[mvmp] update track and fit smpl

This commit is contained in:
shuaiqing 2021-06-28 10:38:36 +08:00
parent 0c2d5f2d64
commit 6cce25792c
9 changed files with 760 additions and 18 deletions

29
apps/demo/auto_track.py Normal file
View File

@ -0,0 +1,29 @@
'''
@ Date: 2021-06-25 15:59:35
@ Author: Qing Shuai
@ LastEditors: Qing Shuai
@ LastEditTime: 2021-06-28 10:32:24
@ FilePath: /EasyMocapRelease/apps/demo/auto_track.py
'''
from easymocap.assignment.track import Track2D, Track3D
if __name__ == "__main__":
import argparse
parser = argparse.ArgumentParser()
parser.add_argument('path', type=str)
parser.add_argument('out', type=str)
parser.add_argument('--track3d', action='store_true')
parser.add_argument('--debug', action='store_true')
args = parser.parse_args()
cfg = {
'path': args.path,
'out': args.out,
'WINDOW_SIZE': 10,
'MIN_FRAMES': 10,
'SMOOTH_SIZE': 5
}
if args.track3d:
tracker = Track3D(with2d=False, **cfg)
else:
tracker = Track2D(**cfg)
tracker.auto_track()

View File

@ -2,7 +2,7 @@
@ Date: 2021-04-13 22:21:39
@ Author: Qing Shuai
@ LastEditors: Qing Shuai
@ LastEditTime: 2021-04-14 12:22:59
@ LastEditTime: 2021-06-14 15:31:48
@ FilePath: /EasyMocap/apps/demo/mv1p_mirror.py
'''
import os
@ -33,6 +33,6 @@ if __name__ == "__main__":
if args.skel or not os.path.exists(skel_path):
mv1pmf_skel(dataset, check_repro=False, args=args)
from easymocap.pipeline.weight import load_weight_pose, load_weight_shape
weight_shape = load_weight_shape(args.opts)
weight_shape = load_weight_shape(args.model, args.opts)
weight_pose = load_weight_pose(args.model, args.opts)
mv1pmf_smpl(dataset, args=args, weight_pose=weight_pose, weight_shape=weight_shape)

View File

@ -0,0 +1,62 @@
'''
@ Date: 2021-06-14 22:27:05
@ Author: Qing Shuai
@ LastEditors: Qing Shuai
@ LastEditTime: 2021-06-28 10:33:26
@ FilePath: /EasyMocapRelease/apps/demo/smpl_from_keypoints.py
'''
# This is the script of fitting SMPL to 3d(+2d) keypoints
from easymocap.dataset import CONFIG
from easymocap.mytools import Timer
from easymocap.smplmodel import load_model, select_nf
from easymocap.mytools.reader import read_keypoints3d_all
from easymocap.mytools.file_utils import write_smpl
from easymocap.pipeline.weight import load_weight_pose, load_weight_shape
from easymocap.pipeline import smpl_from_keypoints3d
import os
from os.path import join
from tqdm import tqdm
def smpl_from_skel(path, sub, out, skel3d, args):
config = CONFIG[args.body]
results3d, filenames = read_keypoints3d_all(skel3d)
pids = list(results3d.keys())
weight_shape = load_weight_shape(args.model, args.opts)
weight_pose = load_weight_pose(args.model, args.opts)
with Timer('Loading {}, {}'.format(args.model, args.gender)):
body_model = load_model(args.gender, model_type=args.model)
for pid, result in results3d.items():
body_params = smpl_from_keypoints3d(body_model, result['keypoints3d'], config, args,
weight_shape=weight_shape, weight_pose=weight_pose)
result['body_params'] = body_params
# write for each frame
for nf, skelname in enumerate(tqdm(filenames, desc='writing')):
basename = os.path.basename(skelname)
outname = join(out, basename)
res = []
for pid, result in results3d.items():
frames = result['frames']
if nf in frames:
nnf = frames.index(nf)
val = {'id': pid}
params = select_nf(result['body_params'], nnf)
val.update(params)
res.append(val)
write_smpl(outname, res)
if __name__ == "__main__":
from easymocap.mytools import load_parser, parse_parser
parser = load_parser()
parser.add_argument('--skel3d', type=str, required=True)
args = parse_parser(parser)
help="""
Demo code for fitting SMPL to 3d(+2d) skeletons:
- Input : {} => {}
- Output: {}
- Body : {}=>{}, {}
""".format(args.path, args.skel3d, args.out,
args.model, args.gender, args.body)
print(help)
smpl_from_skel(args.path, args.sub, args.out, args.skel3d, args)

