EasyMocap/config/mvmp/meta_fit_SMPL.yml

107 lines
4.0 KiB
YAML
Raw Normal View History

2023-07-11 10:58:28 +08:00
init_params: # 初始化姿态
module: myeasymocap.operations.init.InitParams
key_from_data: [keypoints3d]
args:
num_poses: 69
num_shapes: 10
fitShape: # 这一步需要根据骨长优化一下SMPL的shape参数
module: myeasymocap.operations.optimizer.Optimizer
key_from_data: [keypoints3d]
key_from_previous: [model, params] # 这一步优化所使用的model是一个可调用的函数负责把params的输入变成输出而不用考虑其他与SMPL model是不一样的
args:
optimizer_args: {optim_type: lbfgs}
optimize_keys: [shapes]
loss:
k3d:
weight: 1000.
module: myeasymocap.operations.loss.LimbLength
key_from_output: [keypoints]
key_from_infos: [keypoints3d]
args:
kintree: [[8, 1], [2, 5], [2, 3], [5, 6], [3, 4], [6, 7], [2, 3], [5, 6], [3, 4], [6, 7], [2, 3], [5, 6], [3, 4], [6, 7], [1, 0], [9, 12], [9, 10], [10, 11], [12, 13],[13, 14]]
regshape:
weight: 0.1
module: myeasymocap.operations.loss.RegLoss
key_from_output: [shapes]
key_from_infos: [] # TODO: 根据2D的置信度来计算smooth权重
args:
key: shapes
norm: l2
init_RT: # 这一步中首先将SMPL参数的shape参数进行整段平均。重新优化更新RT参数
module: myeasymocap.operations.optimizer.Optimizer
key_from_data: [keypoints3d]
key_from_previous: [model, params] # 这一步优化所使用的model是一个可调用的函数负责把params的输入变成输出而不用考虑其他与SMPL model是不一样的
# 这样设计的目的是对于一些不只是SMPL本身的模型可以在外面套一层接口
# model是一个纯函数用来进行可视化
args:
optimizer_args: {optim_type: lbfgs}
optimize_keys: [Th, Rh]
loss:
k3d:
weight: 100.
module: myeasymocap.operations.loss.Keypoints3D
key_from_output: [keypoints]
key_from_infos: [keypoints3d]
args:
norm: l2
index_est: [2, 5, 9, 12]
index_gt: [2, 5, 9, 12]
smooth:
weight: 1.
module: myeasymocap.operations.loss.Smooth
key_from_output: [Th, keypoints]
key_from_infos: [] # TODO: 根据2D的置信度来计算smooth权重
args:
keys: [keypoints, Th]
smooth_type: [Linear, Linear] # 这个depth似乎需要相机参数进行转换
norm: [l2, l2]
order: [2, 2]
weights: [10., 100.]
window_weight: [0.5, 0.3, 0.1, 0.1]
refine_poses:
repeat: 2
module: myeasymocap.operations.optimizer.Optimizer
key_from_data: [keypoints3d]
key_from_previous: [model, params]
args:
optimizer_args: {optim_type: lbfgs}
optimize_keys: [[poses, Rh, Th], [poses, shapes, Rh, Th]]
loss:
k3d:
weight: 1000.
module: myeasymocap.operations.loss.Keypoints3D
key_from_output: [keypoints]
key_from_infos: [keypoints3d]
args:
norm: l2
norm_info: 0.02
ranges_est: [0, 25]
ranges_gt: [0, 25]
smooth:
weight: 1.
module: myeasymocap.operations.loss.Smooth
key_from_output: [poses, Th, keypoints]
key_from_infos: [] # TODO: 根据2D的置信度来计算smooth权重
args:
keys: [Th, poses, keypoints]
smooth_type: [Linear, Linear, Linear] # 这个depth似乎需要相机参数进行转换
norm: [l2, l2, l2]
order: [2, 2, 2]
weights: [10., 10., 10.,]
window_weight: [0.5, 0.3, 0.1, 0.1]
prior:
weight: 0.1
module: easymocap.multistage.gmm.GMMPrior
key_from_output: [poses]
key_from_infos: []
args:
start: 0
end: 69
regshape:
weight: 0.1
module: myeasymocap.operations.loss.RegLoss
key_from_output: [shapes]
key_from_infos: [] # TODO: 根据2D的置信度来计算smooth权重
args:
key: shapes
norm: l2