add check calib
This commit is contained in:
parent
982873a515
commit
368ab6092e
@ -2,9 +2,11 @@
|
||||
@ Date: 2021-03-27 19:13:50
|
||||
@ Author: Qing Shuai
|
||||
@ LastEditors: Qing Shuai
|
||||
@ LastEditTime: 2021-04-15 22:53:23
|
||||
@ FilePath: /EasyMocap/apps/calibration/check_calib.py
|
||||
@ LastEditTime: 2022-10-11 16:47:10
|
||||
@ FilePath: /EasyMocapPublic/apps/calibration/check_calib.py
|
||||
'''
|
||||
from easymocap.mytools.debug_utils import myerror, mywarn
|
||||
from easymocap.mytools.file_utils import myarray2string
|
||||
import cv2
|
||||
import numpy as np
|
||||
import os
|
||||
@ -28,16 +30,29 @@ LINES_SQUARE = np.array([
|
||||
[3, 0]
|
||||
])
|
||||
|
||||
def load_cube():
|
||||
def load_cube(grid_size=1, **kwargs):
|
||||
min_x, min_y, min_z = (0, 0, 0.)
|
||||
max_x, max_y, max_z = (grid_size, grid_size, grid_size)
|
||||
# min_x, min_y, min_z = (-0.75, -0.9, 0.)
|
||||
# max_x, max_y, max_z = (0.75, 0.7, 0.9)
|
||||
# # 灯光球场篮球:
|
||||
# min_x, min_y, min_z = (-7.5, -2.89, 0.)
|
||||
# max_x, max_y, max_z = (7.5, 11.11, 2.)
|
||||
# # 4d association:
|
||||
# min_x, min_y, min_z = (-1.6, -1.6, 0.)
|
||||
# max_x, max_y, max_z = (1.5, 1.6, 2.4)
|
||||
# min_x, min_y, min_z = (-2.45, -4., 0.)
|
||||
# max_x, max_y, max_z = (1.65, 2.45, 2.6)
|
||||
|
||||
points3d = np.array([
|
||||
[0., 0., 0.],
|
||||
[1., 0., 0.],
|
||||
[1., 1., 0.],
|
||||
[0., 1., 0.],
|
||||
[0., 0., 1.],
|
||||
[1., 0., 1.],
|
||||
[1., 1., 1.],
|
||||
[0., 1., 1.]
|
||||
[min_x, min_y, min_z],
|
||||
[max_x, min_y, min_z],
|
||||
[max_x, max_y, min_z],
|
||||
[min_x, max_y, min_z],
|
||||
[min_x, min_y, max_z],
|
||||
[max_x, min_y, max_z],
|
||||
[max_x, max_y, max_z],
|
||||
[min_x, max_y, max_z],
|
||||
])
|
||||
lines = np.array([
|
||||
[0, 1],
|
||||
@ -52,7 +67,7 @@ def load_cube():
|
||||
[1, 5],
|
||||
[2, 6],
|
||||
[3, 7]
|
||||
], dtype=int)
|
||||
], dtype=np.int64)
|
||||
points3d = np.hstack((points3d, np.ones((points3d.shape[0], 1))))
|
||||
return points3d, lines
|
||||
|
||||
@ -73,36 +88,211 @@ def merge_points_lines(points3d, lines):
|
||||
mapid[mapid==newi] = i
|
||||
return newpoints, mapid[lines]
|
||||
|
||||
def load_grid(xrange=10, yrange=10):
|
||||
def load_grid(xrange=28, yrange=15, step=1, two=False, **kwargs):
|
||||
start = np.array([0., 0., 0.])
|
||||
xdir = np.array([1., 0., 0.])
|
||||
ydir = np.array([0., 1., 0.])
|
||||
stepx = 1.
|
||||
stepy = 1.
