add backbone vitpose
This commit is contained in:
parent
c4aaa2fd5f
commit
4919cdc417
@ -49,6 +49,37 @@ def gen_trans_from_patch_cv(c_x, c_y, src_width, src_height, dst_width, dst_heig
|
||||
|
||||
return trans, inv_trans
|
||||
|
||||
# TODO: add UDP
|
||||
def get_warp_matrix(theta, size_input, size_dst, size_target):
|
||||
"""Calculate the transformation matrix under the constraint of unbiased.
|
||||
Paper ref: Huang et al. The Devil is in the Details: Delving into Unbiased
|
||||
Data Processing for Human Pose Estimation (CVPR 2020).
|
||||
|
||||
Args:
|
||||
theta (float): Rotation angle in degrees.
|
||||
size_input (np.ndarray): Size of input image [w, h].
|
||||
size_dst (np.ndarray): Size of output image [w, h].
|
||||
size_target (np.ndarray): Size of ROI in input plane [w, h].
|
||||
|
||||
Returns:
|
||||
np.ndarray: A matrix for transformation.
|
||||
"""
|
||||
theta = np.deg2rad(theta)
|
||||
matrix = np.zeros((2, 3), dtype=np.float32)
|
||||
scale_x = size_dst[0] / size_target[0]
|
||||
scale_y = size_dst[1] / size_target[1]
|
||||
matrix[0, 0] = math.cos(theta) * scale_x
|
||||
matrix[0, 1] = -math.sin(theta) * scale_x
|
||||
matrix[0, 2] = scale_x * (-0.5 * size_input[0] * math.cos(theta) +
|
||||
0.5 * size_input[1] * math.sin(theta) +
|
||||
0.5 * size_target[0])
|
||||
matrix[1, 0] = math.sin(theta) * scale_y
|
||||
matrix[1, 1] = math.cos(theta) * scale_y
|
||||
matrix[1, 2] = scale_y * (-0.5 * size_input[0] * math.sin(theta) -
|
||||
0.5 * size_input[1] * math.cos(theta) +
|
||||
0.5 * size_target[1])
|
||||
return matrix
|
||||
|
||||
def generate_patch_image_cv(cvimg, c_x, c_y, bb_width, bb_height, patch_width, patch_height, do_flip, scale, rot):
|
||||
|
||||
trans, inv_trans = gen_trans_from_patch_cv(c_x, c_y, bb_width, bb_height, patch_width, patch_height, scale, rot, inv=False)
|
||||
@ -75,8 +106,8 @@ def get_single_image_crop_demo(image, bbox, scale=1.2, crop_size=224,
|
||||
)
|
||||
if fliplr:
|
||||
crop_image = cv2.flip(crop_image, 1)
|
||||
# cv2.imwrite('debug_crop.jpg', crop_image)
|
||||
# import ipdb; ipdb.set_trace()
|
||||
# cv2.imwrite('debug_crop.jpg', crop_image[:,:,::-1])
|
||||
# cv2.imwrite('debug_crop_full.jpg', image[:,:,::-1])
|
||||
crop_image = crop_image.transpose(2,0,1)
|
||||
mean1=np.array(mean, dtype=np.float32).reshape(3,1,1)
|
||||
std1= np.array(std, dtype=np.float32).reshape(3,1,1)
|
||||
@ -123,6 +154,14 @@ class BaseTopDownModel(nn.Module):
|
||||
squeeze = True
|
||||
# TODO: 兼容多张图片的
|
||||
bbox = xyxy2ccwh(bbox)
|
||||
# convert the bbox to the aspect of input bbox
|
||||
aspect_ratio = self.crop_size[1] / self.crop_size[0]
|
||||
w, h = bbox[:, 2], bbox[:, 3]
|
||||
# 如果height大于w*ratio,那么增大w
|
||||
flag = h > aspect_ratio * w
|
||||
bbox[flag, 2] = h[flag] / aspect_ratio
|
||||
# 否则增大h
|
||||
bbox[~flag, 3] = w[~flag] * aspect_ratio
|
||||
inputs = []
|
||||
inv_trans_ = []
|
||||
for i in range(bbox.shape[0]):
|
||||
@ -141,6 +180,15 @@ class BaseTopDownModel(nn.Module):
|
||||
)
|
||||
inputs.append(norm_img)
|
||||
inv_trans_.append(inv_trans)
|
||||
if False:
|
||||
vis = np.hstack(inputs)
|
||||
mean, std = np.array(self.mean), np.array(self.std)
|
||||
mean = mean.reshape(3, 1, 1)
|
||||
std = std.reshape(3, 1, 1)
|
||||
vis = (vis * std) + mean
|
||||
vis = vis.transpose(1, 2, 0)
|
||||
vis = (vis[:, :, ::-1] * 255).astype(np.uint8)
|
||||
cv2.imwrite('debug_crop.jpg', vis)
|
||||
inputs = np.stack(inputs)
|
||||
inv_trans_ = np.stack(inv_trans_)
|
||||
inputs = torch.FloatTensor(inputs).to(self.device)
|
||||
@ -168,17 +216,30 @@ class BaseTopDownModelCache(BaseTopDownModel):
|
||||
super().__init__(**kwargs)
|
||||
self.name = name
|
||||
|
||||
def __call__(self, bbox, images, imgname, flips=None):
|
||||
def cachename(self, imgname):
|
||||
basename = os.sep.join(imgname.split(os.sep)[-2:])
|
||||
cachename = join(self.output, self.name, basename.replace('.jpg', '.pkl'))
|
||||
return cachename
|
||||
|
||||
def dump(self, cachename, output):
|
||||
os.makedirs(os.path.dirname(cachename), exist_ok=True)
|
||||
with open(cachename, 'wb') as f:
|
||||
pickle.dump(output, f)
|
||||
return output
|
||||
|
||||
def load(self, cachename):
|
||||
with open(cachename, 'rb') as f:
|
||||
output = pickle.load(f)
|
||||
return output
|
||||
|
||||
def __call__(self, bbox, images, imgname, flips=None):
|
||||
cachename = self.cachename(imgname)
|
||||
if os.path.exists(cachename):
|
||||
with open(cachename, 'rb') as f:
|
||||
output = pickle.load(f)
|
||||
output = self.load(cachename)
|
||||
else:
|
||||
