[calib] add read colmap

This commit is contained in:
QingShuai@zju3dv 2023-01-06 23:36:05 +08:00
parent 530dde403c
commit 2e83642c7c
2 changed files with 764 additions and 0 deletions

View File

@ -0,0 +1,232 @@
# 这个脚本用于对colmap的相机标定结果寻找地面与场景中心
# 方法:
# 1. 使用棋盘格
# 2. 估计点云里的地面
import os
from os.path import join
from easymocap.annotator.file_utils import save_json
from easymocap.mytools.debug_utils import myerror, run_cmd, mywarn, log
from easymocap.mytools.camera_utils import read_cameras, write_camera
from easymocap.mytools import read_json
from easymocap.mytools import batch_triangulate, projectN3, Undistort
import numpy as np
import cv2
from apps.calibration.calib_extri import solvePnP
def guess_ground(pcdname):
pcd = o3d.io.read_point_cloud(pcdname)
def compute_rel(R_src, T_src, R_tgt, T_tgt):
R_rel = R_src.T @ R_tgt
T_rel = R_src.T @ (T_tgt - T_src)
return R_rel, T_rel
def triangulate(cameras, areas):
Ps, k2ds = [], []
for cam, _, k2d, k3d in areas:
k2d = Undistort.points(k2d, cameras[cam]['K'], cameras[cam]['dist'])
P = cameras[cam]['K'] @ np.hstack([cameras[cam]['R'], cameras[cam]['T']])
Ps.append(P)
k2ds.append(k2d)
Ps = np.stack(Ps)
k2ds = np.stack(k2ds)
k3d = batch_triangulate(k2ds, Ps)
return k3d
def best_fit_transform(A, B):
'''
Calculates the least-squares best-fit transform that maps corresponding points A to B in m spatial dimensions
Input:
A: Nxm numpy array of corresponding points
B: Nxm numpy array of corresponding points
Returns:
T: (m+1)x(m+1) homogeneous transformation matrix that maps A on to B
R: mxm rotation matrix
t: mx1 translation vector
'''
assert A.shape == B.shape
# get number of dimensions
m = A.shape[1]
# translate points to their centroids
centroid_A = np.mean(A, axis=0)
centroid_B = np.mean(B, axis=0)
AA = A - centroid_A
BB = B - centroid_B
# rotation matrix
H = np.dot(AA.T, BB)
U, S, Vt = np.linalg.svd(H)
R = np.dot(Vt.T, U.T)
# special reflection case
if np.linalg.det(R) < 0:
Vt[m-1,:] *= -1
R = np.dot(Vt.T, U.T)
# translation
t = centroid_B.T - np.dot(R,centroid_A.T)
return R, t
def align_by_chessboard(cameras, path):
camnames = sorted(os.listdir(join(path, 'chessboard')))
areas = []
for ic, cam in enumerate(camnames):
imagename = join(path, 'images', cam, '000000.jpg')
chessname = join(path, 'chessboard', cam, '000000.json')
data = read_json(chessname)
k3d = np.array(data['keypoints3d'], dtype=np.float32)
k2d = np.array(data['keypoints2d'], dtype=np.float32)
# TODO
# pattern = (11, 8)
if 'pattern' in data.keys():
pattern = data['pattern']
else:
pattern = None
img = cv2.imread(imagename)
if args.scale2d is not None:
k2d[:, :2] *= args.scale2d