|
||||
stepx = step
|
||||
stepy = step
|
||||
points3d, lines = [], []
|
||||
for i in range(xrange):
|
||||
for j in range(yrange):
|
||||
if two:
|
||||
start_x = -xrange
|
||||
start_y = -yrange
|
||||
else:
|
||||
start_x = 0
|
||||
start_y = 0
|
||||
for i in range(start_x, xrange):
|
||||
for j in range(start_y, yrange):
|
||||
base = start + xdir*i*stepx + ydir*j*stepy
|
||||
points3d.append(POINTS_SQUARE+base)
|
||||
lines.append(LINES_SQUARE+4*(i*yrange+j))
|
||||
lines.append(LINES_SQUARE+4*((i-start_x)*(yrange-start_y)+(j-start_y)))
|
||||
points3d = np.vstack(points3d)
|
||||
lines = np.vstack(lines)
|
||||
return merge_points_lines(points3d, lines)
|
||||
|
||||
def load_axes():
|
||||
points3d = np.array([
|
||||
[0., 0., 0.],
|
||||
[1., 0., 0.],
|
||||
[0., 1., 0.],
|
||||
[0., 0., -1.]
|
||||
])
|
||||
lines = np.array([
|
||||
[0,1],
|
||||
[0,2],
|
||||
[0,3]
|
||||
], dtype=int)
|
||||
points3d = np.hstack((points3d, np.ones((points3d.shape[0], 1))))
|
||||
return points3d, lines
|
||||
def load_human(path, pid, nf=0, camnames=[], annot='annots'):
|
||||
points = []
|
||||
nvs = []
|
||||
annot_ = annot
|
||||
for nv, sub in enumerate(camnames):
|
||||
annotname = join(path, annot_, sub, '{:06d}.json'.format(nf))
|
||||
if not os.path.exists(annotname):
|
||||
print('[Warn] Not exist ', annotname)
|
||||
continue
|
||||
annots = read_json(annotname)
|
||||
if isinstance(annots, dict):
|
||||
annots = annots['annots']
|
||||
annot = [d for d in annots if d['personID'] == pid]
|
||||
if len(annot) == 0:
|
||||
continue
|
||||
pts = np.array(annot[0]['keypoints'])
|
||||
if args.hand:
|
||||
handl = np.array(annot[0]['handl2d'])
|
||||
handr = np.array(annot[0]['handr2d'])
|
||||
pts = np.vstack([pts, handl, handr])
|
||||
points.append(pts)
|
||||
nvs.append(nv)
|
||||
points = np.stack(points)
|
||||
results = np.zeros((len(camnames), *points.shape[1:]))
|
||||
results[nvs] = points
|
||||
from easymocap.dataset.config import CONFIG
|
||||
lines = CONFIG['body25']['kintree']
|
||||
return results, lines
|
||||
|
||||
class BaseCheck:
|
||||
def __init__(self, path, out, mode='cube', ext='.jpg', sub=[]) -> None:
|
||||
cameras = read_camera(join(out, 'intri.yml'), join(out, 'extri.yml'))
|
||||
cameras.pop('basenames')
|
||||
self.outdir = join(out, mode)
|
||||
self.cameras = cameras
|
||||
if len(sub) == 0:
|
||||
self.camnames = sorted(list(cameras.keys()))
|
||||
else:
|
||||
self.camnames = sub
|
||||
if args.prefix is not None:
|
||||
for c in self.camnames:
|
||||
self.cameras[c.replace(args.prefix, '')] = self.cameras.pop(c)
|
||||
self.camnames = [c.replace(args.prefix, '') for c in self.camnames]
|
||||
print('[check] cameras: ', self.camnames)
|
||||
zaxis = np.array([0., 0., 1.]).reshape(3, 1)
|
||||
for cam in self.camnames:
|
||||
camera = cameras[cam]
|
||||
center = -camera['R'].T @ camera['T']
|
||||
#
|
||||
lookat = camera['R'].T @ (zaxis - camera['T'])
|
||||
print(' - {}: center = {}, look at = {}'.format(cam, np.round(center.T, 3), np.round(lookat.T, 3)))
|
||||
|
||||
self.path = path
|
||||
self.kpts2d = None
|
||||
self.ext = ext
|
||||
self.errors = []
|
||||
|
||||
def check(self, points3d, lines, nf = 0, show=False, write=True):
|
||||
if write:
|
||||
os.makedirs(self.outdir, exist_ok=True)
|
||||
conf3d = points3d[:, -1]
|
||||
p3d = np.ascontiguousarray(points3d[:, :3])
|
||||
errors = []
|
||||
for nv, cam in enumerate(self.camnames):
|
||||
camera = self.cameras[cam]
|
||||
if show or write:
|
||||
imgname = join(self.path, 'images', cam, '{:06d}{}'.format(nf, self.ext))
|
||||
if not os.path.exists(imgname):
|
||||
imgname = join(self.path, 'images', cam, '{:08d}{}'.format(nf, self.ext))
|
||||
if not os.path.exists(imgname):
|
||||
print('[WARN] Not exist', imgname)
|
||||
continue
|
||||
assert os.path.exists(imgname), imgname
|
||||
img = cv2.imread(imgname)
|
||||
img = Undistort.image(img, camera['K'], camera['dist'])
|
||||
if False:
|
||||
points2d_repro, xxx = cv2.projectPoints(p3d, cv2.Rodrigues(camera['R'])[0], camera['T'], camera['K'], camera['dist'])
|
||||
kpts_repro = points2d_repro.squeeze()
|
||||
else:
|
||||
kpts_repro = projectN3(p3d, [camera['P']])[0]
|
||||
if self.kpts2d is not None:
|
||||
k2d = self.kpts2d[nv]
|
||||
k2d = Undistort.points(k2d, camera['K'], camera['dist'])
|
||||
valid = (conf3d > 0.)&(k2d[:, 2] > 0.)