output = self.infer(images, bbox, to_numpy=True, flips=flips)
|
||||
with open(cachename, 'wb') as f:
|
||||
pickle.dump(output, f)
|
||||
output = self.dump(cachename, output)
|
||||
|
||||
ret = {
|
||||
'params': output
|
||||
}
|
||||
|
@ -51,9 +51,12 @@ def coco17tobody25(points2d):
|
||||
return kpts
|
||||
|
||||
class MyHRNet(BaseTopDownModelCache):
|
||||
def __init__(self, ckpt):
|
||||
super().__init__(name='hand2d', bbox_scale=1.25, res_input=[288, 384])
|
||||
model = HRNet(48, 17, 0.1)
|
||||
def __init__(self, ckpt, single_person=True, num_joints=17, name='keypoints2d'):
|
||||
super().__init__(name, bbox_scale=1.25, res_input=[288, 384])
|
||||
# 如果启用,那么将每个视角最多保留一个,并且squeeze and stack
|
||||
self.single_person = single_person
|
||||
model = HRNet(48, num_joints, 0.1)
|
||||
self.num_joints = num_joints
|
||||
if not os.path.exists(ckpt) and ckpt.endswith('pose_hrnet_w48_384x288.pth'):
|
||||
url = "11ezQ6a_MxIRtj26WqhH3V3-xPI3XqYAw"
|
||||
text = '''Download `models/pytorch/pose_coco/pose_hrnet_w48_384x288.pth` from (OneDrive)[https://1drv.ms/f/s!AhIXJn_J-blW231MH2krnmLq5kkQ],
|
||||
@ -109,20 +112,23 @@ class MyHRNet(BaseTopDownModelCache):
|
||||
for nv in range(nViews):
|
||||
_bbox = bbox[nv]
|
||||
if _bbox.shape[0] == 0:
|
||||
kpts_all.append(np.zeros((17, 3)))
|
||||
continue
|
||||
img = images[nv]
|
||||
# TODO: add flip test
|
||||
out = super().__call__(_bbox, img, imgnames[nv])
|
||||
output = out['params']['output']
|
||||
kpts = self.get_max_preds(output)
|
||||
kpts_ori = self.batch_affine_transform(kpts, out['params']['inv_trans'])
|
||||
kpts = np.concatenate([kpts_ori, kpts[..., -1:]], axis=-1)
|
||||
if self.single_person:
|
||||
kpts = np.zeros((1, self.num_joints, 3))
|
||||
else:
|
||||
kpts = np.zeros((_bbox.shape[0], self.num_joints, 3))
|
||||
else:
|
||||
img = images[nv]
|
||||
# TODO: add flip test
|
||||
out = super().__call__(_bbox, img, imgnames[nv])
|
||||
output = out['params']['output']
|
||||
kpts = self.get_max_preds(output)
|
||||
kpts_ori = self.batch_affine_transform(kpts, out['params']['inv_trans'])
|
||||
kpts = np.concatenate([kpts_ori, kpts[..., -1:]], axis=-1)
|
||||
kpts = coco17tobody25(kpts)
|
||||
if len(kpts.shape) == 3:
|
||||
kpts = kpts[0]
|
||||
kpts_all.append(kpts)
|
||||
kpts_all = np.stack(kpts_all)
|
||||
if self.single_person:
|
||||
kpts_all = [k[0] for k in kpts_all]
|
||||
kpts_all = np.stack(kpts_all)
|
||||
if squeeze:
|
||||
kpts_all = kpts_all[0]
|
||||
return {
|
||||
|
94
myeasymocap/backbone/topdown_keypoints.py
Normal file
94
myeasymocap/backbone/topdown_keypoints.py
Normal file
@ -0,0 +1,94 @@
|
||||
import math
|
||||
import numpy as np
|
||||
|
||||
def get_max_preds(batch_heatmaps):
|
||||
'''
|
||||
get predictions from score maps
|
||||
heatmaps: numpy.ndarray([batch_size, num_joints, height, width])
|
||||
'''
|
||||
assert isinstance(batch_heatmaps, np.ndarray), \
|
||||
'batch_heatmaps should be numpy.ndarray'
|
||||
assert batch_heatmaps.ndim == 4, 'batch_images should be 4-ndim: {}'.format(batch_heatmaps.shape)
|
||||
|
||||
batch_size = batch_heatmaps.shape[0]
|
||||
num_joints = batch_heatmaps.shape[1]
|
||||
width = batch_heatmaps.shape[3]
|
||||
heatmaps_reshaped = batch_heatmaps.reshape((batch_size, num_joints, -1))
|
||||
idx = np.argmax(heatmaps_reshaped, 2)
|
||||
maxvals = np.amax(heatmaps_reshaped, 2)
|
||||
|
||||
maxvals = maxvals.reshape((batch_size, num_joints, 1))
|
||||
idx = idx.reshape((batch_size, num_joints, 1))
|
||||
|
||||
preds = np.tile(idx, (1, 1, 2)).astype(np.float32)
|
||||
|
||||
preds[:, :, 0] = (preds[:, :, 0]) % width
|
||||
preds[:, :, 1] = np.floor((preds[:, :, 1]) / width)
|
||||
|
||||
pred_mask = np.tile(np.greater(maxvals, 0.0), (1, 1, 2))
|
||||
pred_mask = pred_mask.astype(np.float32)
|
||||
|
||||
preds *= pred_mask
|
||||
return preds, maxvals
|
||||
|
||||
COCO17_IN_BODY25 = [0,16,15,18,17,5,2,6,3,7,4,12,9,13,10,14,11]
|
||||
pairs = [[1, 8], [1, 2], [1, 5], [2, 3], [3, 4], [5, 6], [6, 7], [8, 9], [9, 10], [10, 11], [8, 12], [12, 13], [13, 14], [1, 0], [0,15], [15,17], [0,16], [16,18], [14,19], [19,20], [14,21], [11,22], [22,23], [11,24]]
|
||||
def coco17tobody25(points2d):
|
||||
kpts = np.zeros((points2d.shape[0], 25, 3))
|
||||
kpts[:, COCO17_IN_BODY25, :2] = points2d[:, :, :2]
|
||||
kpts[:, COCO17_IN_BODY25, 2:3] = points2d[:, :, 2:3]
|
||||
kpts[:, 8, :2] = kpts[:, [9, 12], :2].mean(axis=1)
|
||||
kpts[:, 8, 2] = kpts[:, [9, 12], 2].min(axis=1)
|
||||
kpts[:, 1, :2] = kpts[:, [2, 5], :2].mean(axis=1)
|
||||