View File

@ -2,19 +2,24 @@
@ Date: 2021-06-04 20:47:38
@ Author: Qing Shuai
@ LastEditors: Qing Shuai
@ LastEditTime: 2021-06-04 21:50:53
@ FilePath: /EasyMocapRelease/easymocap/affinity/matchSVT.py
@ LastEditTime: 2021-06-15 17:30:16
@ FilePath: /EasyMocap/easymocap/affinity/matchSVT.py
'''
import numpy as np
def matchSVT(M_aff, dimGroups, M_constr, M_obs, control):
def matchSVT(M_aff, dimGroups, M_constr=None, M_obs=None, control={}):
max_iter = control['maxIter']
w_rank = control['w_rank']
tol = control['tol']
X = M_aff
X = M_aff.copy()
N = X.shape[0]
index_diag = np.arange(N)
X[index_diag, index_diag] = 0.
if M_constr is None:
M_constr = np.ones_like(M_aff)
for i in range(len(dimGroups) - 1):
M_constr[dimGroups[i]:dimGroups[i+1], dimGroups[i]:dimGroups[i+1]] = 0
M_constr[index_diag, index_diag] = 1
X = (X + X.T)/2
Y = np.zeros((N, N))
mu = 64

View File

@ -0,0 +1,345 @@
'''
@ Date: 2021-06-27 16:21:50
@ Author: Qing Shuai
@ LastEditors: Qing Shuai
@ LastEditTime: 2021-06-28 10:32:40
@ FilePath: /EasyMocapRelease/easymocap/assignment/track.py
'''
from tqdm import tqdm
import numpy as np
import os
from os.path import join
from glob import glob
from ..affinity.affinity import getDimGroups
from ..affinity.matchSVT import matchSVT
from ..mytools.reader import read_keypoints2d, read_keypoints3d
from ..mytools.file_utils import read_annot, read_json, save_annot, save_json, write_keypoints3d
def check_path(x):
assert os.path.exists(x), '{} not exists!'.format(x)
class BaseTrack:
def __init__(self, path, out, WINDOW_SIZE, MIN_FRAMES, SMOOTH_SIZE) -> None:
self.path = path
self.out = out
self.WINDOW_SIZE = WINDOW_SIZE
self.SMOOTH_SIZE = SMOOTH_SIZE
self.MIN_FRAMES = MIN_FRAMES
self.svt_args = {
'maxIter': 1000,
'w_sparse': 0.3,
'w_rank': 10,
'tol': 1e-4,
'log': False
}
def auto_track(self):
results = self.read()
edges = self.compute_dist(results)
results = self.associate(results, edges)
results, occupancy = self.reset_id(results)
results, occupancy = self.smooth(results, occupancy)
self.write(results, occupancy)
def read(self):
return []
def write(self, results, occupancy):
return 0
def compute_dist(self, results):
nFrames = len(results)
WINDOW_SIZE = self.WINDOW_SIZE
edges = {}
for start in tqdm(range(0, nFrames - 1), desc='affinity'):
window_size = min(WINDOW_SIZE, nFrames - start)
results_window = results[start:start+window_size]
dimGroups, frames = getDimGroups(results_window)
dist = self._compute_dist(dimGroups, results_window)
res = matchSVT(dist, dimGroups, control=self.svt_args)
xx, yy = np.where(res)
for x, y in zip(xx, yy):
if x >= y:continue
nf0, nf1 = frames[x], frames[y]
ni0, ni1 = x - dimGroups[nf0], y - dimGroups[nf1]
edge = ((nf0+start, ni0), (nf1+start, ni1))
if edge not in edges:
edges[edge] = []
edges[edge].append(res[x, y])
return edges
def associate(self, results, edges):
WINDOW_SIZE = self.WINDOW_SIZE
connects = list(edges.keys())
connects.sort(key=lambda x:-sum(edges[x]))
maxid = 0
frames_of_id = {}
log = print
log = lambda x:x
for (nf0, ni0), (nf1, ni1) in connects:
if abs(nf1 - nf0) > WINDOW_SIZE//2:
continue
# create
id0 = results[nf0][ni0]['id']
id1 = results[nf1][ni1]['id']
if id0 == -1 and id1 == -1:
results[nf0][ni0]['id'] = maxid
log('Create person {}'.format(maxid))
frames_of_id[maxid] = {nf0:ni0, nf1:ni1}
maxid += 1
# directly assign
if id0 != -1 and id1 == -1:
if nf1 in frames_of_id[id0].keys():
log('Merge conflict')
results[nf1][ni1]['id'] = id0
# log('Merge person {}'.format(maxid))
frames_of_id[id0][nf1] = ni1
continue
if id0 == -1 and id1 != -1:
results[nf0][ni0]['id'] = id1
frames_of_id[id1][nf0] = ni0
continue
if id0 == id1:
continue
# merge
if id0 != id1:
common = frames_of_id[id0].keys() & frames_of_id[id1].keys()
for key in common: # conflict
if frames_of_id[id0][key] == frames_of_id[id1][key]:
pass
else:
break
else: # merge
log('Merge {} to {}'.format(id1, id0))
for key in frames_of_id[id1].keys():
results[key][frames_of_id[id1][key]]['id'] = id0
frames_of_id[id0][key] = frames_of_id[id1][key]
frames_of_id.pop(id1)
continue
log('Conflict; not merged')
return results
def reset_id(self, results):
mapid = {}
maxid = 0
occupancy = []
nFrames = len(results)
for nf, res in enumerate(results):
for info in res:
if info['id'] == -1:
continue
if info['id'] not in mapid.keys():
mapid[info['id']] = maxid
maxid += 1
occupancy.append([0 for _ in range(nFrames)])
pid = mapid[info['id']]
info['id'] = pid
occupancy[pid][nf] = 1
occupancy = np.array(occupancy)
results, occupancy = self.remove_outlier(results, occupancy)
results, occupancy = self.interpolate(results, occupancy)
return results, occupancy
def remove_outlier(self, results, occupancy):
nFrames = len(results)
pids = []
for pid in range(occupancy.shape[0]):
if occupancy[pid].sum() > self.MIN_FRAMES:
pids.append(pid)
occupancy = occupancy[pids]
for nf in range(nFrames):
result = results[nf]
result_filter = []
for info in result:
if info['id'] == -1 or info['id'] not in pids:
continue
info['id'] = pids.index(info['id'])
result_filter.append(info)
results[nf] = result_filter
return results, occupancy
def interpolate(self, results, occupancy):
# find missing frames
WINDOW_SIZE = self.WINDOW_SIZE
for pid in range(occupancy.shape[0]):
for nf in range(1, occupancy.shape[1]-1):
if occupancy[pid, nf-1] < 1 or occupancy[pid, nf] > 0:
continue
left = nf - 1
right = np.where(occupancy[pid, nf+1:])[0]
if len(right) > 0:
right = right.min() + nf + 1
else:
continue
# find valid (left, right)
# interpolate 3d pose
info_left = [res for res in results[left] if res['id'] == pid][0]
info_right = [res for res in results[right] if res['id'] == pid][0]
for nf_i in range(left+1, right):
weight = 1 - (nf_i - left)/(right - left)
res = self._interpolate(info_left, info_right, weight)
res['id'] = pid
results[nf_i].append(res)
occupancy[pid, nf_i] = pid
return results, occupancy
def smooth(self, results, occupancy):
return results, occupancy
def _interpolate(self, info_left, info_right, weight):
return info_left.copy()
class Track3D(BaseTrack):
def __init__(self, with2d=False, mode='body25', **cfg) -> None:
super().__init__(**cfg)
self.with2d = with2d
self.mode = mode
def read(self):
k3dpath = join(self.path, 'keypoints3d')
check_path(k3dpath)
filenames = sorted(glob(join(k3dpath, '*.json')))
if self.with2d:
k2dpath = join(self.path, 'keypoints2d')
check_path(k2dpath)
subs = sorted(os.listdir(k2dpath))
else:
k2dpath = ''
subs = []
results = []
for nf, filename in enumerate(filenames):
basename = os.path.basename(filename)
infos = read_keypoints3d(filename)
for n, info in enumerate(infos):
info['id'] = -1
info['index'] = n
results.append(infos)
if self.with2d:
# load 2d keypoints
for nv, sub in enumerate(subs):
k2dname = join(k2dpath, sub, basename)
annots = read_keypoints2d(k2dname, self.mode)
for annot in annots:
pid = annot['id']
bbox = annot['bbox']
keypoints = annot['keypoints']
import ipdb; ipdb.set_trace()
return results
def write(self, results, mapid):
os.makedirs(self.out, exist_ok=True)
for nf, res in enumerate(results):
outname = join(self.out, 'keypoints3d', '{:06d}.json'.format(nf))
result = results[nf]
write_keypoints3d(outname, result)
def _compute_dist(self, dimGroups, results_window):
max_dist = 0.15
max_dist_step = 0.01
window_size = len(results_window)
dist = np.eye(dimGroups[-1])
for i in range(window_size-1):