|
||||
# print(kpts_repro)
|
||||
# import ipdb; ipdb.set_trace()
|
||||
if k2d[:, 2].sum() > 0.:
|
||||
diff = np.linalg.norm(k2d[:, :2] - kpts_repro[:, :2], axis=1) * valid
|
||||
print('[Check] {}: {} points, {:3.2f} pixels, max is {}, {:3.2f} pixels'.format(cam, valid.sum(), diff.sum()/valid.sum(), diff.argmax(), diff.max()))
|
||||
diff = diff.sum()/valid.sum()
|
||||
errors.append(diff)
|
||||
self.errors.append((diff, nv, nf))
|
||||
if show or write:
|
||||
plot_points2d(img, k2d, lines, col=(0, 255, 0), lw=1, putText=False)
|
||||
else:
|
||||
k2d = np.zeros((10, 3))
|
||||
if show or write:
|
||||
if points3d.shape[-1] == 4:
|
||||
conf = points3d[..., -1:] > 0.01
|
||||
elif points3d.shape[-1] == 3:
|
||||
conf = np.ones_like(points3d[..., -1:])
|
||||
kpts_vis = np.hstack((kpts_repro[:, :2], conf))
|
||||
# for i in range(kpts_vis.shape[0]):
|
||||
# print('{}: {}, {}, {}'.format(i, *kpts_vis[i]))
|
||||
plot_points2d(img, kpts_vis, lines, col=(0, 0, 255), lw=1, putText=args.text, style='+')
|
||||
for i in range(kpts_vis.shape[0]):
|
||||
if k2d[i][-1] < 0.1:continue
|
||||
cv2.line(img, (int(kpts_vis[i][0]), int(kpts_vis[i][1])), (int(k2d[i][0]), int(k2d[i][1])), (0,0,0), thickness=2)
|
||||
not_skip_unvis = True
|
||||
if show and (k2d[:, 2].sum()>0 or not_skip_unvis):
|
||||
vis = img
|
||||
if vis.shape[0] > 1000:
|
||||
vis = cv2.resize(vis, None, fx=1000/vis.shape[0], fy=1000/vis.shape[0])
|
||||
cv2.imshow('vis', vis)
|
||||
cv2.waitKey(0)
|
||||
if write:
|
||||
outname = join(self.outdir, '{}_{:06d}.jpg'.format(cam, nf))
|
||||
cv2.imwrite(outname, img)
|
||||
if len(errors) > 0:
|
||||
print('[Check] Mean error: {:3.2f} pixels'.format(sum(errors)/len(errors)))
|
||||
|
||||
def summary(self):
|
||||
errors = self.errors
|
||||
if len(errors) > 0:
|
||||
errors.sort(key=lambda x:-x[0])
|
||||
print('[Check] Total {} frames Mean error: {:3.2f} pixels, max: {:3.2f} in cam "{}" frame {}'.format(len(errors), sum([e[0] for e in errors])/len(errors), errors[0][0], self.camnames[errors[0][1]], self.errors[0][2]))
|
||||
|
||||
class QuanCheck(BaseCheck):
|
||||
def __init__(self, path, out, mode, ext, sub=[]) -> None:
|
||||
super().__init__(path, out, mode, ext, sub)
|
||||
|
||||
def triangulate(self, k2ds, gt=None):
|
||||
# k2ds: (nViews, nPoints, 3)
|
||||
self.kpts2d = k2ds
|
||||
k2dus = []
|
||||
for nv in range(k2ds.shape[0]):
|
||||
camera = self.cameras[self.camnames[nv]]
|
||||
k2d = k2ds[nv].copy()
|
||||
k2du = Undistort.points(k2d, camera['K'], camera['dist'])
|
||||
k2dus.append(k2du)
|
||||
Pall = np.stack([self.cameras[cam]['P'] for cam in self.camnames])
|
||||
k2dus = np.stack(k2dus)
|
||||