kpts[:, 1, 2] = kpts[:, [2, 5], 2].min(axis=1)
|
||||
# 需要交换一下
|
||||
# kpts = kpts[:, :, [1,0,2]]
|
||||
return kpts
|
||||
|
||||
def coco23tobody25(points2d):
|
||||
kpts = coco17tobody25(points2d[:, :17])
|
||||
kpts[:, [19, 20, 21, 22, 23, 24]] = points2d[:, [17, 18, 19, 20, 21, 22]]
|
||||
return kpts
|
||||
|
||||
class BaseKeypoints():
|
||||
@staticmethod
|
||||
def get_max_preds(batch_heatmaps):
|
||||
coords, maxvals = get_max_preds(batch_heatmaps)
|
||||
|
||||
heatmap_height = batch_heatmaps.shape[2]
|
||||
heatmap_width = batch_heatmaps.shape[3]
|
||||
|
||||
# post-processing
|
||||
if True:
|
||||
for n in range(coords.shape[0]):
|
||||
for p in range(coords.shape[1]):
|
||||
hm = batch_heatmaps[n][p]
|
||||
px = int(math.floor(coords[n][p][0] + 0.5))
|
||||
py = int(math.floor(coords[n][p][1] + 0.5))
|
||||
if 1 < px < heatmap_width-1 and 1 < py < heatmap_height-1:
|
||||
diff = np.array(
|
||||
[
|
||||
hm[py][px+1] - hm[py][px-1],
|
||||
hm[py+1][px]-hm[py-1][px]
|
||||
]
|
||||
)
|
||||
coords[n][p] += np.sign(diff) * .25
|
||||
coords = coords.astype(np.float32) * 4
|
||||
pred = np.dstack((coords, maxvals))
|
||||
return pred
|
||||
|
||||
@staticmethod
|
||||
def batch_affine_transform(points, trans):
|
||||
# points: (Bn, J, 2), trans: (Bn, 2, 3)
|
||||
points = np.dstack((points[..., :2], np.ones((*points.shape[:-1], 1))))
|
||||
out = np.matmul(points, trans.swapaxes(-1, -2))
|
||||
return out
|
||||
|
||||
@staticmethod
|
||||
def coco17tobody25(points2d):
|
||||
return coco17tobody25(points2d)
|
||||
|
||||
@staticmethod
|
||||
def coco23tobody25(points2d):
|
||||
return coco23tobody25(points2d)
|
||||
|
98
myeasymocap/backbone/vitpose/layers.py
Normal file
98
myeasymocap/backbone/vitpose/layers.py
Normal file
@ -0,0 +1,98 @@
|
||||
import torch
|
||||
import math
|
||||
import collections.abc
|
||||
from itertools import repeat
|
||||
import warnings
|
||||
import torch.nn as nn
|
||||
|
||||
def drop_path(x, drop_prob: float = 0., training: bool = False, scale_by_keep: bool = True):
|
||||
"""Drop paths (Stochastic Depth) per sample (when applied in main path of residual blocks).
|
||||
|
||||
This is the same as the DropConnect impl I created for EfficientNet, etc networks, however,
|
||||
the original name is misleading as 'Drop Connect' is a different form of dropout in a separate paper...
|
||||
See discussion: https://github.com/tensorflow/tpu/issues/494#issuecomment-532968956 ... I've opted for
|
||||
changing the layer and argument names to 'drop path' rather than mix DropConnect as a layer name and use
|
||||
'survival rate' as the argument.
|
||||
|
||||
"""
|
||||
if drop_prob == 0. or not training:
|
||||
return x
|
||||
keep_prob = 1 - drop_prob
|
||||
shape = (x.shape[0],) + (1,) * (x.ndim - 1) # work with diff dim tensors, not just 2D ConvNets
|
||||
random_tensor = x.new_empty(shape).bernoulli_(keep_prob)
|
||||
if keep_prob > 0.0 and scale_by_keep:
|
||||
random_tensor.div_(keep_prob)
|
||||
return x * random_tensor
|
||||
|
||||
# From PyTorch internals
|
||||
def _ntuple(n):
|
||||
def parse(x):
|
||||
if isinstance(x, collections.abc.Iterable) and not isinstance(x, str):
|
||||
return tuple(x)
|
||||
return tuple(repeat(x, n))
|
||||
return parse
|
||||
|
||||
|
||||
to_1tuple = _ntuple(1)
|
||||
to_2tuple = _ntuple(2)
|
||||
|
||||
def _trunc_normal_(tensor, mean, std, a, b):
|
||||
# Cut & paste from PyTorch official master until it's in a few official releases - RW
|
||||
# Method based on https://people.sc.fsu.edu/~jburkardt/presentations/truncated_normal.pdf
|
||||
def norm_cdf(x):
|
||||
# Computes standard normal cumulative distribution function
|
||||
return (1. + math.erf(x / math.sqrt(2.))) / 2.
|
||||
|
||||
if (mean < a - 2 * std) or (mean > b + 2 * std):
|
||||
warnings.warn("mean is more than 2 std from [a, b] in nn.init.trunc_normal_. "
|
||||
"The distribution of values may be incorrect.",
|
||||
stacklevel=2)
|
||||
|
||||
# Values are generated by using a truncated uniform distribution and
|
||||
# then using the inverse CDF for the normal distribution.
|
||||
# Get upper and lower cdf values
|
||||
l = norm_cdf((a - mean) / std)
|
||||
u = norm_cdf((b - mean) / std)
|
||||
|
||||
# Uniformly fill tensor with values from [l, u], then translate to
|
||||
# [2l-1, 2u-1].
|
||||
tensor.uniform_(2 * l - 1, 2 * u - 1)
|
||||
|
||||
# Use inverse cdf transform for normal distribution to get truncated
|
||||
# standard normal
|
||||
tensor.erfinv_()
|
||||
|
||||
# Transform to proper mean, std
|
||||
tensor.mul_(std * math.sqrt(2.))
