From 81ef081211f8bf022f7b906f210ae90eb6f489bf Mon Sep 17 00:00:00 2001 From: shuaiqing Date: Thu, 27 May 2021 20:33:49 +0800 Subject: [PATCH] remove deprecated folder code/ --- code/dataset/base.py | 527 --------- code/dataset/config.py | 654 ----------- code/dataset/mv1pmf.py | 106 -- code/demo_mv1pmf_skel.py | 97 -- code/demo_mv1pmf_smpl.py | 138 --- code/mytools/camera_utils.py | 306 ----- code/mytools/cmd_loader.py | 44 - code/mytools/reconstruction.py | 106 -- code/mytools/utils.py | 21 - code/mytools/vis_base.py | 121 -- code/pyfitting/lbfgs.py | 471 -------- code/pyfitting/lossfactory.py | 113 -- code/pyfitting/operation.py | 74 -- code/pyfitting/optimize.py | 131 --- code/pyfitting/optimize_simple.py | 364 ------ code/smplmodel/__init__.py | 10 - code/smplmodel/body_model.py | 209 ---- code/smplmodel/body_param.py | 102 -- code/smplmodel/lbs.py | 378 ------ code/vis_render.py | 97 -- code/visualize/geometry.py | 82 -- code/visualize/renderer.py | 315 ----- code/visualize/skelmodel.py | 74 -- code/visualize/sphere_faces_20.txt | 1520 ------------------------- code/visualize/sphere_vertices_20.txt | 762 ------------- 25 files changed, 6822 deletions(-) delete mode 100644 code/dataset/base.py delete mode 100644 code/dataset/config.py delete mode 100644 code/dataset/mv1pmf.py delete mode 100644 code/demo_mv1pmf_skel.py delete mode 100644 code/demo_mv1pmf_smpl.py delete mode 100644 code/mytools/camera_utils.py delete mode 100644 code/mytools/cmd_loader.py delete mode 100644 code/mytools/reconstruction.py delete mode 100644 code/mytools/utils.py delete mode 100644 code/mytools/vis_base.py delete mode 100644 code/pyfitting/lbfgs.py delete mode 100644 code/pyfitting/lossfactory.py delete mode 100644 code/pyfitting/operation.py delete mode 100644 code/pyfitting/optimize.py delete mode 100644 code/pyfitting/optimize_simple.py delete mode 100644 code/smplmodel/__init__.py delete mode 100644 code/smplmodel/body_model.py delete mode 100644 code/smplmodel/body_param.py delete mode 100644 code/smplmodel/lbs.py delete mode 100644 code/vis_render.py delete mode 100644 code/visualize/geometry.py delete mode 100644 code/visualize/renderer.py delete mode 100644 code/visualize/skelmodel.py delete mode 100644 code/visualize/sphere_faces_20.txt delete mode 100644 code/visualize/sphere_vertices_20.txt diff --git a/code/dataset/base.py b/code/dataset/base.py deleted file mode 100644 index 6a019b8..0000000 --- a/code/dataset/base.py +++ /dev/null @@ -1,527 +0,0 @@ -''' - @ Date: 2021-01-13 16:53:55 - @ Author: Qing Shuai - @ LastEditors: Qing Shuai - @ LastEditTime: 2021-01-25 19:12:34 - @ FilePath: /EasyMocap/code/dataset/base.py -''' -import os -import json -from os.path import join -from torch.utils.data.dataset import Dataset -import cv2 -import os, sys -import numpy as np -code_path = join(os.path.dirname(__file__), '..') -sys.path.append(code_path) - -from mytools.camera_utils import read_camera, undistort, write_camera, get_fundamental_matrix -from mytools.vis_base import merge, plot_bbox, plot_keypoints - -def read_json(path): - with open(path) as f: - data = json.load(f) - return data - -def save_json(file, data): - if not os.path.exists(os.path.dirname(file)): - os.makedirs(os.path.dirname(file)) - with open(file, 'w') as f: - json.dump(data, f, indent=4) - - -def read_annot(annotname, mode='body25'): - data = read_json(annotname) - if not isinstance(data, list): - data = data['annots'] - for i in range(len(data)): - if 'id' not in data[i].keys(): - data[i]['id'] = data[i].pop('personID') - if 'keypoints2d' in data[i].keys() and 'keypoints' not in data[i].keys(): - data[i]['keypoints'] = data[i].pop('keypoints2d') - for key in ['bbox', 'keypoints', 'handl2d', 'handr2d', 'face2d']: - if key not in data[i].keys():continue - data[i][key] = np.array(data[i][key]) - if key == 'face2d': - # TODO: Make parameters, 17 is the offset for the eye brows, - # etc. 51 is the total number of FLAME compatible landmarks - data[i][key] = data[i][key][17:17+51, :] - if mode == 'body25': - data[i]['keypoints'] = data[i]['keypoints'] - elif mode == 'body15': - data[i]['keypoints'] = data[i]['keypoints'][:15, :] - elif mode == 'total': - data[i]['keypoints'] = np.vstack([data[i][key] for key in ['keypoints', 'handl2d', 'handr2d', 'face2d']]) - elif mode == 'bodyhand': - data[i]['keypoints'] = np.vstack([data[i][key] for