2021-04-14 15:22:51 +08:00
|
|
|
# -*- coding: utf-8 -*-
|
|
|
|
|
|
|
|
# Max-Planck-Gesellschaft zur Förderung der Wissenschaften e.V. (MPG) is
|
|
|
|
# holder of all proprietary rights on this computer program.
|
|
|
|
# You can only use this computer program if you have closed
|
|
|
|
# a license agreement with MPG or you get the right to use the computer
|
|
|
|
# program from someone who is authorized to grant you that right.
|
|
|
|
# Any use of the computer program without a valid license is prohibited and
|
|
|
|
# liable to prosecution.
|
|
|
|
#
|
|
|
|
# Copyright©2019 Max-Planck-Gesellschaft zur Förderung
|
|
|
|
# der Wissenschaften e.V. (MPG). acting on behalf of its Max Planck Institute
|
|
|
|
# for Intelligent Systems. All rights reserved.
|
|
|
|
#
|
|
|
|
# Contact: ps-license@tuebingen.mpg.de
|
|
|
|
|
|
|
|
from __future__ import absolute_import
|
|
|
|
from __future__ import print_function
|
|
|
|
from __future__ import division
|
|
|
|
|
|
|
|
import numpy as np
|
|
|
|
|
|
|
|
import torch
|
|
|
|
import torch.nn.functional as F
|
|
|
|
|
|
|
|
|
|
|
|
def rot_mat_to_euler(rot_mats):
|
|
|
|
# Calculates rotation matrix to euler angles
|
|
|
|
# Careful for extreme cases of eular angles like [0.0, pi, 0.0]
|
|
|
|
|
|
|
|
sy = torch.sqrt(rot_mats[:, 0, 0] * rot_mats[:, 0, 0] +
|
|
|
|
rot_mats[:, 1, 0] * rot_mats[:, 1, 0])
|
|
|
|
return torch.atan2(-rot_mats[:, 2, 0], sy)
|
|
|
|
|
|
|
|
|
|
|
|
def find_dynamic_lmk_idx_and_bcoords(vertices, pose, dynamic_lmk_faces_idx,
|
|
|
|
dynamic_lmk_b_coords,
|
|
|
|
neck_kin_chain, dtype=torch.float32):
|
|
|
|
''' Compute the faces, barycentric coordinates for the dynamic landmarks
|
|
|
|
|
|
|
|
|
|
|
|
To do so, we first compute the rotation of the neck around the y-axis
|
|
|
|
and then use a pre-computed look-up table to find the faces and the
|
|
|
|
barycentric coordinates that will be used.
|
|
|
|
|
|
|
|
Special thanks to Soubhik Sanyal (soubhik.sanyal@tuebingen.mpg.de)
|
|
|
|
for providing the original TensorFlow implementation and for the LUT.
|
|
|
|
|
|
|
|
Parameters
|
|
|
|
----------
|
|
|
|
vertices: torch.tensor BxVx3, dtype = torch.float32
|
|
|
|
The tensor of input vertices
|
|
|
|
pose: torch.tensor Bx(Jx3), dtype = torch.float32
|
|
|
|
The current pose of the body model
|
|
|
|
dynamic_lmk_faces_idx: torch.tensor L, dtype = torch.long
|
|
|
|
The look-up table from neck rotation to faces
|
|
|
|
dynamic_lmk_b_coords: torch.tensor Lx3, dtype = torch.float32
|
|
|
|
The look-up table from neck rotation to barycentric coordinates
|
|
|
|
neck_kin_chain: list
|
|
|
|
A python list that contains the indices of the joints that form the
|
|
|
|
kinematic chain of the neck.
|
|
|
|
dtype: torch.dtype, optional
|
|
|
|
|
|
|
|
Returns
|
|
|
|
-------
|
|
|
|
dyn_lmk_faces_idx: torch.tensor, dtype = torch.long
|
|
|
|
A tensor of size BxL that contains the indices of the faces that
|
|
|
|
will be used to compute the current dynamic landmarks.
|
|
|
|
dyn_lmk_b_coords: torch.tensor, dtype = torch.float32
|
|
|
|
A tensor of size BxL that contains the indices of the faces that
|
|
|
|
will be used to compute the current dynamic landmarks.