if len(results_window[i]) == 0:
continue
k3d_i = np.stack([info['keypoints3d'] for info in results_window[i]])
for j in range(i+1, window_size):
if len(results_window[j]) == 0:
continue
k3d_j = np.stack([info['keypoints3d'] for info in results_window[j]])
conf = np.sqrt(k3d_i[:, None, :, 3] * k3d_j[None, :, :, 3])
d_ij = np.linalg.norm(k3d_i[:, None, :, :3] - k3d_j[None, :, :, :3], axis=3)
a_ij = 1 - d_ij / (max_dist + (j-i)*max_dist_step )
a_ij[a_ij < 0] = 0
weight =(conf*a_ij).sum(axis=2)/(1e-4 + conf.sum(axis=2))
dist[dimGroups[i]:dimGroups[i+1], dimGroups[j]:dimGroups[j+1]] = weight
dist[dimGroups[j]:dimGroups[j+1], dimGroups[i]:dimGroups[i+1]] = weight.T
return dist
def _interpolate(self, info_left, info_right, weight):
kpts_new = info_left['keypoints3d'] * weight + info_right['keypoints3d'] * (1-weight)
res = {'keypoints3d': kpts_new}
return res
class Track2D(BaseTrack):
def __init__(self, **cfg) -> None:
super().__init__(**cfg)
def read(self):
filenames = sorted(glob(join(self.path, '*.json')))
results = []
for filename in tqdm(filenames, desc='loading'):
result = read_json(filename)['annots']
for n, info in enumerate(result):
info['id'] = -1
results.append(result)
return results
def write(self, results, occupancy):
os.makedirs(self.out, exist_ok=True)
filenames = sorted(glob(join(self.path, '*.json')))
for nf, res in enumerate(tqdm(results, desc='writing')):
outname = join(self.out, '{:06d}.json'.format(nf))
result = results[nf]
annots = read_json(filenames[nf])
annots['annots'] = result
for res in result:
res['personID'] = res.pop('id')
save_annot(outname, annots)
annot = os.path.basename(os.path.dirname(self.out))
occpath = self.out.replace(annot, 'track') + '.json'
save_json(occpath, occupancy.tolist())
def _compute_dist(self, dimGroups, results_window):
window_size = len(results_window)
dist = np.eye(dimGroups[-1])
for i in range(window_size-1):
if len(results_window[i]) == 0:
continue
bbox_pre = np.stack([info['bbox'] for info in results_window[i]])
bbox_pre = bbox_pre[:, None]
for j in range(i+1, window_size):
if len(results_window[j]) == 0:
continue
bbox_now = np.stack([info['bbox'] for info in results_window[j]])
bbox_now = bbox_now[None, :]
areas_pre = (bbox_pre[..., 2] - bbox_pre[..., 0]) * (bbox_pre[..., 3] - bbox_pre[..., 1])
areas_now = (bbox_now[..., 2] - bbox_now[..., 0]) * (bbox_now[..., 3] - bbox_now[..., 1])
# 左边界的大值
xx1 = np.maximum(bbox_pre[..., 0], bbox_now[..., 0])
yy1 = np.maximum(bbox_pre[..., 1], bbox_now[..., 1])
# 右边界的小值
xx2 = np.minimum(bbox_pre[..., 2], bbox_now[..., 2])
yy2 = np.minimum(bbox_pre[..., 3], bbox_now[..., 3])
w = np.maximum(0.0, xx2 - xx1)
h = np.maximum(0.0, yy2 - yy1)
inter = w * h
over = inter / (areas_pre + areas_now - inter)
weight = over
dist[dimGroups[i]:dimGroups[i+1], dimGroups[j]:dimGroups[j+1]] = weight
dist[dimGroups[j]:dimGroups[j+1], dimGroups[i]:dimGroups[i+1]] = weight.T
return dist
def reset_id(self, results):
results[0].sort(key=lambda x:-(x['bbox'][2]-x['bbox'][0])*(x['bbox'][3]-x['bbox'][1]))
return super().reset_id(results)
def _interpolate(self, info_left, info_right, weight):
bbox = [info_left['bbox'][i]*weight+info_left['bbox'][i]*(1-weight) for i in range(5)]
kpts_l = info_left['keypoints']
kpts_r = info_right['keypoints']
kpts = []
for nj in range(len(kpts_l)):
if kpts_l[nj][2] < 0.1 or kpts_r[nj][2] < 0.1:
kpts.append([0., 0., 0.])
else:
kpts.append([kpts_l[nj][i]*weight + kpts_r[nj][i]*(1-weight) for i in range(3)])
res = {'bbox': bbox, 'keypoints': kpts}
return res
def smooth(self, results, occupancy):
for pid in range(occupancy.shape[0]):
# the occupancy must be continuous
pass
return results, occupancy

