update Readme

This commit is contained in:
shuaiqing 2021-04-02 12:28:46 +08:00
parent 1c3e5f960b
commit 6ca9312109
7 changed files with 219 additions and 138 deletions

198
Readme.md
View File

@ -2,164 +2,88 @@
* @Date: 2021-01-13 20:32:12
* @Author: Qing Shuai
* @LastEditors: Qing Shuai
* @LastEditTime: 2021-03-13 21:52:17
* @LastEditTime: 2021-04-02 12:26:56
* @FilePath: /EasyMocapRelease/Readme.md
-->
# EasyMocap
**EasyMocap** is an open-source toolbox for **markerless human motion capture** from RGB videos.
**EasyMocap** is an open-source toolbox for **markerless human motion capture** from RGB videos. In this project, we provide a lot of motion capture demos in different settings.
In this project, we provide the basic code for fitting SMPL[1]/SMPL+H[2]/SMPLX[3] model to capture body+hand+face poses from multiple views.
![python](https://img.shields.io/github/languages/top/zju3dv/EasyMocap)
![star](https://img.shields.io/github/stars/zju3dv/EasyMocap?style=social)
|Input(23 views)|:heavy_check_mark: Skeleton|:heavy_check_mark: SMPL|
|----|----|----|
|![input](doc/feng/000400.jpg)|![repro](doc/feng/skel.gif)|![smpl](doc/feng/smplx.gif)|
----
> We plan to intergrate more interesting algorithms, please stay tuned!
## Core features
1. [[CVPR19] Multi-Person from Multiple Views](https://github.com/zju3dv/mvpose)
2. [[ECCV20] Mocap from Multiple **Uncalibrated** and **Unsynchronized** Videos](https://arxiv.org/pdf/2008.07931.pdf)
![](doc/imocap/frame_00036_036.jpg)
3. [[CVPR21] Dense Reconstruction and View Synthesis from **Sparse Views**](https://zju3dv.github.io/neuralbody/)
4. [[CVPR21] Reconstructing 3D Human Pose by Watching Humans in the **Mirror**](https://zju3dv.github.io/Mirrored-Human/)
<table border="0">
<tr>
<td><img src="./doc/mirror/image.jpg" height = "150" alt="图片名称" align=center /></td>
<td><img src="./doc/mirror/scene_cover_green.png" height = "200" alt="图片名称" align=center /></td>
</tr>
</table>
### Multiple views of single person
This is the basic code for fitting SMPL[1]/SMPL+H[2]/SMPL-X[3] model to capture body+hand+face poses from multiple views.
<div align="center">
<img src="doc/feng/mv1pmf-smplx.gif" width="80%">
<br>
<sup>Videos are from ZJU-MoCap, with 23 calibrated and synchronized cameras.<sup/>
</div>
### Internet video with a mirror
[![report](https://img.shields.io/badge/mirrored-link-red)](https://arxiv.org/pdf/2104.00340.pdf)
<div align="center">
<img src="https://raw.githubusercontent.com/zju3dv/Mirrored-Human/main/doc/assets/smpl-avatar.gif" width="80%">
<br>
<sup>This video is from <a href="https://www.youtube.com/watch?v=KOCJJ27hhIE">Youtube<a/>.<sup/>
</div>
### Multiple Internet videos with a specific action (Coming soon)
[![report](https://img.shields.io/badge/imocap-link-red)](https://arxiv.org/pdf/2008.07931.pdf)
<div align="center">
<img src="doc/imocap/frame_00036_036.jpg" width="80%">
</div>
### Multiple views of multiple people (Comming soon)
[![report](https://img.shields.io/badge/mvpose-link-red)](https://arxiv.org/pdf/1901.04111.pdf)
### Others
This project is used by many other projects:
- [[CVPR21] Dense Reconstruction and View Synthesis from **Sparse Views**](https://zju3dv.github.io/neuralbody/)
## Other features
- [Camera calibration](./doc/todo.md)
- [Pose guided synchronization](./doc/todo.md)
- [Annotator](./doc/todo.md)
- [Exporting of multiple data formats(bvh, asf/amc, ...)](./doc/todo.md)
## Updates
- 04/02/2021: We are now rebuilding our project for `v0.2`, please stay tuned. `v0.1` is available at [this link](https://github.com/zju3dv/EasyMocap/releases/tag/v0.1).
## Installation
### 1. Download SMPL models
This step is the same as [smplx](https://github.com/vchoutas/smplx#model-loading).
To download the *SMPL* model go to [this](http://smpl.is.tue.mpg.de) (male and female models, version 1.0.0, 10 shape PCs) and [this](http://smplify.is.tue.mpg.de) (gender neutral model) project website and register to get access to the downloads section.