k3d = batch_triangulate(k2dus, Pall)
|
||||
if gt is not None:
|
||||
if gt.shape[0] < k3d.shape[0]: # gt少了点
|
||||
gt = np.vstack([gt, np.zeros((k3d.shape[0]-gt.shape[0], 3))])
|
||||
valid = np.where(k3d[:, -1] > 0.)[0]
|
||||
err3d = np.linalg.norm(k3d[valid, :3] - gt[valid], axis=1)
|
||||
print('[Check3D] mean error: {:.2f}mm'.format(err3d.mean()*1000))
|
||||
return k3d
|
||||
|
||||
def load2d_ground(path, nf=0, camnames=[]):
|
||||
k2ds = []
|
||||
k3d = None
|
||||
MAX_POINTS = 0
|
||||
for cam in sorted(camnames):
|
||||
annname = join(path, cam, '{:06d}.json'.format(nf))
|
||||
if not os.path.exists(annname):
|
||||
mywarn(annname + ' not exists')
|
||||
data = read_json(annname)
|
||||
k2d = np.array(data['keypoints2d'], dtype=np.float32)
|
||||
k3d = np.array(data['keypoints3d'], dtype=np.float32)
|
||||
if k2d.shape[0] > MAX_POINTS:
|
||||
MAX_POINTS = k2d.shape[0]
|
||||
k2ds.append(k2d)
|
||||
for i, k2d in enumerate(k2ds):
|
||||
if k2d.shape[0] < MAX_POINTS:
|
||||
k2ds[i] = np.vstack([k2d, np.zeros((MAX_POINTS-k2d.shape[0], 3))])
|
||||
k2ds = np.stack(k2ds)
|
||||
conf = k2ds[:, :, 2].sum(axis=1)
|
||||
if (conf>0).sum() < 2:
|
||||
return False, None, None
|
||||
return True, k2ds, k3d
|
||||
|
||||
def read_match2d_file(file, camnames):
|
||||
points = read_json(file)['points_global']
|
||||
match2d = np.zeros((len(camnames), len(points), 3))
|
||||
for npo in range(match2d.shape[1]):
|
||||
for key, (x, y) in points[npo].items():
|
||||
if key not in camnames:
|
||||
continue
|
||||
match2d[camnames.index(key), npo] = [x, y, 1.]
|
||||
return True, match2d, np.zeros((match2d.shape[1], 3))
|
||||
|
||||
def check_calib(path, out, vis=False, show=False, debug=False):
|
||||
if vis:
|
||||
@ -116,7 +306,10 @@ def check_calib(path, out, vis=False, show=False, debug=False):
|
||||
k2ds = []
|
||||
for cam, camera in cameras.items():
|
||||
if vis:
|
||||
imgname = join(path, 'images', cam, '{:06d}.jpg'.format(nf))
|
||||
for ext in ['jpg', 'png']:
|
||||
imgname = join(path, 'images', cam, '{:06d}.{}'.format(nf, ext))
|
||||
if not os.path.exists(imgname):
|
||||
continue
|
||||
assert os.path.exists(imgname), imgname
|
||||
img = cv2.imread(imgname)
|
||||
img = Undistort.image(img, camera['K'], camera['dist'])
|
||||
@ -142,8 +335,11 @@ def check_calib(path, out, vis=False, show=False, debug=False):
|
||||
if debug:
|
||||
print('{:2d}-{:2d}: {:6.2f}/{:2d}'.format(nf, nv, dist.sum(), int(conf.sum())))
|
||||
if vis:
|
||||
plot_points2d(imgs[nv], kpts_repro[nv], [], col=(0, 0, 255), lw=1, putText=False)
|
||||
kpts_repro_vis = np.hstack((kpts_repro[nv][:, :2], conf[:, None]))
|
||||
plot_points2d(imgs[nv], kpts_repro_vis, [], col=(0, 0, 255), lw=1, putText=False)