key in ['keypoints', 'handl2d', 'handr2d']]) - elif mode == 'bodyhandface': - data[i]['keypoints'] = np.vstack([data[i][key] for key in ['keypoints', 'handl2d', 'handr2d', 'face2d']]) - data.sort(key=lambda x:x['id']) - return data - -def get_bbox_from_pose(pose_2d, img, rate = 0.1): - # this function returns bounding box from the 2D pose - # here use pose_2d[:, -1] instead of pose_2d[:, 2] - # because when vis reprojection, the result will be (x, y, depth, conf) - validIdx = pose_2d[:, -1] > 0 - if validIdx.sum() == 0: - return [0, 0, 100, 100, 0] - y_min = int(min(pose_2d[validIdx, 1])) - y_max = int(max(pose_2d[validIdx, 1])) - x_min = int(min(pose_2d[validIdx, 0])) - x_max = int(max(pose_2d[validIdx, 0])) - dx = (x_max - x_min)*rate - dy = (y_max - y_min)*rate - # 后面加上类别这些 - bbox = [x_min-dx, y_min-dy, x_max+dx, y_max+dy, 1] - correct_bbox(img, bbox) - return bbox - -def correct_bbox(img, bbox): - # this function corrects the bbox, which is out of image - w = img.shape[0] - h = img.shape[1] - if bbox[2] <= 0 or bbox[0] >= h or bbox[1] >= w or bbox[3] <= 0: - bbox[4] = 0 - return bbox -class FileWriter: - def __init__(self, output_path, config=None, basenames=[], cfg=None) -> None: - self.out = output_path - keys = ['keypoints3d', 'match', 'smpl', 'skel', 'repro', 'keypoints'] - output_dict = {key:join(self.out, key) for key in keys} - # for key, p in output_dict.items(): - # os.makedirs(p, exist_ok=True) - self.output_dict = output_dict - - self.basenames = basenames - if cfg is not None: - print(cfg, file=open(join(output_path, 'exp.yml'), 'w')) - self.save_origin = False - self.config = config - - def write_keypoints3d(self, results, nf): - os.makedirs(self.output_dict['keypoints3d'], exist_ok=True) - savename = join(self.output_dict['keypoints3d'], '{:06d}.json'.format(nf)) - save_json(savename, results) - - def vis_detections(self, images, lDetections, nf, key='keypoints', to_img=True, vis_id=True): - os.makedirs(self.output_dict[key], exist_ok=True) - images_vis = [] - for nv, image in enumerate(images): - img = image.copy() - for det in lDetections[nv]: - if key == 'match': - pid = det['id_match'] - else: - pid = det['id'] - if key not in det.keys(): - keypoints = det['keypoints'] - else: - keypoints = det[key] - if 'bbox' not in det.keys(): - bbox = get_bbox_from_pose(keypoints, img) - else: - bbox = det['bbox'] - plot_bbox(img, bbox, pid=pid, vis_id=vis_id) - plot_keypoints(img, keypoints, pid=pid, config=self.config, use_limb_color=False, lw=2) - images_vis.append(img) - image_vis = merge(images_vis, resize=not self.save_origin) - if to_img: - savename = join(self.output_dict[key], '{:06d}.jpg'.format(nf)) - cv2.imwrite(savename, image_vis) - return image_vis - - def write_smpl(self, results, nf): - os.makedirs(self.output_dict['smpl'], exist_ok=True) - format_out = {'float_kind':lambda x: "%.3f" % x} - filename = join(self.output_dict['smpl'], '{:06d}.json'.format(nf)) - with open(filename, 'w') as f: - f.write('[\n') - for idata, data in enumerate(results): - f.write(' {\n') - output = {} - output['id'] = data['id'] - for key in ['Rh', 'Th', 'poses', 'expression', 'shapes']: - if key not in data.keys():continue - output[key] = np.array2string(data[key], max_line_width=1000, separator=', ', formatter=format_out) - for key in output.keys(): - f.write(' \"{}\": {}'.format(key, output[key])) - if key != 'shapes': - f.write(',\n') - else: - f.write('\n') - - f.write(' }') - if idata != len(results) - 1: - f.write(',\n') - else: - f.write('\n') - f.write(']\n') - - def vis_smpl(self, render_data_, nf, images, cameras, mode='smpl', add_back=False): - out = join(self.out, mode) - os.makedirs(out, exist_ok=True) - from visualize.renderer import Renderer - render = Renderer(height=1024, width=1024, faces=None) - if isinstance(render_data_, list): # different view have different data - for nv, render_data in enumerate(render_data_): - render_results = render.render(render_data, cameras, images) - image_vis = merge(render_results, resize=not self.save_origin) - savename = join(out, '{:06d}_{:02d}.jpg'.format(nf, nv)) - cv2.imwrite(savename, image_vis) - else: - render_results = render.render(render_data_, cameras, images, add_back=add_back) - image_vis = merge(render_results, resize=not self.save_origin) - savename = join(out, '{:06d}.jpg'.format(nf)) - cv2.imwrite(savename, image_vis) - -def