To download the *SMPL+H* model go to [this project website](http://mano.is.tue.mpg.de) and register to get access to the downloads section.
To download the *SMPL-X* model go to [this project website](https://smpl-x.is.tue.mpg.de) and register to get access to the downloads section.
**Place them as following:**
```bash
data
└── smplx
├── J_regressor_body25.npy
├── J_regressor_body25_smplh.txt
├── J_regressor_body25_smplx.txt
├── smpl
│   ├── SMPL_FEMALE.pkl
│   ├── SMPL_MALE.pkl
│   └── SMPL_NEUTRAL.pkl
├── smplh
│   ├── MANO_LEFT.pkl
│   ├── MANO_RIGHT.pkl
│   ├── SMPLH_FEMALE.pkl
│   └── SMPLH_MALE.pkl
└── smplx
├── SMPLX_FEMALE.pkl
├── SMPLX_MALE.pkl
└── SMPLX_NEUTRAL.pkl
```
### 2. Requirements
- python>=3.6
- torch==1.4.0
- torchvision==0.5.0
- opencv-python
- [pyrender](https://pyrender.readthedocs.io/en/latest/install/index.html#python-installation): for visualization
- chumpy: for loading SMPL model
- OpenPose[4]: for 2D pose
Some of python libraries can be found in `requirements.txt`. You can test different version of PyTorch.
See [doc/install](./doc/install.md) for more instructions.
## Quick Start
We provide an example multiview dataset[[dropbox](https://www.dropbox.com/s/24mb7r921b1g9a7/zju-ls-feng.zip?dl=0)][[BaiduDisk](https://pan.baidu.com/s/1lvAopzYGCic3nauoQXjbPw)(vg1z)], which has 800 frames from 23 synchronized and calibrated cameras. After downloading the dataset, you can run the following example scripts.
```bash
data=path/to/data
out=path/to/output
# 0. extract the video to images
python3 scripts/preprocess/extract_video.py ${data}
# 1. example for skeleton reconstruction
python3 code/demo_mv1pmf_skel.py ${data} --out ${out} --vis_det --vis_repro --undis --sub_vis 1 7 13 19
# 2.1 example for SMPL reconstruction
python3 code/demo_mv1pmf_smpl.py ${data} --out ${out} --end 300 --vis_smpl --undis --sub_vis 1 7 13 19 --gender male
# 2.2 example for SMPL-X reconstruction
python3 code/demo_mv1pmf_smpl.py ${data} --out ${out} --undis --body bodyhandface --sub_vis 1 7 13 19 --start 400 --model smplx --vis_smpl --gender male
# 3.1 example for rendering SMPLX to ${out}/smpl
python3 code/vis_render.py ${data} --out ${out} --skel ${out}/smpl --model smplx --gender male --undis --start 400 --sub_vis 1
# 3.2 example for rendering skeleton of SMPL to ${out}/smplskel
python3 code/vis_render.py ${data} --out ${out} --skel ${out}/smpl --model smplx --gender male --undis --start 400 --sub_vis 1 --type smplskel --body bodyhandface
```
See [doc/quickstart](doc/quickstart.md) for more instructions.
## Not Quick Start
### 0. Prepare Your Own Dataset
```bash
zju-ls-feng
├── intri.yml
├── extri.yml
└── videos
├── 1.mp4
├── 2.mp4
├── ...
├── 8.mp4
└── 9.mp4
```
The input videos are placed in `videos/`.
Here `intri.yml` and `extri.yml` store the camera intrinsici and extrinsic parameters. For example, if the name of a video is `1.mp4`, then there must exist `K_1`, `dist_1` in `intri.yml`, and `R_1((3, 1), rotation vector of camera)`, `T_1(3, 1)` in `extri.yml`. The file format is following [OpenCV format](https://docs.opencv.org/master/dd/d74/tutorial_file_input_output_with_xml_yml.html).
### 1. Run [OpenPose](https://github.com/CMU-Perceptual-Computing-Lab/openpose)
```bash
data=path/to/data
out=path/to/output
python3 scripts/preprocess/extract_video.py ${data} --openpose <openpose_path> --handface
```
- `--openpose`: specify the openpose path
- `--handface`: detect hands and face keypoints
### 2. Run the code
```bash
# 1. example for skeleton reconstruction
python3 code/demo_mv1pmf_skel.py ${data} --out ${out} --vis_det --vis_repro --undis --sub_vis 1 7 13 19
# 2. example for SMPL reconstruction
python3 code/demo_mv1pmf_smpl.py ${data} --out ${out} --end 300 --vis_smpl --undis --sub_vis 1 7 13 19
```
The input flags:
- `--undis`: use to undistort the images
- `--start, --end`: control the begin and end number of frames.