|
||||
plot_points2d(imgs[nv], k2ds[nv], [], lw=1, putText=False)
|
||||
for i in range(kpts_repro_vis.shape[0]):
|
||||
cv2.line(imgs[nv], kpts_repro_vis[i], k2ds[nv][i], (0,0,0), thickness=1)
|
||||
if show:
|
||||
cv2.imshow('vis', imgs[nv])
|
||||
cv2.waitKey(0)
|
||||
@ -153,20 +349,6 @@ def check_calib(path, out, vis=False, show=False, debug=False):
|
||||
cv2.imwrite(outname, imgout)
|
||||
print('{:.2f}/{} = {:.2f} pixel'.format(total_sum, int(cnt), total_sum/cnt))
|
||||
|
||||
def check_scene(path, out, points3d, lines):
|
||||
cameras = read_camera(join(out, 'intri.yml'), join(out, 'extri.yml'))
|
||||
cameras.pop('basenames')
|
||||
nf = 0
|
||||
for cam, camera in cameras.items():
|
||||
imgname = join(path, 'images', cam, '{:06d}.jpg'.format(nf))
|
||||
assert os.path.exists(imgname), imgname
|
||||
img = cv2.imread(imgname)
|
||||
img = Undistort.image(img, camera['K'], camera['dist'])
|
||||
kpts_repro = projectN3(points3d, camera['P'][None, :, :])[0]
|
||||
plot_points2d(img, kpts_repro, lines, col=(0, 0, 255), lw=1, putText=True)
|
||||
cv2.imshow('vis', img)
|
||||
cv2.waitKey(0)
|
||||
|
||||
def check_match(path, out):
|
||||
os.makedirs(out, exist_ok=True)
|
||||
cameras = read_camera(join(path, 'intri.yml'), join(path, 'extri.yml'))
|
||||
@ -195,6 +377,8 @@ def check_match(path, out):
|
||||
kpts_repro = projectN3(points3d, camera['P'][None, :, :])[0]
|
||||
plot_points2d(img, kpts_repro, lines, col=(0, 0, 255), lw=1, putText=True)
|
||||
plot_points2d(img, points2d[cams.index(cam)], lines, col=(0, 255, 0), lw=1, putText=True)
|
||||
for i in range(kpts_repro_vis.shape[0]):
|
||||
cv2.line(imgs[nv], kpts_repro[i], points2d[cams.index(cam)][i], (0,0,0), thickness=1)
|
||||
outname = join(out, cam+'.jpg')
|
||||
cv2.imwrite(outname, img)
|
||||
|
||||
@ -203,26 +387,79 @@ if __name__ == "__main__":
|
||||
parser = argparse.ArgumentParser()
|
||||
parser.add_argument('path', type=str,
|
||||
help='the directory contains the extrinsic images')
|
||||
parser.add_argument('--sub', type=str,
|
||||
default=[], nargs='+')
|
||||
parser.add_argument('--out', type=str,
|
||||
help='with camera parameters')
|
||||
parser.add_argument('--vis', action='store_true')
|
||||
parser.add_argument('--mode', type=str, default='cube',
|
||||
help='with camera parameters')
|
||||
parser.add_argument('--ext', type=str, default='.jpg', choices=['.jpg', '.png'])
|
||||
parser.add_argument('--prefix', type=str, default=None)
|
||||
parser.add_argument('--grid_x', type=int, default=3)
|
||||
parser.add_argument('--grid_y', type=int, default=3)
|
||||
parser.add_argument('--grid_step', type=float, default=1.)