readReasultsTxt(outname, isA4d=True): - res_ = [] - with open(outname, "r") as file: - lines = file.readlines() - if len(lines) < 2: - return res_ - nPerson, nJoints = int(lines[0]), int(lines[1]) - # 只包含每个人的结果 - lines = lines[1:] - # 每个人的都写了关键点数量 - line_per_person = 1 + 1 + nJoints - for i in range(nPerson): - trackId = int(lines[i*line_per_person+1]) - content = ''.join(lines[i*line_per_person+2:i*line_per_person+2+nJoints]) - pose3d = np.fromstring(content, dtype=float, sep=' ').reshape((nJoints, 4)) - if isA4d: - # association4d 的关节顺序和正常的定义不一样 - pose3d = pose3d[[4, 1, 5, 9, 13, 6, 10, 14, 0, 2, 7, 11, 3, 8, 12], :] - res_.append({'id':trackId, 'keypoints3d':np.array(pose3d)}) - return res_ - -def readResultsJson(outname): - with open(outname) as f: - data = json.load(f) - res_ = [] - for d in data: - pose3d = np.array(d['keypoints3d']) - if pose3d.shape[0] > 25: - # 对于有手的情况,把手的根节点赋值成body25上的点 - pose3d[25, :] = pose3d[7, :] - pose3d[46, :] = pose3d[4, :] - res_.append({ - 'id': d['id'] if 'id' in d.keys() else d['personID'], - 'keypoints3d': pose3d - }) - return res_ - -class VideoBase(Dataset): - """Dataset for single sequence data - """ - def __init__(self, image_root, annot_root, out=None, config={}, mode='body15', no_img=False) -> None: - self.image_root = image_root - self.annot_root = annot_root - self.mode = mode - self.no_img = no_img - self.config = config - assert out is not None - self.out = out - self.writer = FileWriter(self.out, config=config) - imgnames = sorted(os.listdir(self.image_root)) - self.imagelist = imgnames - self.annotlist = sorted(os.listdir(self.annot_root)) - self.nFrames = len(self.imagelist) - self.undis = False - self.read_camera() - - def read_camera(self): - # 读入相机参数 - annname = join(self.annot_root, self.annotlist[0]) - data = read_json(annname) - if 'K' not in data.keys(): - height, width = data['height'], data['width'] - focal = 1.2*max(height, width) - K = np.array([focal, 0., width/2, 0., focal, height/2, 0. ,0., 1.]).reshape(3, 3) - else: - K = np.array(data['K']).reshape(3, 3) - self.camera = {'K':K ,'R': np.eye(3), 'T': np.zeros((3, 1))} - - def __getitem__(self, index: int): - imgname = join(self.image_root, self.imagelist[index]) - annname = join(self.annot_root, self.annotlist[index]) - assert os.path.exists(imgname), imgname - assert os.path.exists(annname), annname - assert os.path.basename(imgname).split('.')[0] == os.path.basename(annname).split('.')[0], (imgname, annname) - if not self.no_img: - img = cv2.imread(imgname) - else: - img = None - annot = read_annot(annname, self.mode) - return img, annot - - def __len__(self) -> int: - return self.nFrames - - def write_smpl(self, peopleDict, nf): - results = [] - for pid, people in peopleDict.items(): - result = {'id': pid} - result.update(people.body_params) - results.append(result) - self.writer.write_smpl(results, nf) - - def vis_detections(self, image, detections, nf, to_img=True): - return self.writer.vis_detections([image], [detections], nf, - key='keypoints', to_img=to_img, vis_id=True) - - def vis_repro(self, peopleDict, image, annots, nf): - # 可视化重投影的关键点与输入的关键点 - detections = [] - for pid, data in peopleDict.items(): - keypoints3d = (data.keypoints3d @ self.camera['R'].T + self.camera['T'].T) @ self.camera['K'].T - keypoints3d[:, :2] /= keypoints3d[:, 2:] - keypoints3d = np.hstack([keypoints3d, data.keypoints3d[:, -1:]]) - det = { - 'id': pid, - 'repro': keypoints3d - } - detections.append(det) - return self.writer.vis_detections([image], [detections], nf, key='repro', - to_img=True, vis_id=False) - - def vis_smpl(self, peopleDict, faces, image, nf, sub_vis=[], - mode='smpl', extra_data=[], add_back=True, - axis=np.array([1., 0., 0.]), degree=0., fix_center=None): - # 为了统一接口,旋转视角的在此处实现,只在单视角的数据中使用 - # 通过修改相机参数实现 - # 相机参数的修正可以通过计算点的中心来获得 - # render the smpl to each view - render_data = {} - for pid, data in peopleDict.items(): - render_data[pid] = { - 'vertices': data.vertices, 'faces': faces, - 'vid': pid, 'name': 'human_{}_{}'.format(nf, pid)} - for iid, extra in enumerate(extra_data): - render_data[10000+iid] = { - 'vertices': extra['vertices'], - 'faces': extra['faces'], - 'colors': extra['colors'], - 'name': extra['name'] - } - camera = {} - for key in self.camera.keys(): - camera[key] = self.camera[key][None, :, :] - # render another