View File

@ -2,7 +2,7 @@
@ Date: 2021-04-21 15:19:21
@ Author: Qing Shuai
@ LastEditors: Qing Shuai
@ LastEditTime: 2021-06-15 11:30:00
@ LastEditTime: 2021-06-26 17:37:07
@ FilePath: /EasyMocap/easymocap/mytools/reader.py
'''
# function to read data
@ -32,6 +32,8 @@ def read_keypoints3d(filename):
# 对于有手的情况把手的根节点赋值成body25上的点
pose3d[25, :] = pose3d[7, :]
pose3d[46, :] = pose3d[4, :]
if pose3d.shape[1] == 3:
pose3d = np.hstack([pose3d, np.ones((pose3d.shape[0], 1))])
res_.append({
'id': pid,
'keypoints3d': pose3d

View File

@ -2,8 +2,8 @@
@ Date: 2021-01-15 11:12:00
@ Author: Qing Shuai
@ LastEditors: Qing Shuai
@ LastEditTime: 2021-06-16 14:05:39
@ FilePath: /EasyMocap/easymocap/mytools/utils.py
@ LastEditTime: 2021-06-25 21:07:29
@ FilePath: /EasyMocapRelease/easymocap/mytools/utils.py
'''
import time
import tabulate
@ -42,7 +42,7 @@ class Timer:
Timer.records[self.name].append((end-self.start)*1000)
if not self.silent:
t = (end - self.start)*1000
if t > 10000:
if t > 1000:
print('-> [{:20s}]: {:5.1f}s'.format(self.name, t/1000))
elif t > 1e3*60*60:
print('-> [{:20s}]: {:5.1f}min'.format(self.name, t/1e3/60))

View File

@ -2,11 +2,16 @@
@ Date: 2021-04-13 20:12:58
@ Author: Qing Shuai
@ LastEditors: Qing Shuai
@ LastEditTime: 2021-05-27 17:04:47
@ FilePath: /EasyMocap/easymocap/pipeline/weight.py
@ LastEditTime: 2021-06-25 22:14:58
@ FilePath: /EasyMocapRelease/easymocap/pipeline/weight.py
'''
def load_weight_shape(opts):
weight = {'s3d': 1., 'reg_shapes': 5e-3}
def load_weight_shape(model, opts):
if model in ['smpl', 'smplh', 'smplx']:
weight = {'s3d': 1., 'reg_shapes': 5e-3}
elif model == 'mano':
weight = {'s3d': 1e2, 'reg_shapes': 5e-5}
else:
raise NotImplementedError
for key in opts.keys():
if key in weight.keys():
weight[key] = opts[key]
@ -15,8 +20,8 @@ def load_weight_shape(opts):
def load_weight_pose(model, opts):
if model == 'smpl':
weight = {
'k3d': 1., 'reg_poses_zero': 1e-2, 'smooth_body': 5e-1,
'smooth_poses': 1e-1, 'reg_poses': 1e-3,
'k3d': 1., 'reg_poses_zero': 1e-2, 'smooth_body': 5e0,
'smooth_poses': 1e0, 'reg_poses': 1e-3,
'k2d': 1e-4
}
elif model == 'smplh':
@ -37,9 +42,14 @@ def load_weight_pose(model, opts):
}
elif model == 'mano':
weight = {
'k3d': 1e2, 'k2d': 1e-3,
'reg_poses': 1e-3, 'smooth_body': 1e2
'k3d': 1e2, 'k2d': 2e-3,
'reg_poses': 1e-3, 'smooth_body': 1e2,
# 'collision': 1 # If the frame number is too large (more than 1000), then GPU oom
}
# weight = {
# 'k3d': 1., 'k2d': 1e-4,
# 'reg_poses': 1e-4, 'smooth_body': 0
# }
else:
print(model)
raise NotImplementedError