img = cv2.resize(img, None, fx=args.scale2d, fy=args.scale2d)
if args.origin is not None:
cameras[args.prefix+cam] = cameras.pop(args.origin+cam.replace('VID_', '0000'))
cam = args.prefix + cam
if cam not in cameras.keys():
myerror('camera {} not found in {}'.format(cam, cameras.keys()))
continue
cameras[cam]['shape'] = img.shape[:2]
if k2d[:, -1].sum() < 1:
continue
# calculate the area of the chessboard
mask = np.zeros_like(img[:, :, 0])
k2d_int = np.round(k2d[:, :2]).astype(int)
if pattern is not None:
cv2.fillPoly(mask, [k2d_int[[0, pattern[0]-1, -1, -pattern[0]]]], 1)
else:
cv2.fillPoly(mask, [k2d_int[[0, 1, 2, 3, 0]]], 1)
area = mask.sum()
print(cam, area)
areas.append([cam, area, k2d, k3d])
areas.sort(key=lambda x: -x[1])
best_cam, area, k2d, k3d = areas[0]
# 先解决尺度问题
ref_point_id = np.linalg.norm(k3d - k3d[:1], axis=-1).argmax()
k3d_pre = triangulate(cameras, areas)
length_gt = np.linalg.norm(k3d[0, :3] - k3d[ref_point_id, :3])
length = np.linalg.norm(k3d_pre[0, :3] - k3d_pre[ref_point_id, :3])
log('gt diag={:.3f}, est diag={:.3f}, scale={:.3f}'.format(length_gt, length, length_gt/length))
scale_colmap = length_gt / length
for cam, camera in cameras.items():
camera['T'] *= scale_colmap
k3d_pre = triangulate(cameras, areas)
length = np.linalg.norm(k3d_pre[0, :3] - k3d_pre[-1, :3])
log('gt diag={:.3f}, est diag={:.3f}, scale={:.3f}'.format(length_gt, length, length_gt/length))
# 计算相机相对于棋盘格的RT
if False:
for cam, _, k2d, k3d in areas:
K, dist = cameras[cam]['K'], cameras[cam]['dist']
R, T = cameras[cam]['R'], cameras[cam]['T']
err, rvec, tvec, kpts_repro = solvePnP(k3d, k2d, K, dist, flag=cv2.SOLVEPNP_ITERATIVE)
# 不同视角的计算的相对变换应该是一致的
R_tgt = cv2.Rodrigues(rvec)[0]
T_tgt = tvec.reshape(3, 1)
R_rel, T_rel = compute_rel(R, T, R_tgt, T_tgt)
break
else:
# 使用估计的棋盘格坐标与实际的棋盘格坐标
X = k3d_pre[:, :3]
X_gt = k3d[:, :3]
R_rel, T_rel = best_fit_transform(X_gt, X)
# 从棋盘格坐标系映射到colmap坐标系
T_rel = T_rel.reshape(3, 1)
centers = []
for cam, camera in cameras.items():
camera.pop('Rvec')
R_old, T_old = camera['R'], camera['T']
R_new = R_old @ R_rel
T_new = T_old + R_old @ T_rel
camera['R'] = R_new
camera['T'] = T_new
center = - camera['R'].T @ camera['T']
centers.append(center)
print('{}: ({:6.3f}, {:.3f}, {:.3f})'.format(cam, *np.round(center.T[0], 3)))
# 使用棋盘格估计一下尺度
k3d_pre = triangulate(cameras, areas)
length = np.linalg.norm(k3d_pre[0, :3] - k3d_pre[ref_point_id, :3])
log('{} {} {}'.format(length_gt, length, length_gt/length))
log(k3d_pre)
transform = np.eye(4)
transform[:3, :3] = R_rel
transform[:3, 3:] = T_rel
return cameras, scale_colmap, np.linalg.inv(transform)