view point - if np.abs(degree) > 1e-3: - vertices_all = np.vstack([data.vertices for data in peopleDict.values()]) - if fix_center is None: - center = np.mean(vertices_all, axis=0, keepdims=True) - new_center = center.copy() - new_center[:, 0:2] = 0 - else: - center = fix_center.copy() - new_center = fix_center.copy() - new_center[:, 2] *= 1.5 - direc = np.array(axis) - rot, _ = cv2.Rodrigues(direc*degree/90*np.pi/2) - # If we rorate the data, it is like: - # V = Rnew @ (V0 - center) + new_center - # = Rnew @ V0 - Rnew @ center + new_center - # combine with the camera - # VV = Rc(Rnew @ V0 - Rnew @ center + new_center) + Tc - # = Rc@Rnew @ V0 + Rc @ (new_center - Rnew@center) + Tc - blank = np.zeros_like(image, dtype=np.uint8) + 255 - images = [image, blank] - Rnew = camera['R'][0] @ rot - Tnew = camera['R'][0] @ (new_center.T - rot @ center.T) + camera['T'][0] - camera['K'] = np.vstack([camera['K'], camera['K']]) - camera['R'] = np.vstack([camera['R'], Rnew[None, :, :]]) - camera['T'] = np.vstack([camera['T'], Tnew[None, :, :]]) - else: - images = [image] - self.writer.vis_smpl(render_data, nf, images, camera, mode, add_back=add_back) - -class MVBase(Dataset): - """ Dataset for multiview data - """ - def __init__(self, root, cams=[], out=None, config={}, - image_root='images', annot_root='annots', - mode='body25', - undis=True, no_img=False) -> None: - self.root = root - self.image_root = join(root, image_root) - self.annot_root = join(root, annot_root) - self.mode = mode - self.undis = undis - self.no_img = no_img - # use when debug - self.ret_crop = False - self.config = config - # results path - # the results store keypoints3d - self.skel_path = None - if out is None: - out = join(root, 'output') - self.out = out - self.writer = FileWriter(self.out, config=config) - - if len(cams) == 0: - cams = sorted([i for i in os.listdir(self.image_root) if os.path.isdir(join(self.image_root, i))]) - if cams[0].isdigit(): # 对于使用数字命名的文件夹 - cams.sort(key=lambda x:int(x)) - self.cams = cams - self.imagelist = {} - self.annotlist = {} - for cam in cams: #TODO: 增加start,end - imgnames = sorted(os.listdir(join(self.image_root, cam))) - self.imagelist[cam] = imgnames - self.annotlist[cam] = sorted(os.listdir(join(self.annot_root, cam))) - nFrames = min([len(val) for key, val in self.imagelist.items()]) - self.nFrames = nFrames - self.nViews = len(cams) - self.read_camera() - - def read_camera(self): - path = self.root - # 读入相机参数 - intri_name = join(path, 'intri.yml') - extri_name = join(path, 'extri.yml') - if os.path.exists(intri_name) and os.path.exists(extri_name): - self.cameras = read_camera(intri_name, extri_name, self.cams) - self.cameras.pop('basenames') - self.cameras_for_affinity = [[cam['invK'], cam['R'], cam['T']] for cam in [self.cameras[name] for name in self.cams]] - self.Pall = [self.cameras[cam]['P'] for cam in self.cams] - self.Fall = get_fundamental_matrix(self.cameras, self.cams) - else: - print('!!!there is no camera parameters, maybe bug', intri_name, extri_name) - self.cameras = None - - def undistort(self, images): - if self.cameras is not None and len(images) > 0: - images_ = [] - for nv in range(self.nViews): - mtx = self.cameras[self.cams[nv]]['K'] - dist = self.cameras[self.cams[nv]]['dist'] - frame = cv2.undistort(images[nv], mtx, dist, None) - images_.append(frame) - else: - images_ = images - return images_ - - def undis_det(self, lDetections): - for nv in range(len(lDetections)): - camera = self.cameras[self.cams[nv]] - for det in lDetections[nv]: - det['bbox'] = undistort(camera, bbox=det['bbox']) - keypoints = det['keypoints'] - det['keypoints'] = undistort(camera, keypoints=keypoints[None, :, :])[1][0] - return lDetections - - def __getitem__(self, index: int): - images, annots = [], [] - for cam in self.cams: - imgname = join(self.image_root, cam, self.imagelist[cam][index]) - annname = join(self.annot_root, cam, self.annotlist[cam][index]) - assert os.path.exists(imgname), imgname - assert os.path.exists(annname), annname - assert self.imagelist[cam][index].split('.')[0] == self.annotlist[cam][index].split('.')