|
||||
tensor.add_(mean)
|
||||
|
||||
# Clamp to ensure it's in the proper range
|
||||
tensor.clamp_(min=a, max=b)
|
||||
return tensor
|
||||
|
||||
|
||||
def trunc_normal_(tensor, mean=0., std=1., a=-2., b=2.):
|
||||
# type: (Tensor, float, float, float, float) -> Tensor
|
||||
r"""Fills the input Tensor with values drawn from a truncated
|
||||
normal distribution. The values are effectively drawn from the
|
||||
normal distribution :math:`\mathcal{N}(\text{mean}, \text{std}^2)`
|
||||
with values outside :math:`[a, b]` redrawn until they are within
|
||||
the bounds. The method used for generating the random values works
|
||||
best when :math:`a \leq \text{mean} \leq b`.
|
||||
|
||||
NOTE: this impl is similar to the PyTorch trunc_normal_, the bounds [a, b] are
|
||||
applied while sampling the normal with mean/std applied, therefore a, b args
|
||||
should be adjusted to match the range of mean, std args.
|
||||
|
||||
Args:
|
||||
tensor: an n-dimensional `torch.Tensor`
|
||||
mean: the mean of the normal distribution
|
||||
std: the standard deviation of the normal distribution
|
||||
a: the minimum cutoff value
|
||||
b: the maximum cutoff value
|
||||
Examples:
|
||||
>>> w = torch.empty(3, 5)
|
||||
>>> nn.init.trunc_normal_(w)
|
||||
"""
|
||||
with torch.no_grad():
|
||||
return _trunc_normal_(tensor, mean, std, a, b)
|
607
myeasymocap/backbone/vitpose/vit_moe.py
Normal file
607
myeasymocap/backbone/vitpose/vit_moe.py
Normal file
@ -0,0 +1,607 @@
|
||||
# Copyright (c) OpenMMLab. All rights reserved.
|
||||
import os
|
||||
import numpy as np
|
||||
import torch
|
||||
from functools import partial
|
||||
import torch.nn as nn
|
||||
import torch.nn.functional as F
|
||||
import torch.utils.checkpoint as checkpoint
|
||||
|
||||
from .layers import drop_path, to_2tuple, trunc_normal_
|
||||
|
||||
def drop_path(x, drop_prob: float = 0., training: bool = False, scale_by_keep: bool = True):
|
||||
"""Drop paths (Stochastic Depth) per sample (when applied in main path of residual blocks).
|
||||
|
||||
This is the same as the DropConnect impl I created for EfficientNet, etc networks, however,
|
||||
the original name is misleading as 'Drop Connect' is a different form of dropout in a separate paper...
|
||||
See discussion: https://github.com/tensorflow/tpu/issues/494#issuecomment-532968956 ... I've opted for
|
||||
changing the layer and argument names to 'drop path' rather than mix DropConnect as a layer name and use
|
||||
'survival rate' as the argument.
|
||||
|
||||
"""
|
||||
if drop_prob == 0. or not training:
|
||||
return x
|
||||
keep_prob = 1 - drop_prob
|
||||
shape = (x.shape[0],) + (1,) * (x.ndim - 1) # work with diff dim tensors, not just 2D ConvNets
|
||||
random_tensor = x.new_empty(shape).bernoulli_(keep_prob)
|
||||
if keep_prob > 0.0 and scale_by_keep:
|
||||
random_tensor.div_(keep_prob)
|
||||
return x * random_tensor
|
||||
|
||||
def get_abs_pos(abs_pos, h, w, ori_h, ori_w, has_cls_token=True):
|
||||
"""
|
||||
Calculate absolute positional embeddings. If needed, resize embeddings and remove cls_token
|
||||
dimension for the original embeddings.
|
||||
Args:
|
||||
abs_pos (Tensor): absolute positional embeddings with (1, num_position, C).
|
||||
has_cls_token (bool): If true, has 1 embedding in abs_pos for cls token.
|
||||
hw (Tuple): size of input image tokens.
|
||||
|
||||
Returns:
|
||||
Absolute positional embeddings after processing with shape (1, H, W, C)
|
||||
"""
|
||||
cls_token = None
|
||||
B, L, C = abs_pos.shape
|
||||
if has_cls_token:
|
||||
cls_token = abs_pos[:, 0:1]
|
||||
abs_pos = abs_pos[:, 1:]
|
||||
|
||||
if ori_h != h or ori_w != w:
|
||||
new_abs_pos = F.interpolate(
|
||||
abs_pos.reshape(1, ori_h, ori_w, -1).permute(0, 3, 1, 2),
|
||||
size=(h, w),
|
||||
mode="bicubic",
|
||||
align_corners=False,
|
||||
).permute(0, 2, 3, 1).reshape(B, -1, C)
|
||||
|
||||
else:
|
||||
new_abs_pos = abs_pos
|
||||
|
||||
if cls_token is not None:
|
||||
new_abs_pos = torch.cat([cls_token, new_abs_pos], dim=1)
|
||||
return new_abs_pos
|
||||
|
||||
class DropPath(nn.Module):
|
||||
"""Drop paths (Stochastic Depth) per sample (when applied in main path of residual blocks).
