Fix triangulation bug
This commit is contained in:
parent
f6ea450543
commit
0ebb1d25b7
@ -173,6 +173,7 @@ def write_camera(camera, path):
|
||||
if 'H' in val.keys() and 'W' in val.keys():
|
||||
intri.write('H_{}'.format(key), val['H'], dt='int')
|
||||
intri.write('W_{}'.format(key), val['W'], dt='int')
|
||||
assert val['R'].shape == (3, 3), f"{val['R'].shape} must == (3, 3)"
|
||||
if 'Rvec' not in val.keys():
|
||||
val['Rvec'] = cv2.Rodrigues(val['R'])[0]
|
||||
extri.write('R_{}'.format(key), val['Rvec'])
|
||||
|
@ -11,7 +11,7 @@ def batch_triangulate(keypoints_, Pall, min_view=2):
|
||||
|
||||
Args:
|
||||
keypoints_ (nViews, nJoints, 3): 2D detections
|
||||
Pall (nViews, 3, 4): projection matrix of each view
|
||||
Pall (nViews, 3, 4) | (nViews, nJoints, 3, 4): projection matrix of each view
|
||||
min_view (int, optional): min view for visible points. Defaults to 2.
|
||||
|
||||
Returns:
|
||||
@ -25,9 +25,14 @@ def batch_triangulate(keypoints_, Pall, min_view=2):
|
||||
keypoints = keypoints_[:, valid_joint]
|
||||
conf3d = keypoints[:, :, -1].sum(axis=0)/v[valid_joint]
|
||||
# P2: P矩阵的最后一行:(1, nViews, 1, 4)
|
||||
P0 = Pall[None, :, 0, :]
|
||||
P1 = Pall[None, :, 1, :]
|
||||
P2 = Pall[None, :, 2, :]
|
||||
if len(Pall.shape) == 3:
|
||||
P0 = Pall[None, :, 0, :]
|
||||
P1 = Pall[None, :, 1, :]
|
||||
P2 = Pall[None, :, 2, :]
|
||||
else:
|
||||
P0 = Pall[:, :, 0, :].swapaxes(0, 1)
|
||||
P1 = Pall[:, :, 1, :].swapaxes(0, 1)
|
||||
P2 = Pall[:, :, 2, :].swapaxes(0, 1)
|
||||
# uP2: x坐标乘上P2: (nJoints, nViews, 1, 4)
|
||||
uP2 = keypoints[:, :, 0].T[:, :, None] * P2
|
||||
vP2 = keypoints[:, :, 1].T[:, :, None] * P2
|
||||
@ -44,9 +49,17 @@ def batch_triangulate(keypoints_, Pall, min_view=2):
|
||||
result[valid_joint, 3] = conf3d #* (conf[..., 0].sum(axis=-1)>min_view)
|
||||
return result
|
||||
|
||||
def project_points(keypoints, RT, einsum='vab,kb->vka'):
|
||||
def project_points(keypoints, RT, einsum=None):
|
||||
homo = np.concatenate([keypoints[..., :3], np.ones_like(keypoints[..., :1])], axis=-1)
|
||||
kpts2d = np.einsum(einsum, RT, homo)
|
||||
if einsum is None:
|
||||
if len(homo.shape) == 2 and len(RT.shape) == 3:
|
||||
kpts2d = np.einsum('vab,kb->vka', RT, homo)
|
||||
elif len(homo.shape) == 2 and len(RT.shape) == 4:
|
||||
kpts2d = np.einsum('vkab,kb->vka', RT, homo)
|
||||
else:
|
||||
import ipdb; ipdb.set_trace()
|
||||
else:
|
||||
kpts2d = np.einsum(einsum, RT, homo)
|
||||
kpts2d[..., :2] /= kpts2d[..., 2:]
|
||||
return kpts2d
|
||||
|
||||
@ -240,17 +253,20 @@ class BaseTriangulator:
|
||||
|
||||
class SimpleTriangulator(BaseTriangulator):
|
||||
def __init__(self, keys, debug, config,
|
||||
pid=0) -> None:
|
||||