[0] - if not self.no_img: - img = cv2.imread(imgname) - images.append(img) - # TODO:这里直接取了0 - annot = read_annot(annname, self.mode) - if self.ret_crop: - for det in annot: - bbox = det['bbox'] - l, t, r, b = det['bbox'][:4] - l = max(0, int(l+0.5)) - t = max(0, int(t+0.5)) - r = min(img.shape[1], int(r+0.5)) - b = min(img.shape[0], int(b+0.5)) - det['bbox'][:4] = [l, t, r, b] - crop_img = img[t:b, l:r, :] - crop_img = cv2.resize(crop_img, (128, 256)) - det['crop'] = crop_img - annots.append(annot) - if self.undis: - images = self.undistort(images) - annots = self.undis_det(annots) - return images, annots - - def __len__(self) -> int: - return self.nFrames - - def vis_detections(self, images, lDetections, nf, to_img=True, sub_vis=[]): - if len(sub_vis) != 0: - valid_idx = [self.cams.index(i) for i in sub_vis] - images = [images[i] for i in valid_idx] - lDetections = [lDetections[i] for i in valid_idx] - return self.writer.vis_detections(images, lDetections, nf, - key='keypoints', to_img=to_img, vis_id=True) - - def vis_match(self, images, lDetections, nf, to_img=True, sub_vis=[]): - if len(sub_vis) != 0: - valid_idx = [self.cams.index(i) for i in sub_vis] - images = [images[i] for i in valid_idx] - lDetections = [lDetections[i] for i in valid_idx] - return self.writer.vis_detections(images, lDetections, nf, - key='match', to_img=to_img, vis_id=True) - - def write_keypoints3d(self, peopleDict, nf): - results = [] - for pid, people in peopleDict.items(): - result = {'id': pid, 'keypoints3d': people.keypoints3d.tolist()} - results.append(result) - self.writer.write_keypoints3d(results, nf) - - def write_smpl(self, peopleDict, nf): - results = [] - for pid, people in peopleDict.items(): - result = {'id': pid} - result.update(people.body_params) - results.append(result) - self.writer.write_smpl(results, nf) - - def vis_smpl(self, peopleDict, faces, images, nf, sub_vis=[], - mode='smpl', extra_data=[], add_back=True): - # render the smpl to each view - render_data = {} - for pid, data in peopleDict.items(): - render_data[pid] = { - 'vertices': data.vertices, 'faces': faces, - 'vid': pid, 'name': 'human_{}_{}'.format(nf, pid)} - for iid, extra in enumerate(extra_data): - render_data[10000+iid] = { - 'vertices': extra['vertices'], - 'faces': extra['faces'], - 'colors': extra['colors'], - 'name': extra['name'] - } - cameras = {'K': [], 'R':[], 'T':[]} - if len(sub_vis) == 0: - sub_vis = self.cams - for key in cameras.keys(): - cameras[key] = [self.cameras[cam][key] for cam in sub_vis] - images = [images[self.cams.index(cam)] for cam in sub_vis] - self.writer.vis_smpl(render_data, nf, images, cameras, mode, add_back=add_back) - - def read_skel(self, nf, mode='none'): - if mode == 'a4d': - outname = join(self.skel_path, '{}.txt'.format(nf)) - assert os.path.exists(outname), outname - skels = readReasultsTxt(outname) - elif mode == 'none': - outname = join(self.skel_path, '{:06d}.json'.format(nf)) - assert os.path.exists(outname), outname - skels = readResultsJson(outname) - else: - import ipdb; ipdb.set_trace() - return skels - - def read_smpl(self, nf): - outname = join(self.skel_path, '{:06d}.json'.format(nf)) - assert os.path.exists(outname), outname - datas = read_json(outname) - outputs = [] - for data in datas: - for key in ['Rh', 'Th', 'poses', 'shapes']: - data[key] = np.array(data[key]) - outputs.append(data) - return outputs \ No newline at end of file diff --git a/code/dataset/config.py b/code/dataset/config.py deleted file mode 100644 index 9beb281..0000000 --- a/code/dataset/config.py +++ /dev/null @@ -1,654 +0,0 @@ -''' - * @ Date: 2020-09-26 16:52:55 - * @ Author: Qing Shuai - @ LastEditors: Qing Shuai - @ LastEditTime: 2021-03-20 13:51:36 - @ FilePath: /EasyMocap/code/dataset/config.py -''' -import numpy as np - -CONFIG = {} - -CONFIG['smpl'] = {'nJoints': 24, 'kintree': - [ - [ 0, 1 ], - [ 0, 2 ], - [ 0, 3 ], - [ 1, 4 ], - [ 2, 5 ], - [ 3, 6 ], - [ 4, 7 ], - [ 5, 8 ], - [ 6, 9 ], - [ 7, 10], - [ 8, 11], - [ 9, 12], - [ 9, 13], - [ 9, 14], - [12, 15], - [13, 16], - [14, 17], - [16, 18], - [17, 19], - [18, 20], - [19, 21], - [20, 22], - [21, 23], - ], - 'joint_names': [ - 'hips', # 0 - 'leftUpLeg', # 1 - 'rightUpLeg', # 2 - 'spine', # 3 - 'leftLeg', # 4 - 'rightLeg', # 5 - 'spine1', # 6 - 'leftFoot', # 7 - 'rightFoot', # 8 - 'spine2', # 9 - 'leftToeBase', # 10 - 'rightToeBase', # 11 - 'neck', # 12 - 'leftShoulder', # 13 - 'rightShoulder', # 14 - 'head', # 15 - 'leftArm', # 16 - 'rightArm', # 17 - 'leftForeArm', # 18 - 'rightForeArm', # 19 - 'leftHand', # 20 - 'rightHand', # 21 - 'leftHandIndex1', # 22 - 'rightHandIndex1', # 