The output flags:
- `--vis_det`: visualize the detection
- `--vis_repro`: visualize the reprojection
- `--sub_vis`: use to specify the views to visualize. If not set, the code will use all views
- `--vis_smpl`: use to render the SMPL mesh to images.
### 3. Output
Please refer to [output.md](doc/02_output.md)
See [doc/notquickstart](doc/notquickstart.md) for more instructions.
## Evaluation
In our code, we do not set the best weight parameters, you can adjust these according your data. If you find a set of good weights, feel free to tell me.
The weight parameters can be set according your data.
We will add more quantitative reports in [doc/evaluation.md](doc/evaluation.md)
More quantitative reports will be added in [doc/evaluation.md](doc/evaluation.md)
## Acknowledgements
Here are the great works this project is built upon:
- SMPL models and layer are from MPII [SMPL-X model](https://github.com/vchoutas/smplx).
@ -169,12 +93,14 @@ Here are the great works this project is built upon:
We also would like to thank Wenduo Feng who is the performer in the sample data.
## Contact
Please open an issue if you have any questions.
Please open an issue if you have any questions. We appreciate all contributions to improve our project.
## Citation
This project is a part of our work [iMocap](https://zju3dv.github.io/iMoCap/), [Mirrored-Human](https://zju3dv.github.io/Mirrored-Human/) and [Neural Body](https://zju3dv.github.io/neuralbody/)
Please consider citing these works if you find this repo is useful for your projects.
Please consider citing these works if you find this repo is useful for your projects.
```bibtex
@inproceedings{dong2020motion,

BIN
doc/feng/mv1pmf-smplx.gif Normal file

Binary file not shown.

After

Width:  |  Height:  |  Size: 3.9 MiB

53
doc/installation.md Normal file
View File

@ -0,0 +1,53 @@
<!--
* @Date: 2021-04-02 11:52:33
* @Author: Qing Shuai
* @LastEditors: Qing Shuai
* @LastEditTime: 2021-04-02 11:52:59
* @FilePath: /EasyMocapRelease/doc/installation.md
-->
# EasyMocap - Installation
### 1. Download SMPL models
This step is the same as [smplx](https://github.com/vchoutas/smplx#model-loading).
To download the *SMPL* model go to [this](http://smpl.is.tue.mpg.de) (male and female models, version 1.0.0, 10 shape PCs) and [this](http://smplify.is.tue.mpg.de) (gender neutral model) project website and register to get access to the downloads section.
To download the *SMPL+H* model go to [this project website](http://mano.is.tue.mpg.de) and register to get access to the downloads section.
To download the *SMPL-X* model go to [this project website](https://smpl-x.is.tue.mpg.de) and register to get access to the downloads section.
**Place them as following:**
```bash
data
└── smplx
├── J_regressor_body25.npy
├── J_regressor_body25_smplh.txt
├── J_regressor_body25_smplx.txt
├── smpl
│   ├── SMPL_FEMALE.pkl
│   ├── SMPL_MALE.pkl
│   └── SMPL_NEUTRAL.pkl
├── smplh
│   ├── MANO_LEFT.pkl
│   ├── MANO_RIGHT.pkl
│   ├── SMPLH_FEMALE.pkl
│   └── SMPLH_MALE.pkl
└── smplx
├── SMPLX_FEMALE.pkl
├── SMPLX_MALE.pkl
└── SMPLX_NEUTRAL.pkl
```
### 2. Requirements
- python>=3.6
- torch==1.4.0
- torchvision==0.5.0
- opencv-python
- [pyrender](https://pyrender.readthedocs.io/en/latest/install/index.html#python-installation): for visualization
- chumpy: for loading SMPL model
- OpenPose[4]: for 2D pose
Some of python libraries can be found in `requirements.txt`. You can test different version of PyTorch.

61
doc/notquickstart.md Normal file
View File

@ -0,0 +1,61 @@
<!--
* @Date: 2021-04-02 11:53:55
* @Author: Qing Shuai
* @LastEditors: Qing Shuai
* @LastEditTime: 2021-04-02 11:53:55
* @FilePath: /EasyMocapRelease/doc/notquickstart.md
-->
### 0. Prepare Your Own Dataset
```bash
zju-ls-feng
├── intri.yml
├── extri.yml
└── videos
├── 1.mp4
├── 2.mp4
├── ...
├── 8.mp4
└── 9.mp4
```
The input videos are placed in `videos/`.