View File

@ -0,0 +1,289 @@
'''
@ Date: 2020-12-01 22:14:11
@ Author: Qing Shuai
@ LastEditors: Qing Shuai
@ LastEditTime: 2021-05-30 21:33:40
@ FilePath: /EasyMocap/scripts/postprocess/eval_shelf.py
'''
import os
import sys
from os.path import join
import re
import json
import time
import scipy.io as scio
import numpy as np
from tqdm import tqdm
def save_json(output, json_path):
os.system('mkdir -p {}'.format(os.path.dirname(json_path)))
with open(json_path, 'w') as f:
json.dump(output, f, indent=4)
def is_right(model_start_point, model_end_point, gt_strat_point, gt_end_point, alpha=0.5):
bone_lenth = np.linalg.norm ( gt_end_point - gt_strat_point )
start_difference = np.linalg.norm ( gt_strat_point - model_start_point )
end_difference = np.linalg.norm ( gt_end_point - model_end_point )
return ((start_difference + end_difference) / 2) <= alpha * bone_lenth
def openpose2shelf3D(pose3d, score):
"""
transform coco order(our method output) 3d pose to shelf dataset order with interpolation
:param pose3d: np.array with shape nJx3
:return: 3D pose in shelf order with shape 14x3
"""
shelf_pose = np.zeros ( (14, 3) )
shelf_score = np.zeros ( (14, 1) )
# coco2shelf = np.array ( [16, 14, 12, 11, 13, 15, 10, 8, 6, 5, 7, 9] )
openpose2shelf = np.array([11, 10, 9, 12, 13, 14, 4, 3, 2, 5, 6, 7])
shelf_pose[0: 12] += pose3d[openpose2shelf]
shelf_score[0: 12] += score[openpose2shelf]
if True:
shelf_pose[12] = pose3d[1] # Use middle of shoulder to init
shelf_pose[13] = pose3d[0] # use nose to init
shelf_pose[13] = shelf_pose[12] + (shelf_pose[13] - shelf_pose[12]) * np.array ( [0.75, 0.75, 1.5] )
shelf_pose[12] = shelf_pose[12] + (pose3d[0] - shelf_pose[12]) * np.array ( [1. / 2., 1. / 2., 1. / 2.] )
shelf_score[12] = score[0]*score[1]
shelf_score[13] = score[0]*score[1]
else:
shelf_pose[12] = pose3d[1]
shelf_pose[13] = pose3d[0]
return shelf_pose, shelf_score
def convert_openpose_shelf(keypoints3d):
shelf15 = np.zeros((15, 4))
openpose2shelf = np.array([11, 10, 9, 12, 13, 14, 4, 3, 2, 5, 6, 7, 1, 0, 8])
shelf15 = keypoints3d[openpose2shelf].copy()
# interp head
faceDir = np.cross(shelf15[12, :3] - shelf15[14, :3], shelf15[8, :3] - shelf15[9, :3])
faceDir = faceDir/np.linalg.norm(faceDir)
zDir = np.array([0., 0., 1.])
shoulderCenter = (keypoints3d[2, :3] + keypoints3d[5, :3])/2.
# headCenter = (keypoints3d[15, :3] + keypoints3d[16, :3])/2.
headCenter = (keypoints3d[17, :3] + keypoints3d[18, :3])/2.
shelf15[12, :3] = shoulderCenter + (headCenter - shoulderCenter) * 0.5
shelf15[13, :3] = shelf15[12, :3] + faceDir * 0.125 + zDir * 0.145
return shelf15
def convert_openpose_shelf1(keypoints3d):
shelf15 = np.zeros((15, 4))
openpose2shelf = np.array([11, 10, 9, 12, 13, 14, 4, 3, 2, 5, 6, 7, 1, 0, 8])
shelf15 = keypoints3d[openpose2shelf].copy()
# interp head
faceDir = np.cross(keypoints3d[1, :3] - keypoints3d[8, :3], keypoints3d[2, :3] - shelf15[5, :3])
faceDir = faceDir/np.linalg.norm(faceDir)
upDir = keypoints3d[1, :3] - keypoints3d[8, :3]
upDir = upDir/np.linalg.norm(upDir)
shoulderCenter = keypoints3d[1, :3]
ear = (keypoints3d[17, :3] + keypoints3d[18, :3])/2 - keypoints3d[1, :3]
eye = (keypoints3d[15, :3] + keypoints3d[16, :3])/2 - keypoints3d[1, :3]