23 - ] -} - -CONFIG['body25'] = {'nJoints': 25, 'kintree': - [[ 1, 0], - [ 2, 1], - [ 3, 2], - [ 4, 3], - [ 5, 1], - [ 6, 5], - [ 7, 6], - [ 8, 1], - [ 9, 8], - [10, 9], - [11, 10], - [12, 8], - [13, 12], - [14, 13], - [15, 0], - [16, 0], - [17, 15], - [18, 16], - [19, 14], - [20, 19], - [21, 14], - [22, 11], - [23, 22], - [24, 11]], - 'joint_names': [ - "Nose", "Neck", "RShoulder", "RElbow", "RWrist", "LShoulder", "LElbow", "LWrist", "MidHip", "RHip","RKnee","RAnkle","LHip","LKnee","LAnkle","REye","LEye","REar","LEar","LBigToe","LSmallToe","LHeel","RBigToe","RSmallToe","RHeel"]} - -CONFIG['body25']['skeleton'] = \ -{ - ( 0, 1): {'mean': 0.228, 'std': 0.046}, # Nose ->Neck - ( 1, 2): {'mean': 0.144, 'std': 0.029}, # Neck ->RShoulder - ( 2, 3): {'mean': 0.283, 'std': 0.057}, # RShoulder->RElbow - ( 3, 4): {'mean': 0.258, 'std': 0.052}, # RElbow ->RWrist - ( 1, 5): {'mean': 0.145, 'std': 0.029}, # Neck ->LShoulder - ( 5, 6): {'mean': 0.281, 'std': 0.056}, # LShoulder->LElbow - ( 6, 7): {'mean': 0.258, 'std': 0.052}, # LElbow ->LWrist - ( 1, 8): {'mean': 0.483, 'std': 0.097}, # Neck ->MidHip - ( 8, 9): {'mean': 0.106, 'std': 0.021}, # MidHip ->RHip - ( 9, 10): {'mean': 0.438, 'std': 0.088}, # RHip ->RKnee - (10, 11): {'mean': 0.406, 'std': 0.081}, # RKnee ->RAnkle - ( 8, 12): {'mean': 0.106, 'std': 0.021}, # MidHip ->LHip - (12, 13): {'mean': 0.438, 'std': 0.088}, # LHip ->LKnee - (13, 14): {'mean': 0.408, 'std': 0.082}, # LKnee ->LAnkle - ( 0, 15): {'mean': 0.043, 'std': 0.009}, # Nose ->REye - ( 0, 16): {'mean': 0.043, 'std': 0.009}, # Nose ->LEye - (15, 17): {'mean': 0.105, 'std': 0.021}, # REye ->REar - (16, 18): {'mean': 0.104, 'std': 0.021}, # LEye ->LEar - (14, 19): {'mean': 0.180, 'std': 0.036}, # LAnkle ->LBigToe - (19, 20): {'mean': 0.038, 'std': 0.008}, # LBigToe ->LSmallToe - (14, 21): {'mean': 0.044, 'std': 0.009}, # LAnkle ->LHeel - (11, 22): {'mean': 0.182, 'std': 0.036}, # RAnkle ->RBigToe - (22, 23): {'mean': 0.038, 'std': 0.008}, # RBigToe ->RSmallToe - (11, 24): {'mean': 0.044, 'std': 0.009}, # RAnkle ->RHeel -} - -CONFIG['body15'] = {'nJoints': 15, 'kintree': - [[ 1, 0], - [ 2, 1], - [ 3, 2], - [ 4, 3], - [ 5, 1], - [ 6, 5], - [ 7, 6], - [ 8, 1], - [ 9, 8], - [10, 9], - [11, 10], - [12, 8], - [13, 12], - [14, 13],]} -CONFIG['body15']['joint_names'] = CONFIG['body25']['joint_names'][:15] -CONFIG['body15']['skeleton'] = {key: val for key, val in CONFIG['body25']['skeleton'].items() if key[0] < 15 and key[1] < 15} - -CONFIG['hand'] = {'kintree': - [[ 1, 0], - [ 2, 1], - [ 3, 2], - [ 4, 3], - [ 5, 0], - [ 6, 5], - [ 7, 6], - [ 8, 7], - [ 9, 0], - [10, 9], - [11, 10], - [12, 11], - [13, 0], - [14, 13], - [15, 14], - [16, 15], - [17, 0], - [18, 17], - [19, 18], - [20, 19]] -} - -CONFIG['bodyhand'] = {'kintree': - [[ 1, 0], - [ 2, 1], - [ 3, 2], - [ 4, 3], - [ 5, 1], - [ 6, 5], - [ 7, 6], - [ 8, 1], - [ 9, 8], - [10, 9], - [11, 10], - [12, 8], - [13, 12], - [14, 13], - [15, 0], - [16, 0], - [17, 15], - [18, 16], - [19, 14], - [20, 19], - [21, 14], - [22, 11], - [23, 22], - [24, 11], - [26, 7], # handl - [27, 26], - [28, 27], - [29, 28], - [30, 7], - [31, 30], - [32, 31], - [33, 32], - [34, 7], - [35, 34], - [36, 35], - [37, 36], - [38, 7], - [39, 38], - [40, 39], - [41, 40], - [42, 7], - [43, 42], - [44, 43], - [45, 44], - [47, 4], # handr - [48, 47], - [49, 48], - [50, 49], - [51, 4], - [52, 51], - [53, 52], - [54, 53], - [55, 4], - [56, 55], - [57, 56], - [58, 57], - [59, 4], - [60, 59], - [61, 60], - [62, 61], - [63, 4], - [64, 63], - [65, 64], - [66, 65] - ], - 'nJoints': 67, - 'skeleton':{ - ( 0, 1): {'mean': 0.251, 'std': 0.050}, - ( 1, 2): {'mean': 0.169, 'std': 0.034}, - ( 2, 3): {'mean': 0.292, 'std': 0.058}, - ( 3, 4): {'mean': 0.275, 'std': 0.055}, - ( 1, 5): {'mean': 0.169, 'std': 0.034}, - ( 5, 6): {'mean': 0.295, 'std': 0.059}, - ( 6, 7): {'mean': 0.278, 'std': 0.056}, - ( 1, 8): {'mean': 0.566, 'std': 0.113}, - ( 8, 9): {'mean': 0.110, 'std': 0.022}, - ( 9, 10): {'mean': 0.398, 'std': 0.080}, - (10, 11): {'mean': 0.402, 'std': 0.080}, - ( 8, 12): {'mean': 0.111, 'std': 0.022}, - (12, 13): {'mean': 0.395, 'std': 0.079}, - (13, 14): {'mean': 0.403, 'std': 0.081}, - ( 0, 15): {'mean': 0.053, 'std': 0.011}, - ( 0, 16): {'mean': 0.056, 'std': 0.011}, - (15, 17): {'mean': 0.107, 'std': 0.021}, - (16, 18): {'mean': 0.107, 'std': 0.021}, - (14, 19): {'mean': 