|
|
|
|
'''
|
|
|
|
|
|
|
|
batch_size = vertices.shape[0]
|
|
|
|
|
|
|
|
aa_pose = torch.index_select(pose.view(batch_size, -1, 3), 1,
|
|
|
|
neck_kin_chain)
|
|
|
|
rot_mats = batch_rodrigues(
|
|
|
|
aa_pose.view(-1, 3), dtype=dtype).view(batch_size, -1, 3, 3)
|
|
|
|
|
|
|
|
rel_rot_mat = torch.eye(3, device=vertices.device,
|
|
|
|
dtype=dtype).unsqueeze_(dim=0)
|
|
|
|
for idx in range(len(neck_kin_chain)):
|
|
|
|
rel_rot_mat = torch.bmm(rot_mats[:, idx], rel_rot_mat)
|
|
|
|
|
|
|
|
y_rot_angle = torch.round(
|
|
|
|
torch.clamp(-rot_mat_to_euler(rel_rot_mat) * 180.0 / np.pi,
|
|
|
|
max=39)).to(dtype=torch.long)
|
|
|
|
neg_mask = y_rot_angle.lt(0).to(dtype=torch.long)
|
|
|
|
mask = y_rot_angle.lt(-39).to(dtype=torch.long)
|
|
|
|
neg_vals = mask * 78 + (1 - mask) * (39 - y_rot_angle)
|
|
|
|
y_rot_angle = (neg_mask * neg_vals +
|
|
|
|
(1 - neg_mask) * y_rot_angle)
|
|
|
|
|
|
|
|
dyn_lmk_faces_idx = torch.index_select(dynamic_lmk_faces_idx,
|
|
|
|
0, y_rot_angle)
|
|
|
|
dyn_lmk_b_coords = torch.index_select(dynamic_lmk_b_coords,
|
|
|
|
0, y_rot_angle)
|
|
|
|
|
|
|
|
return dyn_lmk_faces_idx, dyn_lmk_b_coords
|
|
|
|
|
|
|
|
|
|
|
|
def vertices2landmarks(vertices, faces, lmk_faces_idx, lmk_bary_coords):
|
|
|
|
''' Calculates landmarks by barycentric interpolation
|
|
|
|
|
|
|
|
Parameters
|
|
|
|
----------
|
|
|
|
vertices: torch.tensor BxVx3, dtype = torch.float32
|
|
|
|
The tensor of input vertices
|
|
|
|
faces: torch.tensor Fx3, dtype = torch.long
|
|
|
|
The faces of the mesh
|
|
|
|
lmk_faces_idx: torch.tensor L, dtype = torch.long
|
|
|
|
The tensor with the indices of the faces used to calculate the
|
|
|
|
landmarks.
|
|
|
|
lmk_bary_coords: torch.tensor Lx3, dtype = torch.float32
|
|
|
|
The tensor of barycentric coordinates that are used to interpolate
|
|
|
|
the landmarks
|
|
|
|
|
|
|
|
Returns
|
|
|
|
-------
|
|
|
|
landmarks: torch.tensor BxLx3, dtype = torch.float32
|
|
|
|
The coordinates of the landmarks for each mesh in the batch
|
|
|
|
'''
|
|
|
|
# Extract the indices of the vertices for each face
|
|
|
|
# BxLx3
|
|
|
|
batch_size, num_verts = vertices.shape[:2]
|
|
|
|
device = vertices.device
|
|
|
|
|
|
|
|
lmk_faces = torch.index_select(faces, 0, lmk_faces_idx.view(-1)).view(
|
|
|
|
batch_size, -1, 3)
|
|
|
|
|
|
|
|
lmk_faces += torch.arange(
|
|
|
|
batch_size, dtype=torch.long, device=device).view(-1, 1, 1) * num_verts
|
|
|
|
|
|
|
|
lmk_vertices = vertices.view(-1, 3)[lmk_faces].view(
|
|
|
|
batch_size, -1, 3, 3)
|
|
|
|
|
|
|
|
landmarks = torch.einsum('blfi,blf->bli', [lmk_vertices, lmk_bary_coords])
|
|
|
|
return landmarks
|
|
|
|
|
|
|
|
|
|
|
|
def lbs(betas, pose, v_template, shapedirs, posedirs, J_regressor, parents,
|
2021-06-25 21:17:22 +08:00
|
|
|
lbs_weights, pose2rot=True, dtype=torch.float32, only_shape=False,
|
|
|
|
use_shape_blending=True, use_pose_blending=True, J_shaped=None):
|
2021-04-14 15:22:51 +08:00
|
|
|
