update detect chessboard

This commit is contained in:
sq-titanv 2022-12-05 22:19:38 +08:00
parent f8d551bb5e
commit 076d2fa834

View File

@ -2,113 +2,193 @@
@ Date: 2021-07-16 20:13:57
@ Author: Qing Shuai
@ LastEditors: Qing Shuai
@ LastEditTime: 2021-07-21 19:56:38
@ FilePath: /EasyMocap/apps/calibration/detect_chessboard.py
@ LastEditTime: 2022-05-11 20:41:10
@ FilePath: /EasyMocapPublic/apps/calibration/detect_chessboard.py
'''
# detect the corner of chessboard
from easymocap.annotator.file_utils import getFileList, read_json, save_json
from easymocap.mytools.debug_utils import mywarn
from tqdm import tqdm
from easymocap.annotator import ImageFolder
from easymocap.annotator.chessboard import getChessboard3d, findChessboardCorners
from easymocap.annotator.chessboard import findChessboardCorners
import numpy as np
from os.path import join
import cv2
import os
import func_timeout
import threading
from easymocap.mytools.debug_utils import log
def create_chessboard(path, pattern, gridSize, ext):
def getChessboard3d(pattern, gridSize, axis='yx'):
# 注意这里为了让标定板z轴朝上设定了短边是x长边是y
template = np.mgrid[0:pattern[0], 0:pattern[1]].T.reshape(-1,2)
object_points = np.zeros((pattern[1]*pattern[0], 3), np.float32)
# 长边是x,短边是z
if axis == 'xz':
object_points[:, 0] = template[:, 0]
object_points[:, 2] = template[:, 1]
elif axis == 'yx':
object_points[:, 0] = template[:, 1]
object_points[:, 1] = template[:, 0]
else:
raise NotImplementedError
object_points = object_points * gridSize
return object_points
def create_chessboard(path, image, pattern, gridSize, ext, overwrite=True):
print('Create chessboard {}'.format(pattern))
keypoints3d = getChessboard3d(pattern, gridSize=gridSize)
keypoints3d = getChessboard3d(pattern, gridSize=gridSize, axis=args.axis)
keypoints2d = np.zeros((keypoints3d.shape[0], 3))
imgnames = getFileList(path, ext=ext)
imgnames = getFileList(join(path, image), ext=ext)
template = {
'keypoints3d': keypoints3d.tolist(),
'keypoints2d': keypoints2d.tolist(),
'pattern': pattern,
'grid_size': gridSize,
'visited': False
}
for imgname in tqdm(imgnames, desc='create template chessboard'):
annname = imgname.replace('images', 'chessboard').replace(ext, '.json')
annname = join(path, annname)
if os.path.exists(annname):
annname = imgname.replace(ext, '.json')
annname = join(path, 'chessboard', annname)
if os.path.exists(annname) and overwrite:
# 覆盖keypoints3d
data = read_json(annname)
data['keypoints3d'] = template['keypoints3d']
save_json(annname, data)
elif os.path.exists(annname) and not overwrite:
continue
else:
save_json(annname, template)
def detect_chessboard(path, out, pattern, gridSize, args):
create_chessboard(path, pattern, gridSize, ext=args.ext)
dataset = ImageFolder(path, annot='chessboard', ext=args.ext)
dataset.isTmp = False
if args.silent:
trange = range(len(dataset))
else:
trange = tqdm(range(len(dataset)))
for i in trange:
imgname, annotname = dataset[i]
def _detect_chessboard(datas, path, image, out, pattern):
for imgname, annotname in datas:
# imgname, annotname = dataset[i]
# detect the 2d chessboard
img = cv2.imread(imgname)
annots = read_json(annotname)
show = findChessboardCorners(img, annots, pattern)
try:
show = findChessboardCorners(img, annots, pattern)
except func_timeout.exceptions.FunctionTimedOut:
show = None
save_json(annotname, annots)
if show is None:
if args.debug:
print('Cannot find {}'.format(imgname))
mywarn('[Info] Cannot find chessboard in {}'.format(imgname))
continue
outname = join(out, imgname.replace(path + '/images/', ''))
outname = join(out, imgname.replace(path + '/{}/'.format(image), ''))
os.makedirs(os.path.dirname(outname), exist_ok=True)
cv2.imwrite(outname, show)
if isinstance(show, np.ndarray):
cv2.imwrite(outname, show)
def detect_chessboard_sequence(path, out, pattern, gridSize, args):
create_chessboard(path, pattern, gridSize, ext=args.ext)
subs = sorted(os.listdir(join(path, 'images')))
def detect_chessboard(path, image, out, pattern, gridSize, args):
create_chessboard(path, image, pattern, gridSize, ext=args.ext, overwrite=args.overwrite3d)
dataset = ImageFolder(path, image=image, annot='chessboard', ext=args.ext)
dataset.isTmp = False
trange = list(range(len(dataset)))
threads = []
for i in range(args.mp):
ranges = trange[i::args.mp]
datas = [dataset[t] for t in ranges]
thread = threading.Thread(target=_detect_chessboard, args=(datas, path, image, out, pattern)) # 应该不存在任何数据竞争
thread.start()
threads.append(thread)
for thread in threads:
thread.join()
def _detect_by_search(path, image, out, pattern, sub):
dataset = ImageFolder(path, sub=sub, annot='chessboard', ext=args.ext)
dataset.isTmp = False
nFrames = len(dataset)
found = np.zeros(nFrames, dtype=bool)
visited = np.zeros(nFrames, dtype=bool)
proposals = []
init_step = args.max_step
min_step = args.min_step
for nf in range(0, nFrames, init_step):
if nf + init_step < len(dataset):
proposals.append([nf, nf+init_step])
while len(proposals) > 0:
left, right = proposals.pop(0)
print('[detect] {} {:4.1f}% Check [{:5d}, {:5d}]'.format(