|
||||
"""
|
||||
def __init__(self, drop_prob=None):
|
||||
super(DropPath, self).__init__()
|
||||
self.drop_prob = drop_prob
|
||||
|
||||
def forward(self, x):
|
||||
return drop_path(x, self.drop_prob, self.training)
|
||||
|
||||
def extra_repr(self):
|
||||
return 'p={}'.format(self.drop_prob)
|
||||
|
||||
class Mlp(nn.Module):
|
||||
def __init__(self, in_features, hidden_features=None, out_features=None, act_layer=nn.GELU, drop=0.):
|
||||
super().__init__()
|
||||
out_features = out_features or in_features
|
||||
hidden_features = hidden_features or in_features
|
||||
self.fc1 = nn.Linear(in_features, hidden_features)
|
||||
self.act = act_layer()
|
||||
self.fc2 = nn.Linear(hidden_features, out_features)
|
||||
self.drop = nn.Dropout(drop)
|
||||
|
||||
def forward(self, x):
|
||||
x = self.fc1(x)
|
||||
x = self.act(x)
|
||||
x = self.fc2(x)
|
||||
x = self.drop(x)
|
||||
return x
|
||||
|
||||
class MoEMlp(nn.Module):
|
||||
def __init__(self, num_expert=1, in_features=1024, hidden_features=None, out_features=None, act_layer=nn.GELU, drop=0., part_features=256):
|
||||
super().__init__()
|
||||
out_features = out_features or in_features
|
||||
hidden_features = hidden_features or in_features
|
||||
self.part_features = part_features
|
||||
self.fc1 = nn.Linear(in_features, hidden_features)
|
||||
self.act = act_layer()
|
||||
self.fc2 = nn.Linear(hidden_features, out_features - part_features)
|
||||
self.drop = nn.Dropout(drop)
|
||||
|
||||
self.num_expert = num_expert
|
||||
experts = []
|
||||
|
||||
for i in range(num_expert):
|
||||
experts.append(
|
||||
nn.Linear(hidden_features, part_features)
|
||||
)
|
||||
self.experts = nn.ModuleList(experts)
|
||||
|
||||
def forward(self, x, indices):
|
||||
|
||||
expert_x = torch.zeros_like(x[:, :, -self.part_features:], device=x.device, dtype=x.dtype)
|
||||
|
||||
x = self.fc1(x)
|
||||
x = self.act(x)
|
||||
shared_x = self.fc2(x)
|
||||
indices = indices.view(-1, 1, 1)
|
||||
|
||||
# to support ddp training
|
||||
for i in range(self.num_expert):
|
||||
selectedIndex = (indices == i)
|
||||
current_x = self.experts[i](x) * selectedIndex
|
||||
expert_x = expert_x + current_x
|
||||
|
||||
x = torch.cat([shared_x, expert_x], dim=-1)
|
||||
|
||||
return x
|
||||
|
||||
class Attention(nn.Module):
|
||||
def __init__(
|
||||
self, dim, num_heads=8, qkv_bias=False, qk_scale=None, attn_drop=0.,
|
||||
proj_drop=0., attn_head_dim=None,):
|
||||
super().__init__()
|
||||
self.num_heads = num_heads
|
||||
head_dim = dim // num_heads
|
||||
self.dim = dim
|
||||
|
||||
if attn_head_dim is not None:
|
||||
head_dim = attn_head_dim
|
||||
all_head_dim = head_dim * self.num_heads
|
||||
|
||||
self.scale = qk_scale or head_dim ** -0.5
|
||||
|
||||
self.qkv = nn.Linear(dim, all_head_dim * 3, bias=qkv_bias)
|
||||
|
||||
self.attn_drop = nn.Dropout(attn_drop)
|
||||
self.proj = nn.Linear(all_head_dim, dim)
|
||||
self.proj_drop = nn.Dropout(proj_drop)
|
||||
|
||||
def forward(self, x):
|
||||
B, N, C = x.shape
|
||||
qkv = self.qkv(x)
|
||||
qkv = qkv.reshape(B, N, 3, self.num_heads, -1).permute(2, 0, 3, 1, 4)
|
||||
q, k, v = qkv[0], qkv[1], qkv[2] # make torchscript happy (cannot use tensor as tuple)
|
||||
|
||||
q = q * self.scale
|
||||
attn = (q @ k.transpose(-2, -1))
|
||||
|
||||
attn = attn.softmax(dim=-1)
|
||||
attn = self.attn_drop(attn)
|
||||
|
||||
x = (attn @ v).transpose(1, 2).reshape(B, N, -1)
|
||||
x = self.proj(x)
|
||||
x = self.proj_drop(x)
|
||||
|
||||
return x
|
||||
|
||||
class Block(nn.Module):
|
||||
|
||||
def __init__(self, dim, num_heads, mlp_ratio=4., qkv_bias=False, qk_scale=None,
|
||||
drop=0., attn_drop=0., drop_path=0., act_layer=nn.GELU,
|
||||
norm_layer=nn.LayerNorm, attn_head_dim=None, num_expert=1, part_features=None
|
||||
):
|
||||
super().__init__()
|
||||
|
||||
self.norm1 = norm_layer(dim)
|
||||
self.attn = Attention(
|
||||
dim, num_heads=num_heads, qkv_bias=qkv_bias, qk_scale=qk_scale,
|
||||
attn_drop=attn_drop, proj_drop=drop, attn_head_dim=attn_head_dim
|
||||
)
|
||||
|
||||
# NOTE: drop path for stochastic depth, we shall see if this is better than dropout here
|
||||
self.drop_path = DropPath(drop_path) if drop_path > 0. else nn.Identity()
|
||||
self.norm2 = norm_layer(dim)
|
||||
mlp_hidden_dim = int(dim * mlp_ratio)
|
||||
self.mlp = MoEMlp(num_expert=num_expert, in_features=dim, hidden_features=mlp_hidden_dim,
|
||||
act_layer=act_layer, drop=drop, part_features=part_features)
|
||||
|
||||
def forward(self, x, indices=None):
|
||||
|
||||
x = x + self.drop_path(self.attn(self.norm1(x)))
|
||||
x = x + self.drop_path(self.mlp(self.norm2(x), indices))
|
||||
return x
|
||||
|
||||
|
||||
class PatchEmbed(nn.Module):
|
||||
""" Image to Patch Embedding
|
||||
"""
|
||||
def __init__(self, img_size=224, patch_size=16, in_chans=3, embed_dim=768, ratio=1):
|
||||
super().__init__()
|
||||
img_size = to_2tuple(img_size)
|
||||
patch_size = to_2tuple(patch_size)
|
||||
num_patches = (img_size[1] // patch_size[1]) * (img_size[0] // patch_size[0]) * (ratio ** 2)
|
||||
self.patch_shape = (int(img_size[0] // patch_size[0] * ratio), int(img_size[1] // patch_size[1] * ratio))
|
||||
self.origin_patch_shape = (int(img_size[0] // patch_size[0]), int(img_size[1] // patch_size[1]))
|
||||
self.img_size = img_size
|
||||
self.patch_size = patch_size
|
||||
self.num_patches = num_patches
|
||||
|
||||
self.proj = nn.Conv2d(in_chans, embed_dim, kernel_size=patch_size, stride=(patch_size[0] // ratio), padding=4 + 2 * (ratio//2-1))
|
||||
|
||||
def forward(self, x, **kwargs):
|
||||
B, C, H, W = x.shape
|
||||
x = self.proj(x)
|
||||
Hp, Wp = x.shape[2], x.shape[3]
|
||||
|
||||
x = x.flatten(2).transpose(1, 2)
|
||||
return x, (Hp, Wp)
|
||||
|
||||
|
||||
class HybridEmbed(nn.Module):
|
||||
""" CNN Feature Map Embedding
|
||||
Extract feature map from CNN, flatten, project to embedding dim.