''' Performs Linear Blend Skinning with the given shape and pose parameters
|
|
|
|
|
|
|
|
Parameters
|
|
|
|
----------
|
|
|
|
betas : torch.tensor BxNB
|
|
|
|
The tensor of shape parameters
|
|
|
|
pose : torch.tensor Bx(J + 1) * 3
|
|
|
|
The pose parameters in axis-angle format
|
|
|
|
v_template torch.tensor BxVx3
|
|
|
|
The template mesh that will be deformed
|
|
|
|
shapedirs : torch.tensor 1xNB
|
|
|
|
The tensor of PCA shape displacements
|
|
|
|
posedirs : torch.tensor Px(V * 3)
|
|
|
|
The pose PCA coefficients
|
|
|
|
J_regressor : torch.tensor JxV
|
|
|
|
The regressor array that is used to calculate the joints from
|
|
|
|
the position of the vertices
|
|
|
|
parents: torch.tensor J
|
|
|
|
The array that describes the kinematic tree for the model
|
|
|
|
lbs_weights: torch.tensor N x V x (J + 1)
|
|
|
|
The linear blend skinning weights that represent how much the
|
|
|
|
rotation matrix of each part affects each vertex
|
|
|
|
pose2rot: bool, optional
|
|
|
|
Flag on whether to convert the input pose tensor to rotation
|
|
|
|
matrices. The default value is True. If False, then the pose tensor
|
|
|
|
should already contain rotation matrices and have a size of
|
|
|
|
Bx(J + 1)x9
|
|
|
|
dtype: torch.dtype, optional
|
|
|
|
|
|
|
|
Returns
|
|
|
|
-------
|
|
|
|
verts: torch.tensor BxVx3
|
|
|
|
The vertices of the mesh after applying the shape and pose
|
|
|
|
displacements.
|
|
|
|
joints: torch.tensor BxJx3
|
|
|
|
The joints of the model
|
|
|
|
'''
|
|
|
|
|
|
|
|
batch_size = max(betas.shape[0], pose.shape[0])
|
|
|
|
device = betas.device
|
|
|
|
|
|
|
|
# Add shape contribution
|
2021-06-25 21:17:22 +08:00
|
|
|
if use_shape_blending:
|
|
|
|
v_shaped = v_template + blend_shapes(betas, shapedirs)
|
|
|
|
# Get the joints
|
|
|
|
# NxJx3 array
|
|
|
|
J = vertices2joints(J_regressor, v_shaped)
|
|
|
|
else:
|
|
|
|
v_shaped = v_template.unsqueeze(0).expand(batch_size, -1, -1)
|
|
|
|
assert J_shaped is not None
|
|
|
|
J = J_shaped[None].expand(batch_size, -1, -1)
|
2021-04-14 15:22:51 +08:00
|
|
|
|
|
|
|
if only_shape:
|
|
|
|
return v_shaped, J
|
|
|
|
# 3. Add pose blend shapes
|
|
|
|
# N x J x 3 x 3
|
|
|
|
if pose2rot:
|
|
|
|
rot_mats = batch_rodrigues(
|
|
|
|
pose.view(-1, 3), dtype=dtype).view([batch_size, -1, 3, 3])
|
2021-06-25 21:17:22 +08:00
|
|
|
else:
|
|
|
|
rot_mats = pose.view(batch_size, -1, 3, 3)
|
2021-04-14 15:22:51 +08:00
|
|
|
|
2021-06-25 21:17:22 +08:00
|
|
|
if use_pose_blending:
|
|
|
|
ident = torch.eye(3, dtype=dtype, device=device)
|
2021-04-14 15:22:51 +08:00
|
|
|
pose_feature = (rot_mats[:, 1:, :, :] - ident).view([batch_size, -1])
|
|
|
|
pose_offsets = torch.matmul(pose_feature, posedirs) \
|
|
|
|
.view(batch_size, -1, 3)
|
2021-06-25 21:17:22 +08:00
|
|
|
v_posed = pose_offsets + v_shaped
|
2021-04-14 15:22:51 +08:00
|
|
|
else:
|
2021-06-25 21:17:22 +08:00
|
|
|
v_posed = v_shaped
|
2021-04-14 15:22:51 +08:00
|
|
|
# 4. Get the global joint location
|