sub, visited.sum()/visited.shape[0]*100, left, right), end=' ')
for nf in [left, right]:
if not visited[nf]:
visited[nf] = True
imgname, annotname = dataset[nf]
# detect the 2d chessboard
img = cv2.imread(imgname)
annots = read_json(annotname)
try:
show = findChessboardCorners(img, annots, pattern)
except func_timeout.exceptions.FunctionTimedOut:
show = None
save_json(annotname, annots)
if show is None:
if args.debug:
print('[Info] Cannot find chessboard in {}'.format(imgname))
found[nf] = False
continue
found[nf] = True
outname = join(out, imgname.replace(path + '{}{}{}'.format(os.sep, image, os.sep), ''))
os.makedirs(os.path.dirname(outname), exist_ok=True)
if isinstance(show, np.ndarray):
cv2.imwrite(outname, show)
print('{}-{}'.format('o' if found[left] else 'x', 'o' if found[right] else 'x'))
if not found[left] and not found[right]:
visited[left:right] = True
continue
mid = (left+right)//2
if mid == left or mid == right:
continue
if mid - left > min_step:
proposals.append((left, mid))
if right - mid > min_step:
proposals.append((mid, right))
def detect_chessboard_sequence(path, image, out, pattern, gridSize, args):
create_chessboard(path, image, pattern, gridSize, ext=args.ext, overwrite=args.overwrite3d)
subs = sorted(os.listdir(join(path, image)))
subs = [s for s in subs if os.path.isdir(join(path, image, s))]
if len(subs) == 0:
subs = [None]
from multiprocessing import Process
tasks = []
for sub in subs:
task = Process(target=_detect_by_search, args=(path, image, out, pattern, sub))
task.start()
tasks.append(task)
for task in tasks:
task.join()
for sub in subs:
dataset = ImageFolder(path, sub=sub, annot='chessboard', ext=args.ext)
dataset.isTmp = False
nFrames = len(dataset)
found = np.zeros(nFrames, dtype=np.bool)
visited = np.zeros(nFrames, dtype=np.bool)
proposals = []
init_step = args.max_step
min_step = args.min_step
for nf in range(0, nFrames, init_step):
if nf + init_step < len(dataset):
proposals.append([nf, nf+init_step])
while len(proposals) > 0:
left, right = proposals.pop(0)
print('Check [{}, {}]'.format(left, right))
for nf in [left, right]:
if not visited[nf]:
visited[nf] = True
imgname, annotname = dataset[nf]
# detect the 2d chessboard
img = cv2.imread(imgname)
annots = read_json(annotname)
show = findChessboardCorners(img, annots, pattern)
save_json(annotname, annots)
if show is None:
if args.debug:
print('Cannot find {}'.format(imgname))
found[nf] = False
continue
found[nf] = True
outname = join(out, imgname.replace(path + '/images/', ''))
os.makedirs(os.path.dirname(outname), exist_ok=True)
cv2.imwrite(outname, show)
if not found[left] and not found[right]:
continue
mid = (left+right)//2
if mid == left or mid == right:
continue
if mid - left > min_step:
proposals.append((left, mid))
if right - mid > min_step:
proposals.append((mid, right))
count, visited = 0, 0
for nf in range(len(dataset)):
imgname, annotname = dataset[nf]
# detect the 2d chessboard
annots = read_json(annotname)
if annots['visited']:
visited += 1
if annots['keypoints2d'][0][-1] > 0.01:
count += 1
log('{}: found {:4d}/{:4d} frames'.format(sub, count, visited))
def check_chessboard(path, out):
subs_notvalid = []
for sub in sorted(os.listdir(join(path, 'images'))):
if os.path.exists(join(out, sub)):
continue
subs_notvalid.append(sub)
print(subs_notvalid)
mywarn('Cannot find chessboard in view {}'.format(subs_notvalid))
mywarn('Please annot them manually:')
mywarn(f'python3 apps/annotation/annot_calib.py {path} --mode chessboard --annot chessboard --sub {" ".join(subs_notvalid)}')
if __name__ == "__main__":
import argparse
parser = argparse.ArgumentParser()
parser.add_argument('path', type=str)
parser.add_argument('--image', type=str, default='images')
parser.add_argument('--out', type=str, required=True)
parser.add_argument('--ext', type=str, default='.jpg', choices=['.jpg', '.png'])
parser.add_argument('--pattern', type=lambda x: (int(x.split(',')[0]), int(x.split(',')[1])),
@ -117,12 +197,20 @@ if __name__ == "__main__":
help='The length of the grid size (unit: meter)')
parser.add_argument('--max_step', type=int, default=50)
parser.add_argument('--min_step', type=int, default=0)
parser.add_argument('--mp', type=int, default=4)
parser.add_argument('--axis', type=str, default='yx')
parser.add_argument('--silent', action='store_true')
parser.add_argument('--debug', action='store_true')
parser.add_argument('--overwrite3d', action='store_true')
parser.add_argument('--seq', action='store_true')
parser.add_argument('--check', action='store_true')
args = parser.parse_args()
if args.seq:
detect_chessboard_sequence(args.path, args.out, pattern=args.pattern, gridSize=args.grid, args=args)
detect_chessboard_sequence(args.path, args.image, args.out, pattern=args.pattern, gridSize=args.grid, args=args)
else:
detect_chessboard(args.path, args.out, pattern=args.pattern, gridSize=args.grid, args=args)
detect_chessboard(args.path, args.image, args.out, pattern=args.pattern, gridSize=args.grid, args=args)
if args.check:
check_chessboard(args.path, args.out)