|
||||
"""
|
||||
def __init__(self, backbone, img_size=224, feature_size=None, in_chans=3, embed_dim=768):
|
||||
super().__init__()
|
||||
assert isinstance(backbone, nn.Module)
|
||||
img_size = to_2tuple(img_size)
|
||||
self.img_size = img_size
|
||||
self.backbone = backbone
|
||||
if feature_size is None:
|
||||
with torch.no_grad():
|
||||
training = backbone.training
|
||||
if training:
|
||||
backbone.eval()
|
||||
o = self.backbone(torch.zeros(1, in_chans, img_size[0], img_size[1]))[-1]
|
||||
feature_size = o.shape[-2:]
|
||||
feature_dim = o.shape[1]
|
||||
backbone.train(training)
|
||||
else:
|
||||
feature_size = to_2tuple(feature_size)
|
||||
feature_dim = self.backbone.feature_info.channels()[-1]
|
||||
self.num_patches = feature_size[0] * feature_size[1]
|
||||
self.proj = nn.Linear(feature_dim, embed_dim)
|
||||
|
||||
def forward(self, x):
|
||||
x = self.backbone(x)[-1]
|
||||
x = x.flatten(2).transpose(1, 2)
|
||||
x = self.proj(x)
|
||||
return x
|
||||
|
||||
class ViTMoE(nn.Module):
|
||||
def __init__(self,
|
||||
img_size=224, patch_size=16, in_chans=3, num_classes=80, embed_dim=768, depth=12,
|
||||
num_heads=12, mlp_ratio=4., qkv_bias=False, qk_scale=None, drop_rate=0., attn_drop_rate=0.,
|
||||
drop_path_rate=0., hybrid_backbone=None, norm_layer=None, use_checkpoint=False,
|
||||
frozen_stages=-1, ratio=1, last_norm=True,
|
||||
patch_padding='pad', freeze_attn=False, freeze_ffn=False,
|
||||
num_expert=1, part_features=None
|
||||
):
|
||||
# Protect mutable default arguments
|
||||
super(ViTMoE, self).__init__()
|
||||
norm_layer = norm_layer or partial(nn.LayerNorm, eps=1e-6)
|
||||
self.num_classes = num_classes
|
||||
self.num_features = self.embed_dim = embed_dim # num_features for consistency with other models
|
||||
self.frozen_stages = frozen_stages
|
||||
self.use_checkpoint = use_checkpoint
|
||||
self.patch_padding = patch_padding
|
||||
self.freeze_attn = freeze_attn
|
||||
self.freeze_ffn = freeze_ffn
|
||||
self.depth = depth
|
||||
|
||||
if hybrid_backbone is not None:
|
||||
self.patch_embed = HybridEmbed(
|
||||
hybrid_backbone, img_size=img_size, in_chans=in_chans, embed_dim=embed_dim)
|
||||
else:
|
||||
self.patch_embed = PatchEmbed(
|
||||
img_size=img_size, patch_size=patch_size, in_chans=in_chans, embed_dim=embed_dim, ratio=ratio)
|
||||
num_patches = self.patch_embed.num_patches
|
||||
|
||||
self.part_features = part_features
|
||||
|
||||
self.pos_embed = nn.Parameter(torch.zeros(1, num_patches + 1, embed_dim))
|
||||
|
||||
dpr = [x.item() for x in torch.linspace(0, drop_path_rate, depth)] # stochastic depth decay rule
|
||||
|
||||
self.blocks = nn.ModuleList([
|
||||
Block(
|
||||
dim=embed_dim, num_heads=num_heads, mlp_ratio=mlp_ratio, qkv_bias=qkv_bias, qk_scale=qk_scale,
|
||||
drop=drop_rate, attn_drop=attn_drop_rate, drop_path=dpr[i], norm_layer=norm_layer,
|
||||
num_expert=num_expert, part_features=part_features
|
||||
)
|
||||
for i in range(depth)])
|
||||
|
||||
self.last_norm = norm_layer(embed_dim) if last_norm else nn.Identity()
|
||||
|
||||
if self.pos_embed is not None:
|
||||
trunc_normal_(self.pos_embed, std=.02)
|
||||
|
||||
self._freeze_stages()
|
||||
|
||||
def _freeze_stages(self):
|
||||
"""Freeze parameters."""
|
||||
if self.frozen_stages >= 0:
|
||||
self.patch_embed.eval()
|
||||
for param in self.patch_embed.parameters():
|
||||
param.requires_grad = False
|
||||
|
||||
for i in range(1, self.frozen_stages + 1):
|
||||
m = self.blocks[i]
|
||||
m.eval()
|
||||
for param in m.parameters():
|
||||
param.requires_grad = False
|
||||
|
||||
if self.freeze_attn:
|
||||
for i in range(0, self.depth):
|
||||
m = self.blocks[i]
|
||||
m.attn.eval()
|
||||
m.norm1.eval()
|
||||
for param in m.attn.parameters():
|
||||
param.requires_grad = False
|
||||
for param in m.norm1.parameters():
|
||||
param.requires_grad = False
|
||||
|
||||
if self.freeze_ffn:
|
||||
self.pos_embed.requires_grad = False
|
||||
self.patch_embed.eval()
|
||||
for param in self.patch_embed.parameters():
|
||||
param.requires_grad = False
|
||||
for i in range(0, self.depth):
|
||||
m = self.blocks[i]
|
||||
m.mlp.eval()
|
||||
m.norm2.eval()
|
||||
for param in m.mlp.parameters():
|
||||
param.requires_grad = False
|
||||
for param in m.norm2.parameters():
|
||||
param.requires_grad = False
|
||||
|
||||
def init_weights(self, pretrained=None):
|
||||
"""Initialize the weights in backbone.
|
||||
Args:
|
||||
pretrained (str, optional): Path to pre-trained weights.
|
||||
Defaults to None.