|
|
|
J_transformed, A = batch_rigid_transform(rot_mats, J, parents, dtype=dtype)
|
|
|
|
|
|
|
|
# 5. Do skinning:
|
|
|
|
# W is N x V x (J + 1)
|
|
|
|
W = lbs_weights.unsqueeze(dim=0).expand([batch_size, -1, -1])
|
|
|
|
# (N x V x (J + 1)) x (N x (J + 1) x 16)
|
|
|
|
num_joints = J_regressor.shape[0]
|
|
|
|
T = torch.matmul(W, A.view(batch_size, num_joints, 16)) \
|
|
|
|
.view(batch_size, -1, 4, 4)
|
|
|
|
|
|
|
|
homogen_coord = torch.ones([batch_size, v_posed.shape[1], 1],
|
|
|
|
dtype=dtype, device=device)
|
|
|
|
v_posed_homo = torch.cat([v_posed, homogen_coord], dim=2)
|
|
|
|
v_homo = torch.matmul(T, torch.unsqueeze(v_posed_homo, dim=-1))
|
|
|
|
|
|
|
|
verts = v_homo[:, :, :3, 0]
|
|
|
|
|
|
|
|
return verts, J_transformed
|
|
|
|
|
|
|
|
|
|
|
|
def vertices2joints(J_regressor, vertices):
|
|
|
|
''' Calculates the 3D joint locations from the vertices
|
|
|
|
|
|
|
|
Parameters
|
|
|
|
----------
|
|
|
|
J_regressor : torch.tensor JxV
|
|
|
|
The regressor array that is used to calculate the joints from the
|
|
|
|
position of the vertices
|
|
|
|
vertices : torch.tensor BxVx3
|
|
|
|
The tensor of mesh vertices
|
|
|
|
|
|
|
|
Returns
|
|
|
|
-------
|
|
|
|
torch.tensor BxJx3
|
|
|
|
The location of the joints
|
|
|
|
'''
|
|
|
|
|
|
|
|
return torch.einsum('bik,ji->bjk', [vertices, J_regressor])
|
|
|
|
|
|
|
|
|
|
|
|
def blend_shapes(betas, shape_disps):
|
|
|
|
''' Calculates the per vertex displacement due to the blend shapes
|
|
|
|
|
|
|
|
|
|
|
|
Parameters
|
|
|
|
----------
|
|
|
|
betas : torch.tensor Bx(num_betas)
|
|
|
|
Blend shape coefficients
|
|
|
|
shape_disps: torch.tensor Vx3x(num_betas)
|
|
|
|
Blend shapes
|
|
|
|
|
|
|
|
Returns
|
|
|
|
-------
|
|
|
|
torch.tensor BxVx3
|
|
|
|
The per-vertex displacement due to shape deformation
|
|
|
|
'''
|
|
|
|
|
|
|
|
# Displacement[b, m, k] = sum_{l} betas[b, l] * shape_disps[m, k, l]
|
|
|
|
# i.e. Multiply each shape displacement by its corresponding beta and
|
|
|
|
# then sum them.
|
|
|
|
blend_shape = torch.einsum('bl,mkl->bmk', [betas, shape_disps])
|
|
|
|
return blend_shape
|
|
|
|
|
|
|
|
|
|
|
|
def batch_rodrigues(rot_vecs, epsilon=1e-8, dtype=torch.float32):
|
|
|
|
''' Calculates the rotation matrices for a batch of rotation vectors
|
|
|
|
Parameters
|
|
|
|
----------
|
|
|
|
rot_vecs: torch.tensor Nx3
|
|
|
|
array of N axis-angle vectors
|
|
|
|
Returns
|
|
|
|
-------
|
|
|
|
R: torch.tensor Nx3x3
|
|
|
|
The rotation matrices for the given axis-angle parameters
|
|
|
|
'''
|
|
|
|
|
|
|
|
batch_size = rot_vecs.shape[0]
|
|
|
|
device = rot_vecs.device
|
|
|
|
|
|
|
|
angle = torch.norm(rot_vecs + 1e-8, dim=1, keepdim=True)
|
|
|
|
rot_dir = rot_vecs / angle
|
|
|
|
|
|
|
|
cos = torch.unsqueeze(torch.cos(angle), dim=1)
|
|
|
|
sin = torch.unsqueeze(torch.sin(angle), dim=1)
|
|
|
|
|
|
|
|
# Bx1 arrays
|
|
|
|
rx, ry, rz = torch.split(rot_dir, 1, dim=1)
|
|
|
|
K = torch.zeros((batch_size, 3, 3), dtype=dtype, device=device)