0.180, 'std': 0.036}, - (19, 20): {'mean': 0.055, 'std': 0.011}, - (14, 21): {'mean': 0.065, 'std': 0.013}, - (11, 22): {'mean': 0.169, 'std': 0.034}, - (22, 23): {'mean': 0.052, 'std': 0.010}, - (11, 24): {'mean': 0.061, 'std': 0.012}, - ( 7, 26): {'mean': 0.045, 'std': 0.009}, - (26, 27): {'mean': 0.042, 'std': 0.008}, - (27, 28): {'mean': 0.035, 'std': 0.007}, - (28, 29): {'mean': 0.029, 'std': 0.006}, - ( 7, 30): {'mean': 0.102, 'std': 0.020}, - (30, 31): {'mean': 0.040, 'std': 0.008}, - (31, 32): {'mean': 0.026, 'std': 0.005}, - (32, 33): {'mean': 0.023, 'std': 0.005}, - ( 7, 34): {'mean': 0.101, 'std': 0.020}, - (34, 35): {'mean': 0.043, 'std': 0.009}, - (35, 36): {'mean': 0.029, 'std': 0.006}, - (36, 37): {'mean': 0.024, 'std': 0.005}, - ( 7, 38): {'mean': 0.097, 'std': 0.019}, - (38, 39): {'mean': 0.041, 'std': 0.008}, - (39, 40): {'mean': 0.027, 'std': 0.005}, - (40, 41): {'mean': 0.024, 'std': 0.005}, - ( 7, 42): {'mean': 0.095, 'std': 0.019}, - (42, 43): {'mean': 0.033, 'std': 0.007}, - (43, 44): {'mean': 0.020, 'std': 0.004}, - (44, 45): {'mean': 0.018, 'std': 0.004}, - ( 4, 47): {'mean': 0.043, 'std': 0.009}, - (47, 48): {'mean': 0.041, 'std': 0.008}, - (48, 49): {'mean': 0.034, 'std': 0.007}, - (49, 50): {'mean': 0.028, 'std': 0.006}, - ( 4, 51): {'mean': 0.101, 'std': 0.020}, - (51, 52): {'mean': 0.041, 'std': 0.008}, - (52, 53): {'mean': 0.026, 'std': 0.005}, - (53, 54): {'mean': 0.024, 'std': 0.005}, - ( 4, 55): {'mean': 0.100, 'std': 0.020}, - (55, 56): {'mean': 0.044, 'std': 0.009}, - (56, 57): {'mean': 0.029, 'std': 0.006}, - (57, 58): {'mean': 0.023, 'std': 0.005}, - ( 4, 59): {'mean': 0.096, 'std': 0.019}, - (59, 60): {'mean': 0.040, 'std': 0.008}, - (60, 61): {'mean': 0.028, 'std': 0.006}, - (61, 62): {'mean': 0.023, 'std': 0.005}, - ( 4, 63): {'mean': 0.094, 'std': 0.019}, - (63, 64): {'mean': 0.032, 'std': 0.006}, - (64, 65): {'mean': 0.020, 'std': 0.004}, - (65, 66): {'mean': 0.018, 'std': 0.004}, -} -} - -CONFIG['bodyhandface'] = {'kintree': - [[ 1, 0], - [ 2, 1], - [ 3, 2], - [ 4, 3], - [ 5, 1], - [ 6, 5], - [ 7, 6], - [ 8, 1], - [ 9, 8], - [10, 9], - [11, 10], - [12, 8], - [13, 12], - [14, 13], - [15, 0], - [16, 0], - [17, 15], - [18, 16], - [19, 14], - [20, 19], - [21, 14], - [22, 11], - [23, 22], - [24, 11], - [26, 7], # handl - [27, 26], - [28, 27], - [29, 28], - [30, 7], - [31, 30], - [32, 31], - [33, 32], - [34, 7], - [35, 34], - [36, 35], - [37, 36], - [38, 7], - [39, 38], - [40, 39], - [41, 40], - [42, 7], - [43, 42], - [44, 43], - [45, 44], - [47, 4], # handr - [48, 47], - [49, 48], - [50, 49], - [51, 4], - [52, 51], - [53, 52], - [54, 53], - [55, 4], - [56, 55], - [57, 56], - [58, 57], - [59, 4], - [60, 59], - [61, 60], - [62, 61], - [63, 4], - [64, 63], - [65, 64], - [66, 65], - [ 67, 68], - [ 68, 69], - [ 69, 70], - [ 70, 71], - [ 72, 73], - [ 73, 74], - [ 74, 75], - [ 75, 76], - [ 77, 78], - [ 78, 79], - [ 79, 80], - [ 81, 82], - [ 82, 83], - [ 83, 84], - [ 84, 85], - [ 86, 87], - [ 87, 88], - [ 88, 89], - [ 89, 90], - [ 90, 91], - [ 91, 86], - [ 92, 93], - [ 93, 94], - [ 94, 95], - [ 95, 96], - [ 96, 97], - [ 97, 92], - [ 98, 99], - [ 99, 100], - [100, 101], - [101, 102], - [102, 103], - [103, 104], - [104, 105], - [105, 106], - [106, 107], - [107, 108], - [108, 109], - [109, 98], - [110, 111], - [111, 112], - [112, 113], - [113, 114], - [114, 115], - [115, 116], - [116, 117], - [117, 110] - ], - 'nJoints': 118, - 'skeleton':{ - ( 0, 1): {'mean': 0.251, 'std': 0.050}, - ( 1, 2): {'mean': 0.169, 'std': 0.034}, - ( 2, 3): {'mean': 0.292, 'std': 0.058}, - ( 3, 4): {'mean': 0.275, 'std': 0.055}, - ( 1, 5): {'mean': 0.169, 'std': 0.034}, - ( 5, 6): {'mean': 0.295, 'std': 0.059}, - ( 6, 7): {'mean': 0.278, 'std': 0.056}, - ( 1, 8): {'mean': 0.566, 'std': 0.113}, - ( 8, 9): {'mean': 0.110, 'std': 0.022}, - ( 9, 10): {'mean': 0.398, 'std': 0.080}, - (10, 11): {'mean': 0.402, 'std': 0.080}, - ( 8, 12): {'mean': 0.111, 'std': 0.022}, - (12, 13): {'mean': 0.395, 'std': 0.079}, - (13, 14): {'mean': 0.403, 'std': 0.081}, - ( 0, 15): {'mean': 0.053, 'std': 0.011}, - ( 0, 16): {'mean': 0.056, 'std': 0.011}, - (15, 17): {'mean': 0.107, 'std': 0.021}, - (16, 18): {'mean': 0.107, 'std': 0.021}, - (14, 19): {'mean': 0.180, 'std': 0.036}, - (19, 20): {'mean': 0.055, 'std': 0.011}, - (14, 21): {'mean': 0.065, 'std': 0.013}, - (11, 22): {'mean': 0.169, 