2021-04-14 15:22:51 +08:00
|
|
|
|
'''
|
|
|
|
|
* @ Date: 2020-09-14 11:01:52
|
|
|
|
|
* @ Author: Qing Shuai
|
|
|
|
|
@ LastEditors: Qing Shuai
|
|
|
|
|
@ LastEditTime: 2021-04-13 20:31:34
|
|
|
|
|
@ FilePath: /EasyMocapRelease/media/qing/Project/mirror/EasyMocap/easymocap/mytools/reconstruction.py
|
|
|
|
|
'''
|
|
|
|
|
|
|
|
|
|
import numpy as np
|
|
|
|
|
|
|
|
|
|
def solveZ(A):
|
|
|
|
|
u, s, v = np.linalg.svd(A)
|
|
|
|
|
X = v[-1, :]
|
|
|
|
|
X = X / X[3]
|
|
|
|
|
return X[:3]
|
|
|
|
|
|
|
|
|
|
def projectN3(kpts3d, Pall):
|
|
|
|
|
# kpts3d: (N, 3)
|
|
|
|
|
nViews = len(Pall)
|
|
|
|
|
kp3d = np.hstack((kpts3d[:, :3], np.ones((kpts3d.shape[0], 1))))
|
|
|
|
|
kp2ds = []
|
|
|
|
|
for nv in range(nViews):
|
|
|
|
|
kp2d = Pall[nv] @ kp3d.T
|
|
|
|
|
kp2d[:2, :] /= kp2d[2:, :]
|
|
|
|
|
kp2ds.append(kp2d.T[None, :, :])
|
|
|
|
|
kp2ds = np.vstack(kp2ds)
|
2022-06-10 16:58:05 +08:00
|
|
|
|
if kpts3d.shape[-1] == 4:
|
|
|
|
|
kp2ds[..., -1] = kp2ds[..., -1] * (kpts3d[None, :, -1] > 0.)
|
2021-04-14 15:22:51 +08:00
|
|
|
|
return kp2ds
|
|
|
|
|
|
|
|
|
|
def simple_reprojection_error(kpts1, kpts1_proj):
|
|
|
|
|
# (N, 3)
|
|
|
|
|
error = np.mean((kpts1[:, :2] - kpts1_proj[:, :2])**2)
|
|
|
|
|
return error
|
|
|
|
|
|
|
|
|
|
def simple_triangulate(kpts, Pall):
|
|
|
|
|
# kpts: (nViews, 3)
|
|
|
|
|
# Pall: (nViews, 3, 4)
|
|
|
|
|
# return: kpts3d(3,), conf: float
|
|
|
|
|
nViews = len(kpts)
|
|
|
|
|
A = np.zeros((nViews*2, 4), dtype=np.float)
|
|
|
|
|
result = np.zeros(4)
|
|
|
|
|
result[3] = kpts[:, 2].sum()/(kpts[:, 2]>0).sum()
|
|
|
|
|
for i in range(nViews):
|
|
|
|
|
P = Pall[i]
|
|
|
|
|
A[i*2, :] = kpts[i, 2]*(kpts[i, 0]*P[2:3,:] - P[0:1,:])
|
|
|
|
|
A[i*2 + 1, :] = kpts[i, 2]*(kpts[i, 1]*P[2:3,:] - P[1:2,:])
|
|
|
|
|
result[:3] = solveZ(A)
|
|
|
|
|
|
|
|
|
|
return result
|
|
|
|
|
|
|
|
|
|
def batch_triangulate(keypoints_, Pall, keypoints_pre=None, lamb=1e3):
|
|
|
|
|
# keypoints: (nViews, nJoints, 3)
|
|
|
|
|
# Pall: (nViews, 3, 4)
|
|
|
|
|
# A: (nJoints, nViewsx2, 4), x: (nJoints, 4, 1); b: (nJoints, nViewsx2, 1)
|
|
|
|
|
v = (keypoints_[:, :, -1]>0).sum(axis=0)
|
|
|
|
|
valid_joint = np.where(v > 1)[0]
|
|
|
|
|
keypoints = keypoints_[:, valid_joint]
|
|
|
|
|
conf3d = keypoints[:, :, -1].sum(axis=0)/v[valid_joint]