|
|
|
|
|
|
|
|
zeros = torch.zeros((batch_size, 1), dtype=dtype, device=device)
|
|
|
|
K = torch.cat([zeros, -rz, ry, rz, zeros, -rx, -ry, rx, zeros], dim=1) \
|
|
|
|
.view((batch_size, 3, 3))
|
|
|
|
|
|
|
|
ident = torch.eye(3, dtype=dtype, device=device).unsqueeze(dim=0)
|
|
|
|
rot_mat = ident + sin * K + (1 - cos) * torch.bmm(K, K)
|
|
|
|
return rot_mat
|
|
|
|
|
|
|
|
|
|
|
|
def transform_mat(R, t):
|
|
|
|
''' Creates a batch of transformation matrices
|
|
|
|
Args:
|
|
|
|
- R: Bx3x3 array of a batch of rotation matrices
|
|
|
|
- t: Bx3x1 array of a batch of translation vectors
|
|
|
|
Returns:
|
|
|
|
- T: Bx4x4 Transformation matrix
|
|
|
|
'''
|
|
|
|
# No padding left or right, only add an extra row
|
|
|
|
return torch.cat([F.pad(R, [0, 0, 0, 1]),
|
|
|
|
F.pad(t, [0, 0, 0, 1], value=1)], dim=2)
|
|
|
|
|
|
|
|
|
|
|
|
def batch_rigid_transform(rot_mats, joints, parents, dtype=torch.float32):
|
|
|
|
"""
|
|
|
|
Applies a batch of rigid transformations to the joints
|
|
|
|
|
|
|
|
Parameters
|
|
|
|
----------
|
|
|
|
rot_mats : torch.tensor BxNx3x3
|
|
|
|
Tensor of rotation matrices
|
|
|
|
joints : torch.tensor BxNx3
|
|
|
|
Locations of joints
|
|
|
|
parents : torch.tensor BxN
|
|
|
|
The kinematic tree of each object
|
|
|
|
dtype : torch.dtype, optional:
|
|
|
|
The data type of the created tensors, the default is torch.float32
|
|
|
|
|
|
|
|
Returns
|
|
|
|
-------
|
|
|
|
posed_joints : torch.tensor BxNx3
|
|
|
|
The locations of the joints after applying the pose rotations
|
|
|
|
rel_transforms : torch.tensor BxNx4x4
|
|
|
|
The relative (with respect to the root joint) rigid transformations
|
|
|
|
for all the joints
|
|
|
|
"""
|
|
|
|
|
|
|
|
joints = torch.unsqueeze(joints, dim=-1)
|
|
|
|
|
|
|
|
rel_joints = joints.clone()
|
|
|
|
rel_joints[:, 1:] -= joints[:, parents[1:]]
|
|
|
|
|
|
|
|
transforms_mat = transform_mat(
|
|
|
|
rot_mats.view(-1, 3, 3),
|
|
|
|
rel_joints.contiguous().view(-1, 3, 1)).view(-1, joints.shape[1], 4, 4)
|
|
|
|
|
|
|
|
transform_chain = [transforms_mat[:, 0]]
|
|
|
|
for i in range(1, parents.shape[0]):
|
|
|
|
# Subtract the joint location at the rest pose
|
|
|
|
# No need for rotation, since it's identity when at rest
|
|
|
|
curr_res = torch.matmul(transform_chain[parents[i]],
|
|
|
|
transforms_mat[:, i])
|
|
|
|
transform_chain.append(curr_res)
|
|
|
|
|
|
|
|
transforms = torch.stack(transform_chain, dim=1)
|
|
|
|
|
|
|
|
# The last column of the transformations contains the posed joints
|
|
|
|
posed_joints = transforms[:, :, :3, 3]
|
|
|
|
|
|
|
|
# The last column of the transformations contains the posed joints
|
|
|
|
posed_joints = transforms[:, :, :3, 3]
|
|
|
|
|
|
|
|
joints_homogen = F.pad(joints, [0, 0, 0, 1])
|
|
|
|
|
|
|
|
rel_transforms = transforms - F.pad(
|
|
|
|
torch.matmul(transforms, joints_homogen), [3, 0, 0, 0, 0, 0, 0, 0])
|
|
|
|
|
|
|
|
return posed_joints, rel_transforms
|