pid=0, disable_previous=False) -> None:
|
||||
super().__init__(config, debug, keys)
|
||||
self.results = []
|
||||
self.infos = []
|
||||
self.dim_name = ['_joints', '_views']
|
||||
self.pid = pid
|
||||
self.disable_previous = disable_previous
|
||||
|
||||
def __call__(self, data, results=None):
|
||||
info = {}
|
||||
if results is None:
|
||||
results = self.results
|
||||
if self.disable_previous:
|
||||
results = []
|
||||
new = {'id': self.pid}
|
||||
for key in self.keys:
|
||||
if key not in data.keys(): continue
|
||||
@ -385,7 +401,7 @@ def check_cluster(affinity, row, views, dimGroups, indices, p2dAssigned, visited
|
||||
return indices_all
|
||||
|
||||
def views_from_dimGroups(dimGroups):
|
||||
views = np.zeros(dimGroups[-1], dtype=int)
|
||||
views = np.zeros(dimGroups[-1], dtype=np.int)
|
||||
for nv in range(len(dimGroups) - 1):
|
||||
views[dimGroups[nv]:dimGroups[nv+1]] = nv
|
||||
return views
|
||||
@ -445,6 +461,7 @@ class SimpleMatchAndTriangulator(SimpleTriangulator):
|
||||
lines0 = lines0.reshape(pts0.shape)
|
||||
lines1 = lines1.reshape(pts1.shape)
|
||||
# dist: (D_v0, D_v1, nJoints)
|
||||
# TODO: / sqrt(A^2 + B^2)
|
||||
dist01 = np.abs(np.sum(lines0[:, None, :, :2] * pts1[None, :, :, :2], axis=-1) + lines0[:, None, :, 2])
|
||||
conf = pts0[:, None, :, 2] * pts1[None, :, :, 2]
|
||||
dist10 = np.abs(np.sum(lines1[:, None, :, :2] * pts0[None, :, :, :2], axis=-1) + lines1[:, None, :, 2])
|
||||
@ -462,11 +479,11 @@ class SimpleMatchAndTriangulator(SimpleTriangulator):
|
||||
sum1 += affinity[:, start:end].max(axis=-1)
|
||||
n2d = affinity.shape[0]
|
||||
nViews = len(dimGroups) - 1
|
||||
idx_zero = np.zeros(nViews, dtype=int) - 1
|
||||
idx_zero = np.zeros(nViews, dtype=np.int) - 1
|
||||
views = views_from_dimGroups(dimGroups)
|
||||
# the assigned results of each person
|
||||
p2dAssigned = np.zeros(n2d, dtype=int) - 1
|
||||
visited = np.zeros(n2d, dtype=int)
|
||||
p2dAssigned = np.zeros(n2d, dtype=np.int) - 1
|
||||
visited = np.zeros(n2d, dtype=np.int)
|
||||
sortidx = np.argsort(-sum1)
|
||||
pid = 0
|
||||
k3dresults = []
|
||||
@ -523,7 +540,8 @@ class SimpleMatchAndTriangulator(SimpleTriangulator):
|
||||
k3dresults.sort(key=lambda x: -x['keypoints2d'][..., -1].sum())
|
||||
return k3dresults
|
||||
|
||||
def _calculate_affinity_MxM(self, dims, dimGroups, data, key):
|
||||
@staticmethod
|
||||
def calculate_affinity_MxM(dims, dimGroups, data, key, DIST_MAX):
|
||||
M = dimGroups[-1]
|
||||
distance = np.zeros((M, M), dtype=np.float32)
|
||||
nViews = len(dims)
|
||||
@ -535,18 +553,18 @@ class SimpleMatchAndTriangulator(SimpleTriangulator):
|
||||
if dims[v0] == 0 or dims[v1] == 0:
|
||||
continue
|
||||
if True:
|
||||
pts0 = data[key][v0]
|
||||
pts1 = data[key][v1]
|
||||
K0, K1 = data['K'][v0], data['K'][v1]
|
||||
pts0 = data[key][v0] # (nPerson0, nKeypoints, 3)
|
||||
pts1 = data[key][v1] # (nPerson1, nKeypoints, 3)
|
||||
K0, K1 = data['K'][v0], data['K'][v1] # K0, K1: (3, 3)
|
||||
R0, T0 = data['Rc'][v0], data['Tc'][v0]
|
||||
R1, T1 = data['Rc'][v1], data['Tc'][v1]
|
||||
dist = self.distance_by_epipolar(pts0, pts1, K0, K1, R0, T0, R1, T1)
|
||||
dist = SimpleMatchAndTriangulator.distance_by_epipolar(pts0, pts1, K0, K1, R0, T0, R1, T1)
|
||||
dist /= (K0[0, 0] + K1[0, 0])/2
|
||||
else:
|
||||
dist = self.distance_by_ray(pts0, pts1, R0, T0, R1, T1)
|
||||
distance[dimGroups[v0]:dimGroups[v0+1], dimGroups[v1]:dimGroups[v1+1]] = dist
|
||||
distance[dimGroups[v1]:dimGroups[v1+1], dimGroups[v0]:dimGroups[v0+1]] = dist.T
|
||||
DIST_MAX = self.cfg_track.track_dist_max
|
||||
|
||||
for nv in range(nViews):
|
||||
distance[dimGroups[nv]:dimGroups[nv+1], dimGroups[nv]:dimGroups[nv+1]] = DIST_MAX
|
||||
distance -= np.eye(M) * DIST_MAX
|
||||
@ -554,6 +572,10 @@ class SimpleMatchAndTriangulator(SimpleTriangulator):
|
||||
aff = np.clip(aff, 0, 1)
|
||||
return aff
|
||||
|
||||
def _calculate_affinity_MxM(self, dims, dimGroups, data, key):
|
||||
DIST_MAX = self.cfg_track.track_dist_max
|
||||
return self.calculate_affinity_MxM(dims, dimGroups, data, key, DIST_MAX=DIST_MAX)
|
||||
|
||||
def _calculate_affinity_MxN(self, dims, dimGroups, data, key, results):
|
||||
M = dimGroups[-1]
|
||||
N = len(results)
|
||||
@ -599,7 +621,6 @@ class SimpleMatchAndTriangulator(SimpleTriangulator):
|
||||
plt.vlines([i-0.5 for i in dimGroups[1:]], -0.5, M-0.5, 'w')
|
||||
plt.ioff()
|
||||
plt.show()
|
||||
import ipdb;ipdb.set_trace()
|
||||
return aff_svt
|
||||
|
||||
def _track_add(self, res):
|
||||
@ -743,4 +764,22 @@ class SimpleMatchAndTriangulator(SimpleTriangulator):
|
||||
results = self._track_and_update(data, results)
|
||||
results.sort(key=lambda x:x['id'])
|
||||
self.people = results
|
||||
return results
|
||||
return results
|
||||
|
||||
def simple_match(data):
|
||||
key = 'keypoints2d'
|
||||
dims = [d.shape[0] for d in data[key]]
|
||||
dimGroups = np.cumsum([0] + dims)
|
||||
affinity = SimpleMatchAndTriangulator.calculate_affinity_MxM(dims, dimGroups, data, key, DIST_MAX=0.1)
|
||||
import pymatchlr
|
||||
observe = np.ones_like(affinity)
|
||||
cfg_svt = {
|
||||
'debug': 1,
|
||||
'maxIter': 10,
|
||||
'w_sparse': 0.1,
|
||||
'w_rank': 50,
|
||||
'tol': 0.0001,
|
||||
'aff_min': 0.3,
|
||||
}
|
||||
affinity = pymatchlr.matchSVT(affinity, dimGroups, SimpleConstrain(dimGroups), observe, cfg_svt)
|
||||
return affinity, dimGroups
|
Loading…
Reference in New Issue
Block a user