nose = keypoints3d[0, :3] - keypoints3d[1, :3]
head = (ear + eye + nose)/3.
noseLen = np.linalg.norm(head)
noseDir = head / noseLen
headDir = (noseDir * 2 + upDir)
headDir = headDir / np.linalg.norm(headDir)
neck = shoulderCenter + noseLen*headDir * 0.5
shelf15[12, :3] = neck
shelf15[13, :3] = neck + headDir * noseLen * 0.8
return shelf15
def convert_shelf_shelfgt(keypoints):
gt_hip = (keypoints[2] + keypoints[3]) / 2
gt = np.vstack((keypoints, gt_hip))
return gt
def vectorize_distance(a, b):
"""
Calculate euclid distance on each row of a and b
:param a: Nx... np.array
:param b: Mx... np.array
:return: MxN np.array representing correspond distance
"""
N = a.shape[0]
a = a.reshape ( N, -1 )
M = b.shape[0]
b = b.reshape ( M, -1 )
a2 = np.tile ( np.sum ( a ** 2, axis=1 ).reshape ( -1, 1 ), (1, M) )
b2 = np.tile ( np.sum ( b ** 2, axis=1 ), (N, 1) )
dist = a2 + b2 - 2 * (a @ b.T)
return np.sqrt ( dist )
def distance(a, b, score):
# a: (N, J, 3)
# b: (M, J, 3)
# score: (M, J, 1)
# return: (M, N)
a = a[None, :, :, :]
b = b[:, None, :, :]
score = score[:, None, :, 0]
diff = np.sum((a - b)**2, axis=3)*score
dist = diff.sum(axis=2)/score.sum(axis=2)
return np.sqrt(dist)
def _readResult(filename, isA4d):
import json
with open(filename, "r") as file:
datas = json.load(file)
res_ = []
for data in datas:
trackId = data['id']
keypoints3d = np.array(data['keypoints3d'])
if (keypoints3d[:, 3]>0).sum() > 1:
res_.append({'id':trackId, 'keypoints3d': keypoints3d})
if isA4d:
# association4d 的关节顺序和正常的定义不一样
for r in res_:
r['keypoints3d'] = r['keypoints3d'][[4, 1, 5, 9, 13, 6, 10, 14, 0, 2, 7, 11, 3, 8, 12], :]
return res_
def readResult(filePath, range_=None, isA4d=None):
res = {}
if range_ is None:
from glob import glob
filelists = glob(join(filePath, '*.txt'))
range_ = [i for i in range(len(filelists))]
if isA4d is None:
isA4d = args.a4d
for imgId in tqdm(range_):
res[imgId] = _readResult(join(filePath, '{:06d}.json'.format(imgId)), isA4d)
return res
class ShelfGT:
def __init__(self, actor3D) -> None:
self.actor3D = actor3D
self.actor3D = self.actor3D[:3]
def __getitem__(self, index):
results = []
for pid in range(len(self.actor3D)):
gt_pose = self.actor3D[pid][index-2][0]
if gt_pose.shape == (1, 0) or gt_pose.shape == (0, 0):
continue
keypoints3d = convert_shelf_shelfgt(gt_pose)
results.append({'id': pid, 'keypoints3d': keypoints3d})
return results
def write_to_csv(filename, results, id_wise=True):
keys = [key for key in results[0].keys() if isinstance(results[0][key], float)]
if id_wise:
ids = list(set([res['id'] for res in results]))
header = [''] + ['{:s}'.format(key.replace(' ', '')) for key in keys]
contents = []
if id_wise:
for pid in ids:
content = ['{}'.format(pid)]
for key in keys:
vals = [res[key] for res in results if res['id'] == pid]
content.append('{:.3f}'.format(sum(vals)/len(vals)))
contents.append(content)
# 计算平均值
content = ['Mean']
for i, key in enumerate(keys):
content.append('{:.3f}'.format(sum([float(con[i+1]) for con in contents])/len(ids)))
contents.append(content)
else:
content = ['Mean']
for key in keys:
content.append('{:.3f}'.format(sum([res[key] for res in results])/len(results)))
contents.append(content)
import tabulate