# for 3D points X,
# in origin world: \Pi(RX + T) = x
# in new world: \Pi(R'Y+T') = x
# , where X = R_pY + T_p
if __name__ == '__main__':
import argparse
parser = argparse.ArgumentParser()
parser.add_argument('path', type=str)
parser.add_argument('out', type=str)
parser.add_argument('--plane_by_chessboard', type=str, default=None)
parser.add_argument('--plane_by_point', type=str, default=None)
parser.add_argument('--num', type=int, default=1)
parser.add_argument('--scale2d', type=float, default=None)
parser.add_argument('--prefix', type=str, default='')
parser.add_argument('--origin', type=str, default=None)
parser.add_argument('--guess_plane', action='store_true')
parser.add_argument('--noshow', action='store_true')
parser.add_argument('--debug', action='store_true')
args = parser.parse_args()
if not os.path.exists(join(args.path, 'intri.yml')):
assert os.path.exists(join(args.path, 'cameras.bin')), os.listdir(args.path)
cmd = f'python3 apps/calibration/read_colmap.py {args.path} .bin'
run_cmd(cmd)
cameras = read_cameras(args.path)
if args.plane_by_point is not None:
# 读入点云
import ipdb; ipdb.set_trace()
if args.plane_by_chessboard is not None:
cameras, scale, transform = align_by_chessboard(cameras, args.plane_by_chessboard)
if not args.noshow:
import open3d as o3d
sparse_name = join(args.path, 'sparse.ply')
dense_name = join(args.path, '..', '..', 'dense', 'fused.ply')
if os.path.exists(dense_name):
pcd = o3d.io.read_point_cloud(dense_name)
else:
pcd = o3d.io.read_point_cloud(sparse_name)
save_json(join(args.out, 'transform.json'), {'scale': scale, 'transform': transform.tolist()})
points = np.asarray(pcd.points)
# TODO: read correspondence of points3D and points2D
points_new = (scale*points) @ transform[:3, :3].T + transform[:3, 3:].T
pcd.points = o3d.utility.Vector3dVector(points_new)
o3d.io.write_point_cloud(join(args.out, 'sparse_aligned.ply'), pcd)
grids = []
center = o3d.geometry.TriangleMesh.create_coordinate_frame(
size=1, origin=[0, 0, 0])
grids.append(center)
for cam, camera in cameras.items():
center = - camera['R'].T @ camera['T']
center = o3d.geometry.TriangleMesh.create_coordinate_frame(
size=0.5, origin=[center[0, 0], center[1, 0], center[2, 0]])
if cam.startswith(args.prefix):
center.paint_uniform_color([1, 0, 1])
center.rotate(camera['R'].T)
grids.append(center)
o3d.visualization.draw_geometries([pcd] + grids)
write_camera(cameras, args.out)
if args.prefix is not None:
cameras_ = {}
for key, camera in cameras.items():
if args.prefix not in key:
continue
cameras_[key.replace(args.prefix, '')] = camera
os.makedirs(join(args.out, args.prefix), exist_ok=True)
write_camera(cameras_, join(args.out, args.prefix))

View File