|
|
|
|
|
# P2: P矩阵的最后一行:(1, nViews, 1, 4)
|
|
|
|
|
P0 = Pall[None, :, 0, :]
|
|
|
|
|
P1 = Pall[None, :, 1, :]
|
|
|
|
|
P2 = Pall[None, :, 2, :]
|
|
|
|
|
# uP2: x坐标乘上P2: (nJoints, nViews, 1, 4)
|
|
|
|
|
uP2 = keypoints[:, :, 0].T[:, :, None] * P2
|
|
|
|
|
vP2 = keypoints[:, :, 1].T[:, :, None] * P2
|
|
|
|
|
conf = keypoints[:, :, 2].T[:, :, None]
|
|
|
|
|
Au = conf * (uP2 - P0)
|
|
|
|
|
Av = conf * (vP2 - P1)
|
|
|
|
|
A = np.hstack([Au, Av])
|
|
|
|
|
if keypoints_pre is not None:
|
|
|
|
|
# keypoints_pre: (nJoints, 4)
|
|
|
|
|
B = np.eye(4)[None, :, :].repeat(A.shape[0], axis=0)
|
|
|
|
|
B[:, :3, 3] = -keypoints_pre[valid_joint, :3]
|
|
|
|
|
confpre = lamb * keypoints_pre[valid_joint, 3]
|
|
|
|
|
# 1, 0, 0, -x0
|
|
|
|
|
# 0, 1, 0, -y0
|
|
|
|
|
# 0, 0, 1, -z0
|
|
|
|
|
# 0, 0, 0, 0
|
|
|
|
|
B[:, 3, 3] = 0
|
|
|
|
|
B = B * confpre[:, None, None]
|
|
|
|
|
A = np.hstack((A, B))
|
|
|
|
|
u, s, v = np.linalg.svd(A)
|
|
|
|
|
X = v[:, -1, :]
|
|
|
|
|
X = X / X[:, 3:]
|
|
|
|
|
# out: (nJoints, 4)
|
|
|
|
|
result = np.zeros((keypoints_.shape[1], 4))
|
|
|
|
|
result[valid_joint, :3] = X[:, :3]
|
|
|
|
|
result[valid_joint, 3] = conf3d
|
|
|
|
|
return result
|
|
|
|
|
|
|
|
|
|
eps = 0.01
|
|
|
|
|
def simple_recon_person(keypoints_use, Puse):
|
|
|
|
|
out = batch_triangulate(keypoints_use, Puse)
|
|
|
|
|
# compute reprojection error
|
|
|
|
|
kpts_repro = projectN3(out, Puse)
|
|
|
|
|
square_diff = (keypoints_use[:, :, :2] - kpts_repro[:, :, :2])**2
|
|
|
|
|
conf = np.repeat(out[None, :, -1:], len(Puse), 0)
|
|
|
|
|
kpts_repro = np.concatenate((kpts_repro, conf), axis=2)
|
|
|
|
|
return out, kpts_repro
|
|
|
|
|
|
|
|
|
|
def check_limb(keypoints3d, limb_means, thres=0.5):
|
|
|
|
|
# keypoints3d: (nJ, 4)
|
|
|
|
|
valid = True
|
|
|
|
|
cnt = 0
|
|
|
|
|
for (src, dst), val in limb_means.items():
|
|
|
|
|
if not (keypoints3d[src, 3] > 0 and keypoints3d[dst, 3] > 0):
|
|
|
|
|
continue
|
|
|
|
|
cnt += 1
|
|
|
|
|
# 计算骨长
|
|
|
|
|
l_est = np.linalg.norm(keypoints3d[src, :3] - keypoints3d[dst, :3])
|
|
|
|
|
if abs(l_est - val['mean'])/val['mean']/val['std'] > thres:
|
|
|
|
|
valid = False
|
|
|
|
|
break
|
|
|
|
|
# 至少两段骨头可以使用
|
|
|
|
|
valid = valid and cnt > 2
|
2022-06-10 16:58:05 +08:00
|
|
|
|
return valid
|