print(tabulate.tabulate(contents, header, tablefmt='fancy_grid'))
print(tabulate.tabulate(contents, header, tablefmt='fancy_grid'), file=open(filename.replace('.csv', '.txt'), 'w'))
with open(filename, 'w') as f:
# 写入头
header = list(results[0].keys())
f.write(','.join(header) + '\n')
for res in results:
f.write(','.join(['{}'.format(res[key]) for key in header]) + '\n')
def evaluate(actor3D, range_, out):
shelfgt = ShelfGT(actor3D)
check_result = np.zeros ( (len ( actor3D[0] ), len ( actor3D ), 10), dtype=np.int32 )
result = readResult(out, range_)
bones = [[0, 1], [1, 2], [3, 4], [4, 5], [6, 7], [7, 8], [9, 10], [10, 11], [12, 13], [12, 14]]
start = [ 9, 8, 10, 7, 3, 2, 4, 1, 12, 12,]
end = [10, 7, 11, 6, 4, 1, 5, 0, 13, 14]
names = ["Left Upper Arm", "Right Upper Arm", "Left Lower Arm", "Right Lower Arm", "Left Upper Leg", "Right Upper Leg", "Left Lower Leg", "Right Lower Leg", "Head", "Torso" ]
results = []
for img_id in tqdm(range_):
# 转化成model_poses
ests = []
for res in result[img_id]:
ests.append({'id': res['id'], 'keypoints3d': convert_openpose_shelf1(res['keypoints3d'])})
gts = shelfgt[img_id]
if len(gts) < 1:
continue
# 匹配最近的
kpts_gt = np.stack([v['keypoints3d'] for v in gts])
kpts_dt = np.stack([v['keypoints3d'] for v in ests])
distances = np.linalg.norm(kpts_gt[:, None, :, :3] - kpts_dt[None, :, :, :3], axis=-1)
conf = (kpts_gt[:, None, :, -1] > 0) * (kpts_dt[None, :, :, -1] > 0)
dist = (distances * conf).sum(axis=-1)/conf.sum(axis=-1)
# 贪婪的匹配
ests_new = []
for igt, gt in enumerate(gts):
bestid = np.argmin(dist[igt])
ests_new.append(ests[bestid])
ests = ests_new
# 计算误差
for i, data in enumerate(gts):
kpts_gt = data['keypoints3d']
kpts_est = ests[i]['keypoints3d']
# 计算各种误差,存成字典
da = np.linalg.norm(kpts_gt[start, :3] - kpts_est[start, :3], axis=1)
db = np.linalg.norm(kpts_gt[end, :3] - kpts_est[end, :3], axis=1)
l = np.linalg.norm(kpts_gt[start, :3] - kpts_gt[end, :3], axis=1)
isright = 1.0*((da + db) < l)
if args.joint:
res = {name: isright[i] for i, name in enumerate(names)}
else:
res = {}
res['Mean'] = isright.mean()
res['nf'] = img_id
res['id'] = data['id']
results.append(res)
write_to_csv(join(out, '..', 'report.csv'), results)
return 0
if __name__ == '__main__':
import argparse
parser = argparse.ArgumentParser ()
parser.add_argument('--out', type=str, default='output/')
parser.add_argument('--gt_path', type=str, default='config/evaluation/actorsGT_shelf.mat')
parser.add_argument('--setting', type=str, default='shelf')
parser.add_argument('--a4d', action='store_true')
parser.add_argument('--joint', action='store_true')
args = parser.parse_args ()
if args.setting == 'shelf':
test_range = range ( 302, 602)
# test_range = range (2000, 3200)
elif args.setting == 'campus':
test_range = [i for i in range ( 350, 471 )] + [i for i in range ( 650, 751 )]
else:
raise NotImplementedError
actorsGT = scio.loadmat (args.gt_path)
test_actor3D = actorsGT['actor3D'][0]
if False:
valid = np.zeros((3200, 4))
for nf in range(3200):
for pid in range(4):
if test_actor3D[pid][nf].item().shape[0] == 14:
valid[nf, pid] = 1
import matplotlib.pyplot as plt
plt.plot(valid.sum(axis=1))
plt.show()
import ipdb; ipdb.set_trace()
evaluate(test_actor3D, test_range, args.out)