@ -0,0 +1,532 @@
# Copyright (c) 2018, ETH Zurich and UNC Chapel Hill.
# All rights reserved.
#
# Redistribution and use in source and binary forms, with or without
# modification, are permitted provided that the following conditions are met:
#
# * Redistributions of source code must retain the above copyright
# notice, this list of conditions and the following disclaimer.
#
# * Redistributions in binary form must reproduce the above copyright
# notice, this list of conditions and the following disclaimer in the
# documentation and/or other materials provided with the distribution.
#
# * Neither the name of ETH Zurich and UNC Chapel Hill nor the names of
# its contributors may be used to endorse or promote products derived
# from this software without specific prior written permission.
#
# THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS "AS IS"
# AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
# IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE
# ARE DISCLAIMED. IN NO EVENT SHALL THE COPYRIGHT HOLDERS OR CONTRIBUTORS BE
# LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR
# CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF
# SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS
# INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN
# CONTRACT, STRICT LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE)
# ARISING IN ANY WAY OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE
# POSSIBILITY OF SUCH DAMAGE.
#
# Author: Johannes L. Schoenberger (jsch-at-demuc-dot-de)
import os
import sys
import collections
import numpy as np
import struct
import cv2
CameraModel = collections.namedtuple(
"CameraModel", ["model_id", "model_name", "num_params"])
Camera = collections.namedtuple(
"Camera", ["id", "model", "width", "height", "params"])
BaseImage = collections.namedtuple(
"Image", ["id", "qvec", "tvec", "camera_id", "name", "xys", "point3D_ids"])
Point3D = collections.namedtuple(
"Point3D", ["id", "xyz", "rgb", "error", "image_ids", "point2D_idxs"])
class Image(BaseImage):
def qvec2rotmat(self):
return qvec2rotmat(self.qvec)
CAMERA_MODELS = {
CameraModel(model_id=0, model_name="SIMPLE_PINHOLE", num_params=3),
CameraModel(model_id=1, model_name="PINHOLE", num_params=4),
CameraModel(model_id=2, model_name="SIMPLE_RADIAL", num_params=4),
CameraModel(model_id=3, model_name="RADIAL", num_params=5),
CameraModel(model_id=4, model_name="OPENCV", num_params=8),
CameraModel(model_id=5, model_name="OPENCV_FISHEYE", num_params=8),
CameraModel(model_id=6, model_name="FULL_OPENCV", num_params=12),
CameraModel(model_id=7, model_name="FOV", num_params=5),
CameraModel(model_id=8, model_name="SIMPLE_RADIAL_FISHEYE", num_params=4),
CameraModel(model_id=9, model_name="RADIAL_FISHEYE", num_params=5),
CameraModel(model_id=10, model_name="THIN_PRISM_FISHEYE", num_params=12)
}
CAMERA_MODEL_IDS = dict([(camera_model.model_id, camera_model) \
for camera_model in CAMERA_MODELS])
CAMERA_MODEL_NAMES = dict([(camera_model.model_name, camera_model)
for camera_model in CAMERA_MODELS])
def read_next_bytes(fid, num_bytes, format_char_sequence, endian_character="<"):
"""Read and unpack the next bytes from a binary file.
:param fid:
:param num_bytes: Sum of combination of {2, 4, 8}, e.g. 2, 6, 16, 30, etc.
:param format_char_sequence: List of {c, e, f, d, h, H, i, I, l, L, q, Q}.
:param endian_character: Any of {@, =, <, >, !}
:return: Tuple of read and unpacked values.
"""
data = fid.read(num_bytes)
return struct.unpack(endian_character + format_char_sequence, data)
def read_cameras_text(path):
"""
see: src/base/reconstruction.cc
void Reconstruction::WriteCamerasText(const std::string& path)
void Reconstruction::ReadCamerasText(const std::string& path)
"""
cameras = {}
with open(path, "r") as fid:
while True:
line = fid.readline()
if not line:
break
line = line.strip()
if len(line) > 0 and line[0] != "#":
elems = line.split()
camera_id = int(elems[0])
model = elems[1]
width = int(elems[2])
height = int(elems[3])
params = np.array(tuple(map(float, elems[4:])))
cameras[camera_id] = Camera(id=camera_id, model=model,
width=width, height=height,
params=params)
return cameras
def read_cameras_binary(path_to_model_file):
"""
see: src/base/reconstruction.cc
void Reconstruction::WriteCamerasBinary(const std::string& path)
void Reconstruction::ReadCamerasBinary(const std::string& path)
"""
cameras = {}
with open(path_to_model_file, "rb") as fid:
num_cameras = read_next_bytes(fid, 8, "Q")[0]
for camera_line_index in range(num_cameras):
camera_properties = read_next_bytes(
fid, num_bytes=24, format_char_sequence="iiQQ")
camera_id = camera_properties[0]
model_id = camera_properties[1]
model_name = CAMERA_MODEL_IDS[camera_properties[1]].model_name
width = camera_properties[2]
height = camera_properties[3]
num_params = CAMERA_MODEL_IDS[model_id].num_params
params = read_next_bytes(fid, num_bytes=8*num_params,
format_char_sequence="d"*num_params)
cameras[camera_id] = Camera(id=camera_id,
model=model_name,
width=width,
height=height,
params=np.array(params))
assert len(cameras) == num_cameras
return cameras
def read_images_text(path):
"""
see: src/base/reconstruction.cc
void Reconstruction::ReadImagesText(const std::string& path)
void Reconstruction::WriteImagesText(const std::string& path)
"""
images = {}
with open(path, "r") as fid:
while True:
line = fid.readline()
if not line:
break
line = line.strip()
if len(line) > 0 and line[0] != "#":
elems = line.split()
image_id = int(elems[0])
qvec = np.array(tuple(map(float, elems[1:5])))
tvec = np.array(tuple(map(float, elems[5:8])))
camera_id = int(elems[8])
image_name = elems[9]
elems = fid.readline().split()
xys = np.column_stack([tuple(map(float, elems[0::3])),
tuple(map(float, elems[1::3]))])
point3D_ids = np.array(tuple(map(int, elems[2::3])))
images[image_id] = Image(
id=image_id, qvec=qvec, tvec=tvec,
camera_id=camera_id, name=image_name,
xys=xys, point3D_ids=point3D_ids)
return images
def read_images_binary(path_to_model_file):
"""
see: src/base/reconstruction.cc
void Reconstruction::ReadImagesBinary(const std::string& path)
void Reconstruction::WriteImagesBinary(const std::string& path)
"""
images = {}
with open(path_to_model_file, "rb") as fid:
num_reg_images = read_next_bytes(fid, 8, "Q")[0]
for image_index in range(num_reg_images):
binary_image_properties = read_next_bytes(
fid, num_bytes=64, format_char_sequence="idddddddi")
image_id = binary_image_properties[0]
qvec = np.array(binary_image_properties[1:5])
tvec = np.array(binary_image_properties[5:8])
camera_id = binary_image_properties[8]
image_name = ""
current_char = read_next_bytes(fid, 1, "c")[0]
while current_char != b"\x00": # look for the ASCII 0 entry
image_name += current_char.decode("utf-8")
current_char = read_next_bytes(fid, 1, "c")[0]
num_points2D = read_next_bytes(fid, num_bytes=8,
format_char_sequence="Q")[0]
x_y_id_s = read_next_bytes(fid, num_bytes=24*num_points2D,
format_char_sequence="ddq"*num_points2D)
xys = np.column_stack([tuple(map(float, x_y_id_s[0::3])),
tuple(map(float, x_y_id_s[1::3]))])
point3D_ids = np.array(tuple(map(int, x_y_id_s[2::3])))
images[image_id] = Image(
id=image_id, qvec=qvec, tvec=tvec,
camera_id=camera_id, name=image_name,
xys=xys, point3D_ids=point3D_ids)
return images
def read_points3D_text(path):
"""
see: src/base/reconstruction.cc
void Reconstruction::ReadPoints3DText(const std::string& path)
void Reconstruction::WritePoints3DText(const std::string& path)
"""
points3D = {}
with open(path, "r") as fid:
while True:
line = fid.readline()
if not line:
break
line = line.strip()
if len(line) > 0 and line[0] != "#":
elems = line.split()
point3D_id = int(elems[0])
xyz = np.array(tuple(map(float, elems[1:4])))
rgb = np.array(tuple(map(int, elems[4:7])))
error = float(elems[7])
image_ids = np.array(tuple(map(int, elems[8::2])))
point2D_idxs = np.array(tuple(map(int, elems[9::2])))
points3D[point3D_id] = Point3D(id=point3D_id, xyz=xyz, rgb=rgb,
error=error, image_ids=image_ids,
point2D_idxs=point2D_idxs)
return points3D
def read_points3d_binary(path_to_model_file):
"""
see: src/base/reconstruction.cc
void Reconstruction::ReadPoints3DBinary(const std::string& path)
void Reconstruction::WritePoints3DBinary(const std::string& path)
"""
points3D = {}
with open(path_to_model_file, "rb") as fid:
num_points = read_next_bytes(fid, 8, "Q")[0]
for point_line_index in range(num_points):
binary_point_line_properties = read_next_bytes(
fid, num_bytes=43, format_char_sequence="QdddBBBd")
point3D_id = binary_point_line_properties[0]
xyz = np.array(binary_point_line_properties[1:4])
rgb = np.array(binary_point_line_properties[4:7])
error = np.array(binary_point_line_properties[7])
track_length = read_next_bytes(
fid, num_bytes=8, format_char_sequence="Q")[0]
track_elems = read_next_bytes(
fid, num_bytes=8*track_length,
format_char_sequence="ii"*track_length)
image_ids = np.array(tuple(map(int, track_elems[0::2])))
point2D_idxs = np.array(tuple(map(int, track_elems[1::2])))
points3D[point3D_id] = Point3D(
id=point3D_id, xyz=xyz, rgb=rgb,
error=error, image_ids=image_ids,
point2D_idxs=point2D_idxs)
return points3D
def read_model(path, ext):
if ext == ".txt":
cameras = read_cameras_text(os.path.join(path, "cameras" + ext))
images = read_images_text(os.path.join(path, "images" + ext))
points3D = read_points3D_text(os.path.join(path, "points3D") + ext)
else:
cameras = read_cameras_binary(os.path.join(path, "cameras" + ext))
images = read_images_binary(os.path.join(path, "images" + ext))
points3D = read_points3d_binary(os.path.join(path, "points3D") + ext)
return cameras, images, points3D
def qvec2rotmat(qvec):
return np.array([
[1 - 2 * qvec[2]**2 - 2 * qvec[3]**2,
2 * qvec[1] * qvec[2] - 2 * qvec[0] * qvec[3],
2 * qvec[3] * qvec[1] + 2 * qvec[0] * qvec[2]],
[2 * qvec[1] * qvec[2] + 2 * qvec[0] * qvec[3],
1 - 2 * qvec[1]**2 - 2 * qvec[3]**2,
2 * qvec[2] * qvec[3] - 2 * qvec[0] * qvec[1]],
[2 * qvec[3] * qvec[1] - 2 * qvec[0] * qvec[2],
2 * qvec[2] * qvec[3] + 2 * qvec[0] * qvec[1],
1 - 2 * qvec[1]**2 - 2 * qvec[2]**2]])
def rotmat2qvec(R):
Rxx, Ryx, Rzx, Rxy, Ryy, Rzy, Rxz, Ryz, Rzz = R.flat
K = np.array([
[Rxx - Ryy - Rzz, 0, 0, 0],
[Ryx + Rxy, Ryy - Rxx - Rzz, 0, 0],
[Rzx + Rxz, Rzy + Ryz, Rzz - Rxx - Ryy, 0],
[Ryz - Rzy, Rzx - Rxz, Rxy - Ryx, Rxx + Ryy + Rzz]]) / 3.0
eigvals, eigvecs = np.linalg.eigh(K)
qvec = eigvecs[[3, 0, 1, 2], np.argmax(eigvals)]
if qvec[0] < 0:
qvec *= -1
return qvec
def write_cameras_text(cameras, path):
"""
see: src/base/reconstruction.cc
void Reconstruction::WriteCamerasText(const std::string& path)
void Reconstruction::ReadCamerasText(const std::string& path)
"""
HEADER = '# Camera list with one line of data per camera:\n'
'# CAMERA_ID, MODEL, WIDTH, HEIGHT, PARAMS[]\n'
'# Number of cameras: {}\n'.format(len(cameras))
with open(path, "w") as fid:
fid.write(HEADER)
for _, cam in cameras.items():
to_write = [cam.id, cam.model, cam.width, cam.height, *cam.params]
line = " ".join([str(elem) for elem in to_write])
fid.write(line + "\n")
def write_next_bytes(fid, data, format_char_sequence, endian_character="<"):
"""pack and write to a binary file.
:param fid:
:param data: data to send, if multiple elements are sent at the same time,
they should be encapsuled either in a list or a tuple
:param format_char_sequence: List of {c, e, f, d, h, H, i, I, l, L, q, Q}.
should be the same length as the data list or tuple
:param endian_character: Any of {@, =, <, >, !}
"""
if isinstance(data, (list, tuple)):
bytes = struct.pack(endian_character + format_char_sequence, *data)
else:
bytes = struct.pack(endian_character + format_char_sequence, data)
fid.write(bytes)
def write_cameras_binary(cameras, path_to_model_file):
"""
see: src/base/reconstruction.cc
void Reconstruction::WriteCamerasBinary(const std::string& path)
void Reconstruction::ReadCamerasBinary(const std::string& path)
"""
with open(path_to_model_file, "wb") as fid:
write_next_bytes(fid, len(cameras), "Q")
for _, cam in cameras.items():
model_id = CAMERA_MODEL_NAMES[cam.model].model_id
camera_properties = [cam.id,
model_id,
cam.width,
cam.height]
write_next_bytes(fid, camera_properties, "iiQQ")
for p in cam.params:
write_next_bytes(fid, float(p), "d")
return cameras
def write_images_binary(images, path_to_model_file):
"""
see: src/base/reconstruction.cc
void Reconstruction::ReadImagesBinary(const std::string& path)
void Reconstruction::WriteImagesBinary(const std::string& path)
"""
with open(path_to_model_file, "wb") as fid:
write_next_bytes(fid, len(images), "Q")
for _, img in images.items():
write_next_bytes(fid, img.id, "i")
write_next_bytes(fid, img.qvec.tolist(), "dddd")
write_next_bytes(fid, img.tvec.tolist(), "ddd")
write_next_bytes(fid, img.camera_id, "i")
for char in img.name:
write_next_bytes(fid, char.encode("utf-8"), "c")
write_next_bytes(fid, b"\x00", "c")
write_next_bytes(fid, len(img.point3D_ids), "Q")
for xy, p3d_id in zip(img.xys, img.point3D_ids):
write_next_bytes(fid, [*xy, p3d_id], "ddq")
def write_images_text(images, path):
"""
see: src/base/reconstruction.cc
void Reconstruction::ReadImagesText(const std::string& path)
void Reconstruction::WriteImagesText(const std::string& path)
"""
if len(images) == 0:
mean_observations = 0
else:
mean_observations = sum((len(img.point3D_ids) for _, img in images.items()))/len(images)
HEADER = '# Image list with two lines of data per image:\n'
'# IMAGE_ID, QW, QX, QY, QZ, TX, TY, TZ, CAMERA_ID, NAME\n'
'# POINTS2D[] as (X, Y, POINT3D_ID)\n'
'# Number of images: {}, mean observations per image: {}\n'.format(len(images), mean_observations)
with open(path, "w") as fid:
fid.write(HEADER)
for _, img in images.items():
image_header = [img.id, *img.qvec, *img.tvec, img.camera_id, img.name]
first_line = " ".join(map(str, image_header))
fid.write(first_line + "\n")
points_strings = []
for xy, point3D_id in zip(img.xys, img.point3D_ids):
points_strings.append(" ".join(map(str, [*xy, point3D_id])))
fid.write(" ".join(points_strings) + "\n")
def write_points3D_text(points3D, path):
"""
see: src/base/reconstruction.cc
void Reconstruction::ReadPoints3DText(const std::string& path)
void Reconstruction::WritePoints3DText(const std::string& path)
"""
if len(points3D) == 0:
mean_track_length = 0
else:
mean_track_length = sum((len(pt.image_ids) for _, pt in points3D.items()))/len(points3D)
HEADER = '# 3D point list with one line of data per point:\n'
'# POINT3D_ID, X, Y, Z, R, G, B, ERROR, TRACK[] as (IMAGE_ID, POINT2D_IDX)\n'
'# Number of points: {}, mean track length: {}\n'.format(len(points3D), mean_track_length)
with open(path, "w") as fid:
fid.write(HEADER)
for _, pt in points3D.items():
point_header = [pt.id, *pt.xyz, *pt.rgb, pt.error]
fid.write(" ".join(map(str, point_header)) + " ")
track_strings = []
for image_id, point2D in zip(pt.image_ids, pt.point2D_idxs):
track_strings.append(" ".join(map(str, [image_id, point2D])))
