EasyMocap/config/1v1p/hrnet_pare_finetune.yml

147 lines
5.1 KiB
YAML
Raw Normal View History

2023-06-19 16:39:27 +08:00
module: myeasymocap.stages.basestage.MultiStage
args:
output: output/sv1p # 指定输出路径
at_step:
detect:
module: myeasymocap.backbone.yolo.yolo.YoloWithTrack
key_from_data: [images, imgnames]
args:
model: yolov5m
name: person
keypoints2d:
module: myeasymocap.backbone.hrnet.myhrnet.MyHRNet
key_from_data: [images, imgnames]
key_from_previous: [bbox]
key_keep: []
args:
2023-06-24 22:39:33 +08:00
ckpt: data/models/pose_hrnet_w48_384x288.pth
2023-06-19 16:39:27 +08:00
vis2d:
module: myeasymocap.io.vis.Vis2D
skip: False
key_from_data: [images]
key_from_previous: [keypoints, bbox]
args:
name: vis_keypoints2d
scale: 0.5
infer: # 这个模块给定图片和检测的框直接返回crop系下的人体姿态
module: myeasymocap.backbone.pare.pare.MyPARE
key_from_data: [images, imgnames] # 从数据集中读入的bbox、图片、图片名图片名用于保存结果
key_from_previous: [bbox]
key_keep: [cameras, imgnames] # 将这些参数都保留到最后的输出中
args:
ckpt: 3dpw # 指定使用3dpw的预训练模型
at_final:
load_body_model: # 载入SMPL模型
module: myeasymocap.io.model.SMPLLoader
args:
model_path: models/pare/data/body_models/smpl/SMPL_NEUTRAL.pkl
regressor_path: models/J_regressor_body25.npy
init_translation: # 给定crop系下的姿态、2D关键点、相机参数返回世界系下的人体姿态
module: myeasymocap.operations.init.InitTranslation
key_from_data: [keypoints, cameras, params] # 读入关键点、相机参数、SMPL参数
key_from_previous: [body_model] # 读入SMPL模型进行关键点计算
args:
solve_T: True
solve_R: False
smooth: # 对初始化的结果进行平滑
module: myeasymocap.operations.smooth.SmoothPoses
key_from_data: [params]
args:
window_size: 2
mean_param: # Mean shapes
module: myeasymocap.operations.init.MeanShapes
key_from_data: [params]
args:
keys: ['shapes']
init_RT:
module: myeasymocap.operations.optimizer.Optimizer
key_from_data: [keypoints, cameras]
key_from_previous: [model, params]
args:
optimizer_args: {optim_type: lbfgs}
optimize_keys: [Th, Rh]
loss:
repro:
weight: 100.
module: myeasymocap.operations.loss.Keypoints2D
key_from_output: [keypoints]
key_from_infos: [keypoints, cameras]
args:
norm: l2
index_est: [2, 5, 9, 12]
index_gt: [2, 5, 9, 12]
smooth:
weight: 1.
module: myeasymocap.operations.loss.Smooth
key_from_output: [Rh, Th]
key_from_infos: [cameras] # TODO: 根据2D的置信度来计算smooth权重
args:
keys: [Th, Th]
smooth_type: [Linear, Depth] # 这个depth似乎需要相机参数进行转换
norm: [l2, l2]
order: [2, 2]
weights: [100., 1000.]
window_weight: [0.5, 0.3, 0.1, 0.1]
refine_poses:
repeat: 2
module: myeasymocap.operations.optimizer.Optimizer
key_from_data: [keypoints, cameras]
key_from_previous: [model, params]
args:
optimizer_args: {optim_type: lbfgs}
optimize_keys: [poses, Rh, Th]
loss:
repro:
weight: 100.
module: myeasymocap.operations.loss.Keypoints2D
key_from_output: [keypoints]
key_from_infos: [keypoints, cameras]
args:
norm: gm
norm_info: 0.02
smooth:
weight: 1.
module: myeasymocap.operations.loss.Smooth
key_from_output: [poses, Rh, Th, keypoints]
key_from_infos: [cameras] # TODO: 根据2D的置信度来计算smooth权重
args:
keys: [Th, Th, poses, keypoints]
smooth_type: [Linear, Depth, Linear, Linear] # 这个depth似乎需要相机参数进行转换
norm: [l2, l2, l2, l2]
order: [2, 2, 2, 2]
weights: [100., 1000., 50., 100.]
window_weight: [0.5, 0.3, 0.1, 0.1]
init:
weight: 1.
module: myeasymocap.operations.loss.Init
key_from_output: [poses]
key_from_infos: [init_poses]
args:
keys: [poses]
norm: l2
weights: [1.]
prior:
weight: 0.1
module: easymocap.multistage.gmm.GMMPrior
key_from_output: [poses]
key_from_infos: []
args:
start: 0
end: 69
write:
module: myeasymocap.io.write.WriteSMPL
key_from_data: [meta]
key_from_previous: [params, model]
args:
name: smpl
render:
module: myeasymocap.io.vis3d.Render
key_from_data: [cameras, imgnames]
key_from_previous: [params, body_model]
args:
backend: pyrender
make_video:
module: myeasymocap.io.video.MakeVideo
args:
fps: 30
keep_image: False