|
||||
"""
|
||||
super().init_weights(pretrained, patch_padding=self.patch_padding, part_features=self.part_features)
|
||||
|
||||
if pretrained is None:
|
||||
def _init_weights(m):
|
||||
if isinstance(m, nn.Linear):
|
||||
trunc_normal_(m.weight, std=.02)
|
||||
if isinstance(m, nn.Linear) and m.bias is not None:
|
||||
nn.init.constant_(m.bias, 0)
|
||||
elif isinstance(m, nn.LayerNorm):
|
||||
nn.init.constant_(m.bias, 0)
|
||||
nn.init.constant_(m.weight, 1.0)
|
||||
|
||||
self.apply(_init_weights)
|
||||
|
||||
def get_num_layers(self):
|
||||
return len(self.blocks)
|
||||
|
||||
@torch.jit.ignore
|
||||
def no_weight_decay(self):
|
||||
return {'pos_embed', 'cls_token'}
|
||||
|
||||
def forward_features(self, x, dataset_source=None):
|
||||
B, C, H, W = x.shape
|
||||
x, (Hp, Wp) = self.patch_embed(x)
|
||||
|
||||
if self.pos_embed is not None:
|
||||
# fit for multiple GPU training
|
||||
# since the first element for pos embed (sin-cos manner) is zero, it will cause no difference
|
||||
x = x + self.pos_embed[:, 1:] + self.pos_embed[:, :1]
|
||||
|
||||
for blk in self.blocks:
|
||||
if self.use_checkpoint:
|
||||
x = checkpoint.checkpoint(blk, x, dataset_source)
|
||||
else:
|
||||
x = blk(x, dataset_source)
|
||||
|
||||
x = self.last_norm(x)
|
||||
|
||||
xp = x.permute(0, 2, 1).reshape(B, -1, Hp, Wp).contiguous()
|
||||
|
||||
return xp
|
||||
|
||||
def forward(self, x, dataset_source=None):
|
||||
x = self.forward_features(x, dataset_source)
|
||||
return x
|
||||
|
||||
def train(self, mode=True):
|
||||
"""Convert the model into training mode."""
|
||||
super().train(mode)
|
||||
self._freeze_stages()
|
||||
|
||||
class Head(nn.Module):
|
||||
def __init__(self, in_channels,
|
||||
out_channels,
|
||||
num_deconv_layers=3,
|
||||
num_deconv_filters=(256, 256, 256),
|
||||
num_deconv_kernels=(4, 4, 4),):
|
||||
super().__init__()
|
||||
self.in_channels = in_channels
|
||||
self.deconv_layers = self._make_deconv_layer(num_deconv_layers, num_deconv_filters, num_deconv_kernels)
|
||||
self.final_layer = nn.Conv2d(in_channels=num_deconv_filters[-1], out_channels=out_channels,
|
||||
kernel_size=1, stride=1, padding=0)
|
||||
|
||||
def _make_deconv_layer(self, num_layers, num_filters, num_kernels):
|
||||
layers = []
|
||||
for i in range(num_layers):
|
||||
kernel, padding, output_padding = \
|
||||
self._get_deconv_cfg(num_kernels[i])
|
||||
|
||||
planes = num_filters[i]
|
||||
layers.append(
|
||||
nn.ConvTranspose2d(
|
||||
in_channels=self.in_channels,
|
||||
out_channels=planes,
|
||||
kernel_size=kernel,
|
||||
stride=2,
|
||||
padding=padding,
|
||||
output_padding=output_padding,
|
||||
bias=False))
|
||||
layers.append(nn.BatchNorm2d(planes))
|
||||
layers.append(nn.ReLU(inplace=True))
|
||||
self.in_channels = planes
|
||||
|
||||
return nn.Sequential(*layers)
|
||||
|
||||
@staticmethod
|
||||
def _get_deconv_cfg(deconv_kernel):
|
||||
"""Get configurations for deconv layers."""
|
||||
if deconv_kernel == 4:
|
||||
padding = 1
|
||||
output_padding = 0
|
||||
elif deconv_kernel == 3:
|
||||
padding = 1
|
||||
output_padding = 1
|
||||
elif deconv_kernel == 2:
|
||||
padding = 0
|
||||
output_padding = 0
|
||||
else:
|
||||
raise ValueError(f'Not supported num_kernels ({deconv_kernel}).')
|
||||
|
||||
return deconv_kernel, padding, output_padding
|
||||
|
||||
def forward(self, x):
|
||||
"""Forward function."""
|
||||
x = self.deconv_layers(x)
|
||||
x = self.final_layer(x)
|
||||
return x
|
||||
|
||||
|
||||
class ComposeVit(nn.Module):
|
||||
def __init__(self):
|
||||
super().__init__()
|
||||
cfg_backbone = dict(
|
||||
img_size=(256, 192),
|
||||
patch_size=16,
|
||||
embed_dim=768,
|
||||
depth=12,
|
||||
num_heads=12,
|
||||
ratio=1,
|
||||
use_checkpoint=False,
|
||||
mlp_ratio=4,
|
||||
qkv_bias=True,
|
||||
drop_path_rate=0.3,
|
||||
num_expert=6,
|
||||
part_features=192
|
||||
)
|
||||
cfg_head = dict(
|
||||
in_channels=768,
|
||||
out_channels=17,
|
||||
num_deconv_layers=2,
|
||||
num_deconv_filters=(256, 256),
|
||||
num_deconv_kernels=(4, 4),
|
||||
)
|
||||
cfg_head_133 = dict(
|
||||
in_channels=768,
|
||||
out_channels=133,
|
||||
num_deconv_layers=2,
|
||||
num_deconv_filters=(256, 256),
|
||||
num_deconv_kernels=(4, 4),
|
||||
)
|
||||
self.backbone = ViTMoE(**cfg_backbone)
|
||||
self.keypoint_head = Head(**cfg_head)
|
||||
self.associate_head = Head(**cfg_head_133)
|
||||
|
||||
def forward(self, x):
|
||||
indices = torch.zeros((x.shape[0]), dtype=torch.long, device=x.device)
|
||||
back_out = self.backbone(x, indices)
|
||||
out = self.keypoint_head(back_out)
|
||||
if True:
|
||||
indices += 5 # 最后一个是whole body dataset
|
||||
back_133 = self.backbone(x, indices)
|
||||
out_133 = self.associate_head(back_133)
|
||||
out_foot = out_133[:, 17:23]
|
||||
out = torch.cat([out, out_foot], dim=1)
|
||||
if False:
|
||||
import cv2
|
||||
vis = x[0].permute(1, 2, 0).cpu().numpy()
|
||||
mean= np.array([0.485, 0.456, 0.406]).reshape(1, 1, 3)
|
||||
std=np.array([0.229, 0.224, 0.225]).reshape(1, 1 ,3)
|
||||
vis = np.clip(vis * std + mean, 0., 1.)