|
||||
parser.add_argument('--grid_two', action='store_true')
|
||||
parser.add_argument('--step', type=int, default=5)
|
||||
parser.add_argument('--show', action='store_true')
|
||||
parser.add_argument('--write', action='store_true')
|
||||
parser.add_argument('--debug', action='store_true')
|
||||
parser.add_argument('--cube', action='store_true')
|
||||
parser.add_argument('--grid', action='store_true')
|
||||
parser.add_argument('--axes', action='store_true')
|
||||
parser.add_argument('--human', action='store_true')
|
||||
parser.add_argument('--hand', action='store_true')
|
||||
parser.add_argument('--pid', type=int, default=0)
|
||||
parser.add_argument('--frame', type=int, default=0)
|
||||
parser.add_argument('--annot', type=str, default='annots')
|
||||
parser.add_argument('--calib', action='store_true')
|
||||
parser.add_argument('--text', action='store_true')
|
||||
parser.add_argument('--print3d', action='store_true')
|
||||
parser.add_argument('--gt', action='store_true')
|
||||
|
||||
args = parser.parse_args()
|
||||
if args.cube:
|
||||
points, lines = load_cube()
|
||||
check_scene(args.path, args.out, points, lines)
|
||||
elif args.grid:
|
||||
points, lines = load_grid(xrange=15, yrange=14)
|
||||
check_scene(args.path, args.out, points, lines)
|
||||
elif args.axes:
|
||||
points, lines = load_axes()
|
||||
check_scene(args.path, args.out, points, lines)
|
||||
if args.mode in ['cube', 'grid']:
|
||||
points, lines = {'cube': load_cube, 'grid': load_grid}[args.mode](
|
||||
xrange=args.grid_x, yrange=args.grid_y, step=args.grid_step, two=args.grid_two,
|
||||
grid_size=args.grid_step
|
||||
)
|
||||
print('Check {} points'.format(points.shape))
|
||||
checker = BaseCheck(args.path, args.out, args.mode, args.ext)
|
||||
checker.check(points, lines, args.frame, show=args.show, write=args.write)
|
||||
elif args.mode in ['gcp', 'match']:
|
||||
checker = QuanCheck(args.path, args.out, args.mode, args.ext)
|
||||
lines = []
|
||||
if args.mode == 'match':
|
||||
for nf in range(0, 10000, args.step):
|
||||
# try:
|
||||
flag, k2ds, gt3d = load2d_ground(join(args.path, args.annot), nf=nf, camnames=checker.camnames)
|
||||
# except:
|
||||
# myerror('{} not exist'.format(join(args.path, args.annot, '{:06d}.json'.format(nf))))
|
||||
# break
|
||||
if not flag:continue
|
||||
points = checker.triangulate(k2ds, gt=gt3d)
|
||||
if args.print3d:
|
||||
valid = points[:, -1] > 0.01
|
||||
points_ = points[valid]
|
||||
np.savetxt(join(args.out, 'points3d.txt'), points_, fmt='%10.5f')
|
||||
print(myarray2string(points_, indent=0))
|
||||
norm = np.linalg.norm(points_, axis=1)
|
||||
print('[calib] max norm={}, min norm={}'.format(norm.max(), norm.min()))
|
||||
checker.check(gt3d if args.gt else points, lines, nf, show=args.show, write=args.write)
|
||||
checker.summary()
|
||||
elif args.mode == 'gcp':
|
||||
flag, k2ds, gt3d = read_match2d_file(join(args.path, 'calib.json'), camnames=checker.camnames)
|
||||
points = checker.triangulate(k2ds, gt=gt3d)
|
||||
print(myarray2string(points, indent=4))
|
||||
checker.check(gt3d if args.gt else points, lines, 0, show=args.show, write=args.write)
|
||||
else:
|
||||
flag, k2ds, gt3d = load2d_ground(join(args.path, 'chessboard'), camnames=checker.camnames)
|
||||
points = checker.triangulate(k2ds, gt=gt3d)
|
||||
checker.check(gt3d if args.gt else points, lines, 0, show=args.show, write=args.write)
|
||||
elif args.mode == 'human':
|
||||
checker = QuanCheck(args.path, args.out, args.mode, args.ext, sub=args.sub)
|
||||
points, lines = load_human(args.path, pid=args.pid, nf=args.frame, camnames=checker.camnames, annot=args.annot)
|
||||
points = checker.triangulate(points, gt=None)
|
||||
print('[calib] check human')
|
||||
print(myarray2string(points, indent=0))
|
||||
print('[calib]limblength: {}'.format(np.linalg.norm(points[1, :3] - points[8, :3])))
|
||||
checker.check(points, lines, args.frame, show=args.show, write=args.write)
|
||||
elif args.calib:
|
||||
check_match(args.path, args.out)
|
||||
else:
|
||||
|
Loading…
Reference in New Issue
Block a user