EasyMocap/easymocap/assignment/associate.py

117 lines
4.6 KiB
Python
Raw Normal View History

2021-06-25 15:54:54 +08:00
'''
@ Date: 2021-06-04 21:58:37
@ Author: Qing Shuai
@ LastEditors: Qing Shuai
@ LastEditTime: 2021-06-25 11:50:10
@ FilePath: /EasyMocapRelease/easymocap/assignment/associate.py
'''
import numpy as np
from ..mytools.reconstruction import batch_triangulate, projectN3
from ..config import load_object
def views_from_dimGroups(dimGroups):
views = np.zeros(dimGroups[-1], dtype=np.int)
for nv in range(len(dimGroups) - 1):
views[dimGroups[nv]:dimGroups[nv+1]] = nv
return views
def set_keypoints2d(indices, annots, Pall, dimGroups):
Vused = np.where(indices!=-1)[0]
if len(Vused) < 1:
2021-11-10 11:16:28 +08:00
return [], [], [], []
2021-06-25 15:54:54 +08:00
keypoints2d = np.stack([annots[nv][indices[nv]-dimGroups[nv]]['keypoints'].copy() for nv in Vused])
bboxes = np.stack([annots[nv][indices[nv]-dimGroups[nv]]['bbox'].copy() for nv in Vused])
Pused = Pall[Vused]
return keypoints2d, bboxes, Pused, Vused
def load_criterions(cfg):
criterions = []
for key, val in cfg.items():
crit = load_object(key, val)
criterions.append(crit)
return criterions
def simple_associate(annots, affinity, dimGroups, Pall, group, cfg):
nViews = len(annots)
criterions = load_criterions(cfg.criterions)
n2D = dimGroups[-1]
views = views_from_dimGroups(dimGroups)
views_cnt = np.zeros((affinity.shape[0], nViews))
for nv in range(nViews):
views_cnt[:, nv] = affinity[:, dimGroups[nv]:dimGroups[nv+1]].sum(axis=1)
views_cnt = (views_cnt>0.5).sum(axis=1)
sortidx = np.argsort(-views_cnt)
p2dAssigned = np.zeros(n2D, dtype=np.int) - 1
indices_zero = np.zeros((nViews), dtype=np.int) - 1
for idx in sortidx:
if p2dAssigned[idx] != -1:
continue
proposals = [indices_zero.copy()]
for nv in range(nViews):
match = np.where(
(affinity[idx, dimGroups[nv]:dimGroups[nv+1]] > 0.)
& (p2dAssigned[dimGroups[nv]:dimGroups[nv+1]] == -1) )[0]
if len(match) > 0:
match = match + dimGroups[nv]
for proposal in proposals:
proposal[nv] = match[0]
if len(match) > 1:
proposals_new = []
for proposal in proposals:
for col in match[1:]:
p = proposal.copy()
p[nv] = col
proposals_new.append(p)
2021-11-10 11:16:28 +08:00
proposals += proposals_new
2021-06-25 15:54:54 +08:00
results = []
while len(proposals) > 0:
proposal = proposals.pop()
# less than two views
if (proposal != -1).sum() < cfg.min_views:
continue
# print('[associate] pop proposal: {}'.format(proposal))
keypoints2d, bboxes, Pused, Vused = set_keypoints2d(proposal, annots, Pall, dimGroups)
keypoints3d = batch_triangulate(keypoints2d, Pused)
kptsRepro = projectN3(keypoints3d, Pused)
err = ((kptsRepro[:, :, 2]*keypoints2d[:, :, 2]) > 0.) * np.linalg.norm(kptsRepro[:, :, :2] - keypoints2d[:, :, :2], axis=2)
size = (bboxes[:, [2, 3]] - bboxes[:, [0, 1]]).max(axis=1, keepdims=True)
err = err / size
2022-09-23 00:36:53 +08:00
err_view = err.sum(axis=1)/((err>0. + 1e-9).sum(axis=1))
2021-06-25 15:54:54 +08:00
flag = (err_view < cfg.max_repro_error).all()
2022-09-23 00:36:53 +08:00
err = err.sum()/(err>0 + 1e-9).sum()
2021-06-25 15:54:54 +08:00
# err_view = err.sum(axis=1)/((err>0.).sum(axis=1))
# err = err.sum()/(err>0.).sum()
# flag = err_view.max() < err_view.mean() * 2
flag = True
for crit in criterions:
if not crit(keypoints3d):
flag = False
break
if flag:
# print('[associate]: view {}'.format(Vused))
results.append({
'indices': proposal,
'keypoints2d': keypoints2d,
'keypoints3d': keypoints3d,
'Vused': Vused,
'error': err
})
else:
# make new proposals
outlier_view = Vused[err_view.argmax()]
proposal[outlier_view] = -1
proposals.append(proposal)
if len(results) == 0:
continue
if len(results) > 1:
# print('[associate] More than one avalible results')
results.sort(key=lambda x:x['error'])
result = results[0]
proposal = result['indices']
Vused = result['Vused']
# proposal中有-1的所以需要使用Vused进行赋值
p2dAssigned[proposal[Vused]] = 1
group.add(result)
group.dimGroups = dimGroups
return group