|
||||
vis = (vis[:,:,::-1] * 255).astype(np.uint8)
|
||||
value = out_133[0].detach().cpu().numpy()
|
||||
vis_all = []
|
||||
for i in range(value.shape[0]):
|
||||
_val = np.clip(value[i], 0., 1.)
|
||||
_val = (_val * 255).astype(np.uint8)
|
||||
_val = cv2.resize(_val, None, fx=4, fy=4)
|
||||
_val = cv2.applyColorMap(_val, cv2.COLORMAP_JET)
|
||||
_vis = cv2.addWeighted(vis, 0.5, _val, 0.5, 0)
|
||||
vis_all.append(_vis)
|
||||
from easymocap.mytools.vis_base import merge
|
||||
cv2.imwrite('debug.jpg', merge(vis_all))
|
||||
|
||||
import ipdb; ipdb.set_trace()
|
||||
return {
|
||||
'output': out
|
||||
}
|
||||
|
||||
from ..basetopdown import BaseTopDownModelCache
|
||||
from ..topdown_keypoints import BaseKeypoints
|
||||
|
||||
class MyViT(BaseTopDownModelCache, BaseKeypoints):
|
||||
def __init__(self, ckpt='data/models/vitpose+_base.pth', single_person=True, url='https://1drv.ms/u/s!AimBgYV7JjTlgcckRZk1bIAuRa_E1w?e=ylDB2G', **kwargs):
|
||||
super().__init__(name='myvit', bbox_scale=1.25,
|
||||
res_input=[192, 256], **kwargs)
|
||||
self.single_person = single_person
|
||||
model = ComposeVit()
|
||||
if not os.path.exists(ckpt):
|
||||
print('')
|
||||
print('{} not exists, please download it from {} and place it to {}'.format(ckpt, url, ckpt))
|
||||
print('')
|
||||
raise FileNotFoundError
|
||||
ckpt = torch.load(ckpt, map_location='cpu')['state_dict']
|
||||
ckpt_backbone = {key:val for key, val in ckpt.items() if key.startswith('backbone.')}
|
||||
ckpt_head = {key:val for key, val in ckpt.items() if key.startswith('keypoint_head.')}
|
||||
key_whole = 'associate_keypoint_heads.4.'
|
||||
ckpt_head_133 = {key.replace(key_whole, 'associate_head.'):val for key, val in ckpt.items() if key.startswith(key_whole)}
|
||||
ckpt_backbone.update(ckpt_head)
|
||||
ckpt_backbone.update(ckpt_head_133)
|
||||
state_dict = ckpt_backbone
|
||||
self.load_checkpoint(model, state_dict, prefix='', strict=True)
|
||||
model.eval()
|
||||
self.model = model
|
||||
self.device = torch.device('cuda') if torch.cuda.is_available() else torch.device('cpu')
|
||||
self.model.to(self.device)
|
||||
|
||||
def dump(self, cachename, output):
|
||||
_output = output['output']
|
||||
kpts = self.get_max_preds(_output)
|
||||
kpts_ori = self.batch_affine_transform(kpts, output['inv_trans'])
|
||||
kpts = np.concatenate([kpts_ori, kpts[..., -1:]], axis=-1)
|
||||
output = {'keypoints': kpts}
|
||||
super().dump(cachename, output)
|
||||
return output
|
||||
|
||||
def estimate_keypoints(self, bbox, images, imgnames):
|
||||
squeeze = False
|
||||
if not isinstance(images, list):
|
||||
images = [images]
|
||||
imgnames = [imgnames]
|
||||
bbox = [bbox]
|
||||
squeeze = True
|
||||
nViews = len(images)
|
||||
kpts_all = []
|
||||
for nv in range(nViews):
|
||||
_bbox = bbox[nv]
|
||||
if _bbox.shape[0] == 0:
|
||||
if self.single_person:
|
||||
kpts = np.zeros((1, self.num_joints, 3))
|
||||
else:
|
||||
kpts = np.zeros((_bbox.shape[0], self.num_joints, 3))
|
||||
else:
|
||||
img = images[nv]
|
||||
# TODO: add flip test
|
||||
out = super().__call__(_bbox, img, imgnames[nv])
|
||||
kpts = out['params']['keypoints']
|
||||
if kpts.shape[-2] == 23:
|
||||
kpts = self.coco23tobody25(kpts)
|
||||
elif kpts.shape[-2] == 17:
|
||||
kpts = self.coco17tobody25(kpts)
|
||||
else:
|
||||
raise NotImplementedError
|
||||
kpts_all.append(kpts)
|
||||
if self.single_person:
|
||||
kpts_all = [k[0] for k in kpts_all]
|
||||
kpts_all = np.stack(kpts_all)
|
||||
if squeeze:
|
||||
kpts_all = kpts_all[0]
|
||||
return {
|
||||
'keypoints': kpts_all
|
||||
}
|
||||
|
||||
def __call__(self, bbox, images, imgnames):
|
||||
return self.estimate_keypoints(bbox, images, imgnames)
|
||||
|
||||
if __name__ == '__main__':
|
||||
# Load checkpoint
|
||||
rand_input = torch.rand(1, 3, 256, 192)
|
||||
model = MyViT()
|
@ -145,6 +145,21 @@ class YoloWithTrack(BaseYOLOv5):
|
||||
self.track_cache[sub]['bbox'].append(select)
|
||||
return select
|
||||
|
||||
class MultiPerson(BaseYOLOv5):
|
||||
def __init__(self, min_length, max_length, **kwargs):
|
||||
super().__init__(**kwargs)
|
||||
self.min_length = min_length
|
||||
self.max_length = max_length
|
||||
print('[{}] Only keep the bbox in [{}, {}]'.format(self.__class__.__name__, min_length, max_length))
|
||||
|
||||
def select_bbox(self, select, imgname):
|
||||
if select.shape[0] == 0:
|
||||
return select
|
||||
# 判断一下面积
|
||||
area = np.sqrt((select[:, 2] - select[:, 0])*(select[:, 3]-select[:, 1]))
|
||||
valid = (area > self.min_length) & (area < self.max_length)
|
||||
return select[valid]
|
||||
|
||||
class DetectToPelvis:
|
||||
def __init__(self, key) -> None:
|
||||
self.key = key
|
||||
|
Loading…
Reference in New Issue
Block a user