Here `intri.yml` and `extri.yml` store the camera intrinsici and extrinsic parameters. For example, if the name of a video is `1.mp4`, then there must exist `K_1`, `dist_1` in `intri.yml`, and `R_1((3, 1), rotation vector of camera)`, `T_1(3, 1)` in `extri.yml`. The file format is following [OpenCV format](https://docs.opencv.org/master/dd/d74/tutorial_file_input_output_with_xml_yml.html).
### 1. Run [OpenPose](https://github.com/CMU-Perceptual-Computing-Lab/openpose)
```bash
data=path/to/data
out=path/to/output
python3 scripts/preprocess/extract_video.py ${data} --openpose <openpose_path> --handface
```
- `--openpose`: specify the openpose path
- `--handface`: detect hands and face keypoints
### 2. Run the code
```bash
# 1. example for skeleton reconstruction
python3 code/demo_mv1pmf_skel.py ${data} --out ${out} --vis_det --vis_repro --undis --sub_vis 1 7 13 19
# 2. example for SMPL reconstruction
python3 code/demo_mv1pmf_smpl.py ${data} --out ${out} --end 300 --vis_smpl --undis --sub_vis 1 7 13 19
```
The input flags:
- `--undis`: use to undistort the images
- `--start, --end`: control the begin and end number of frames.
The output flags:
- `--vis_det`: visualize the detection
- `--vis_repro`: visualize the reprojection
- `--sub_vis`: use to specify the views to visualize. If not set, the code will use all views
- `--vis_smpl`: use to render the SMPL mesh to images.
### 3. Output
Please refer to [output.md](doc/02_output.md)

26
doc/quickstart.md Normal file
View File

@ -0,0 +1,26 @@
<!--
* @Date: 2021-04-02 11:53:16
* @Author: Qing Shuai
* @LastEditors: Qing Shuai
* @LastEditTime: 2021-04-02 11:53:16
* @FilePath: /EasyMocapRelease/doc/quickstart.md
-->
We provide an example multiview dataset[[dropbox](https://www.dropbox.com/s/24mb7r921b1g9a7/zju-ls-feng.zip?dl=0)][[BaiduDisk](https://pan.baidu.com/s/1lvAopzYGCic3nauoQXjbPw)(vg1z)], which has 800 frames from 23 synchronized and calibrated cameras. After downloading the dataset, you can run the following example scripts.
```bash
data=path/to/data
out=path/to/output
# 0. extract the video to images
python3 scripts/preprocess/extract_video.py ${data}
# 1. example for skeleton reconstruction
python3 code/demo_mv1pmf_skel.py ${data} --out ${out} --vis_det --vis_repro --undis --sub_vis 1 7 13 19
# 2.1 example for SMPL reconstruction
python3 code/demo_mv1pmf_smpl.py ${data} --out ${out} --end 300 --vis_smpl --undis --sub_vis 1 7 13 19 --gender male
# 2.2 example for SMPL-X reconstruction
python3 code/demo_mv1pmf_smpl.py ${data} --out ${out} --undis --body bodyhandface --sub_vis 1 7 13 19 --start 400 --model smplx --vis_smpl --gender male
# 3.1 example for rendering SMPLX to ${out}/smpl
python3 code/vis_render.py ${data} --out ${out} --skel ${out}/smpl --model smplx --gender male --undis --start 400 --sub_vis 1
# 3.2 example for rendering skeleton of SMPL to ${out}/smplskel
python3 code/vis_render.py ${data} --out ${out} --skel ${out}/smpl --model smplx --gender male --undis --start 400 --sub_vis 1 --type smplskel --body bodyhandface
```

10
doc/todo.md Normal file
View File

@ -0,0 +1,10 @@
<!--
* @Date: 2021-04-02 12:25:59
* @Author: Qing Shuai
* @LastEditors: Qing Shuai
* @LastEditTime: 2021-04-02 12:26:08
* @FilePath: /EasyMocapRelease/doc/todo.md
-->
# TODO
This part is coming soon, please stay tuned.

View File

@ -2,15 +2,20 @@
* @Date: 2021-03-02 16:14:48
* @Author: Qing Shuai
* @LastEditors: Qing Shuai
* @LastEditTime: 2021-03-02 17:09:02
* @LastEditTime: 2021-03-27 21:56:34
* @FilePath: /EasyMocap/scripts/calibration/Readme.md
-->
# Camera Calibration
Before reading this document, you should read the OpenCV-Python Tutorials of [Camera Calibration](https://docs.opencv.org/master/dc/dbb/tutorial_py_calibration.html) carefully.
## Some Tips
1. Use a chessboard as big as possible.
2. You must keep the same resolution during all the steps.
## 0. Prepare your chessboard
## 1. Distortion and Intrinsic Parameter Calibration
TODO
## 2. Extrinsic Parameter Calibration
Prepare your images as following: