_path {path}/sparse/0 \
|
||
|
>> {path}/log.txt'
|
||
|
run_cmd(cmd)
|
||
|
points3d = read_points3d_binary(join(path, 'sparse', '0', 'points3D.bin'))
|
||
|
pids = list(points3d.keys())
|
||
|
mean_error = np.mean([points3d[p].error for p in pids])
|
||
|
log('Triangulate {} points, mean error: {:.2f} pixel'.format(len(pids), mean_error))
|
||
|
else:
|
||
|
mkdir(join(path, 'sparse'))
|
||
|
cmd = f'{colmap} mapper --database_path {path}/database.db --image_path {path}/images --output_path {path}/sparse \
|
||
|
--Mapper.ba_refine_principal_point 1 \
|
||
|
--Mapper.ba_global_max_num_iterations 1000 \
|
||
|
>> {path}/log.txt'
|
||
|
run_cmd(cmd)
|
||
|
|
||
|
|
||
|
def colmap_dense(colmap, path):
|
||
|
mkdir(join(path, 'dense'))
|
||
|
cmd = f'{colmap} image_undistorter --image_path {path}/images --input_path {path}/sparse/0 --output_path {path}/dense --output_type COLMAP --max_image_size 2000'
|
||
|
run_cmd(cmd)
|
||
|
cmd = f'{colmap} patch_match_stereo \
|
||
|
--workspace_path {path}/dense \
|
||
|
--workspace_format COLMAP \
|
||
|
--PatchMatchStereo.geom_consistency true \
|
||
|
>> {path}/log.txt'
|
||
|
|
||
|
run_cmd(cmd)
|
||
|
cmd = f'{colmap} stereo_fusion \
|
||
|
--workspace_path {path}/dense \
|
||
|
--workspace_format COLMAP \
|
||
|
--input_type geometric \
|
||
|
--output_path {path}/dense/fused.ply \
|
||
|
>> {path}/log.txt'
|
||
|
run_cmd(cmd)
|