2021-06-04 17:12:30 +08:00
<!--
* @Date: 2021-06-04 15:56:55
* @Author: Qing Shuai
* @LastEditors: Qing Shuai
2021-06-12 15:31:04 +08:00
* @LastEditTime: 2021-06-12 15:29:23
2021-06-04 17:12:30 +08:00
* @FilePath: /EasyMocapRelease/doc/realtime_visualization.md
-->
# EasyMoCap -> Real-time Visualization
We are the first one to release a real-time visualization tool for both skeletons and SMPL/SMPL+H/SMPL-X/MANO models.
## Install
Please install `EasyMocap` first. This part requires `Open3D==0.9.0` :
```bash
python3 -m pip install open3d==0.9.0
```
## Open the server
Before any visualization, you should run a server:
```bash
2021-06-12 15:31:04 +08:00
# quick start:
python3 apps/vis/vis_server.py --cfg config/vis3d/o3d_scene.yml
# If you want to specify the host and port:
python3 apps/vis/vis_server.py --cfg config/vis3d/o3d_scene.yml host < your_ip_address > port < set_a_port >
2021-06-04 17:12:30 +08:00
```
This step will open the visualization window:
![](./assets/vis_server.png)
You can alternate the viewpoints free. The configuration file `config/vis/o3d_scene.yml` defines the scene and other properties. In the default setting, we define the xyz-axis in the origin, the bounding box of the scene and a chessboard in the ground.
## Send the data
If you are success to open the server, you can visualize your 3D data anywhere. We provide an example code:
```bash
python3 apps/vis/vis_client.py --path < path / to / your / keypoints3d > --host < previous_ip_address > --port < previous_port >
```
Take the `zju-ls-feng` results as example, you can show the skeleton in the main window:
![](./assets/vis_client.png)
## Embed this feature to your code
To add this visualization to your other code, you can follow these steps:
```bash
# 1. import the base client
from easymocap.socket.base_client import BaseSocketClient
# 2. set the ip address and port
client = BaseSocketClient(host, port)
# 3. send the data
client.send(data)
```
The format of data is:
```python
data = [
{
'id': 0,
'keypoints3d': numpy.ndarray # (nJoints, 4) , (x, y, z, c) for each joint
},
{
'id': 1,
'keypoints3d': numpy.ndarray # (nJoints, 4)
}
]
```
## Define your scene
In the configuration file, we main define the `body_model` and `scene` . You can replace them for your data.