fid.write(" ".join(track_strings) + "\n")
def write_points3d_binary(points3D, path_to_model_file):
"""
see: src/base/reconstruction.cc
void Reconstruction::ReadPoints3DBinary(const std::string& path)
void Reconstruction::WritePoints3DBinary(const std::string& path)
"""
with open(path_to_model_file, "wb") as fid:
write_next_bytes(fid, len(points3D), "Q")
for _, pt in points3D.items():
write_next_bytes(fid, pt.id, "Q")
write_next_bytes(fid, pt.xyz.tolist(), "ddd")
write_next_bytes(fid, pt.rgb.tolist(), "BBB")
write_next_bytes(fid, pt.error, "d")
track_length = pt.image_ids.shape[0]
write_next_bytes(fid, track_length, "Q")
for image_id, point2D_id in zip(pt.image_ids, pt.point2D_idxs):
write_next_bytes(fid, [image_id, point2D_id], "ii")
class FileStorage(object):
def __init__(self, filename, isWrite=False):
version = cv2.__version__
self.version = int(version.split('.')[0])
if isWrite:
self.fs = cv2.FileStorage(filename, cv2.FILE_STORAGE_WRITE)
else:
self.fs = cv2.FileStorage(filename, cv2.FILE_STORAGE_READ)
def __del__(self):
cv2.FileStorage.release(self.fs)
def write(self, key, value, dt='mat'):
if dt == 'mat':
cv2.FileStorage.write(self.fs, key, value)
elif dt == 'list':
if self.version == 4: # 4.4
# self.fs.write(key, '[')
# for elem in value:
# self.fs.write('none', elem)
# self.fs.write('none', ']')
# import ipdb; ipdb.set_trace()
self.fs.startWriteStruct(key, cv2.FileNode_SEQ)
for elem in value:
self.fs.write('', elem)
self.fs.endWriteStruct()
else: # 3.4
self.fs.write(key, '[')
for elem in value:
self.fs.write('none', elem)
self.fs.write('none', ']')
def main():
if len(sys.argv) != 3:
print("Usage: python read_model.py path/to/model/folder [.txt,.bin]")
return
cameras, images, points3D = read_model(path=sys.argv[1], ext=sys.argv[2])
import cv2
cameras_out = {}
for key in cameras.keys():
p = cameras[key].params
if cameras[key].model == 'SIMPLE_RADIAL':
f, cx, cy, k = p
K = np.array([f, 0, cx, 0, f, cy, 0, 0, 1]).reshape(3, 3)
dist = np.array([[k, 0, 0, 0, 0]])
elif cameras[key].model == 'PINHOLE':
fx, fy, cx, cy = p
K = np.array([fx, 0, cx, 0, fy, cy, 0, 0, 1]).reshape(3, 3)
dist = np.array([[0, 0, 0, 0, 0]])
else:
K = np.array([[p[0], 0, p[2], 0, p[1], p[3], 0, 0, 1]]).reshape(3, 3)
dist = np.array([[p[4], p[5], p[6], p[7], 0.]])
cameras_out[key] = {'K': K, 'dist': dist}
mapkey = {}
cameras_new = {}
for key, val in images.items():
cam = cameras_out[val.camera_id].copy()
t = val.tvec.reshape(3, 1)
R = qvec2rotmat(val.qvec)
cam['R'] = R
cam['Rvec'] = cv2.Rodrigues(R)[0]
cam['T'] = t
# mapkey[val.name.split('.')[0]] = val.camera_id
cameras_new[val.name.split('.')[0]] = cam
# cameras_new[val.name.split('.')[0].split('/')[0]] = cam
keys = sorted(list(cameras_new.keys()))
cameras_new = {key:cameras_new[key] for key in keys}
print("num_cameras: {}/{}".format(len(cameras), len(cameras_new)))
print("num_images:", len(images))
print("num_points3D:", len(points3D))
if len(points3D) > 0:
keys = list(points3D.keys())
xyz = np.stack([points3D[k].xyz for k in keys])
rgb = np.stack([points3D[k].rgb for k in keys])
import open3d as o3d
pcd = o3d.geometry.PointCloud()
pcd.points = o3d.utility.Vector3dVector(xyz)
pcd.colors = o3d.utility.Vector3dVector(rgb/255.)
from os.path import join
pcdname = join(sys.argv[1], 'sparse.ply')
o3d.io.write_point_cloud(pcdname, pcd)
if False:
o3d.visualization.draw_geometries([pcd])
from easymocap.mytools.camera_utils import write_camera
write_camera(cameras_new, sys.argv[1])
if __name__ == "__main__":
main()