'std': 0.034}, - (22, 23): {'mean': 0.052, 'std': 0.010}, - (11, 24): {'mean': 0.061, 'std': 0.012}, - ( 7, 26): {'mean': 0.045, 'std': 0.009}, - (26, 27): {'mean': 0.042, 'std': 0.008}, - (27, 28): {'mean': 0.035, 'std': 0.007}, - (28, 29): {'mean': 0.029, 'std': 0.006}, - ( 7, 30): {'mean': 0.102, 'std': 0.020}, - (30, 31): {'mean': 0.040, 'std': 0.008}, - (31, 32): {'mean': 0.026, 'std': 0.005}, - (32, 33): {'mean': 0.023, 'std': 0.005}, - ( 7, 34): {'mean': 0.101, 'std': 0.020}, - (34, 35): {'mean': 0.043, 'std': 0.009}, - (35, 36): {'mean': 0.029, 'std': 0.006}, - (36, 37): {'mean': 0.024, 'std': 0.005}, - ( 7, 38): {'mean': 0.097, 'std': 0.019}, - (38, 39): {'mean': 0.041, 'std': 0.008}, - (39, 40): {'mean': 0.027, 'std': 0.005}, - (40, 41): {'mean': 0.024, 'std': 0.005}, - ( 7, 42): {'mean': 0.095, 'std': 0.019}, - (42, 43): {'mean': 0.033, 'std': 0.007}, - (43, 44): {'mean': 0.020, 'std': 0.004}, - (44, 45): {'mean': 0.018, 'std': 0.004}, - ( 4, 47): {'mean': 0.043, 'std': 0.009}, - (47, 48): {'mean': 0.041, 'std': 0.008}, - (48, 49): {'mean': 0.034, 'std': 0.007}, - (49, 50): {'mean': 0.028, 'std': 0.006}, - ( 4, 51): {'mean': 0.101, 'std': 0.020}, - (51, 52): {'mean': 0.041, 'std': 0.008}, - (52, 53): {'mean': 0.026, 'std': 0.005}, - (53, 54): {'mean': 0.024, 'std': 0.005}, - ( 4, 55): {'mean': 0.100, 'std': 0.020}, - (55, 56): {'mean': 0.044, 'std': 0.009}, - (56, 57): {'mean': 0.029, 'std': 0.006}, - (57, 58): {'mean': 0.023, 'std': 0.005}, - ( 4, 59): {'mean': 0.096, 'std': 0.019}, - (59, 60): {'mean': 0.040, 'std': 0.008}, - (60, 61): {'mean': 0.028, 'std': 0.006}, - (61, 62): {'mean': 0.023, 'std': 0.005}, - ( 4, 63): {'mean': 0.094, 'std': 0.019}, - (63, 64): {'mean': 0.032, 'std': 0.006}, - (64, 65): {'mean': 0.020, 'std': 0.004}, - (65, 66): {'mean': 0.018, 'std': 0.004}, - (67, 68): {'mean': 0.012, 'std': 0.002}, - (68, 69): {'mean': 0.013, 'std': 0.003}, - (69, 70): {'mean': 0.014, 'std': 0.003}, - (70, 71): {'mean': 0.012, 'std': 0.002}, - (72, 73): {'mean': 0.014, 'std': 0.003}, - (73, 74): {'mean': 0.014, 'std': 0.003}, - (74, 75): {'mean': 0.015, 'std': 0.003}, - (75, 76): {'mean': 0.013, 'std': 0.003}, - (77, 78): {'mean': 0.014, 'std': 0.003}, - (78, 79): {'mean': 0.014, 'std': 0.003}, - (79, 80): {'mean': 0.015, 'std': 0.003}, - (81, 82): {'mean': 0.009, 'std': 0.002}, - (82, 83): {'mean': 0.010, 'std': 0.002}, - (83, 84): {'mean': 0.010, 'std': 0.002}, - (84, 85): {'mean': 0.010, 'std': 0.002}, - (86, 87): {'mean': 0.009, 'std': 0.002}, - (87, 88): {'mean': 0.009, 'std': 0.002}, - (88, 89): {'mean': 0.008, 'std': 0.002}, - (89, 90): {'mean': 0.008, 'std': 0.002}, - (90, 91): {'mean': 0.009, 'std': 0.002}, - (86, 91): {'mean': 0.008, 'std': 0.002}, - (92, 93): {'mean': 0.009, 'std': 0.002}, - (93, 94): {'mean': 0.009, 'std': 0.002}, - (94, 95): {'mean': 0.009, 'std': 0.002}, - (95, 96): {'mean': 0.009, 'std': 0.002}, - (96, 97): {'mean': 0.009, 'std': 0.002}, - (92, 97): {'mean': 0.009, 'std': 0.002}, - (98, 99): {'mean': 0.016, 'std': 0.003}, - (99, 100): {'mean': 0.013, 'std': 0.003}, - (100, 101): {'mean': 0.008, 'std': 0.002}, - (101, 102): {'mean': 0.008, 'std': 0.002}, - (102, 103): {'mean': 0.012, 'std': 0.002}, - (103, 104): {'mean': 0.014, 'std': 0.003}, - (104, 105): {'mean': 0.015, 'std': 0.003}, - (105, 106): {'mean': 0.012, 'std': 0.002}, - (106, 107): {'mean': 0.009, 'std': 0.002}, - (107, 108): {'mean': 0.009, 'std': 0.002}, - (108, 109): {'mean': 0.013, 'std': 0.003}, - (98, 109): {'mean': 0.016, 'std': 0.003}, - (110, 111): {'mean': 0.021, 'std': 0.004}, - (111, 112): {'mean': 0.009, 'std': 0.002}, - (112, 113): {'mean': 0.008, 'std': 0.002}, - (113, 114): {'mean': 0.019, 'std': 0.004}, - (114, 115): {'mean': 0.018, 'std': 0.004}, - (115, 116): {'mean': 0.008, 'std': 0.002}, - (116, 117): {'mean': 0.009, 'std': 0.002}, - (110, 117): {'mean': 0.020, 'std': 0.004}, -} -} - -face_kintree_without_contour = [[ 0, 1], - [ 1, 2], - [ 2, 3], - [ 3, 4], - [ 5, 6], - [ 6, 7], - [ 7, 8], - [ 8, 9], - [10, 11], - [11, 12], - [12, 13], - [14, 15], - [15, 16], - [16, 17], - [17, 18], - [19, 20], - [20, 21], - [21, 22], - [22, 23], - [23, 24], - [24, 19], - [25, 26], - [26, 27], - [27, 28], - [28, 29], - [29, 30], - [30, 25], - [31, 32], - [32, 33], - [33, 34], - [34, 35], - [35, 36], - [36, 37], - [37, 38], - [38, 39], - [39, 40], - [40, 41], - [41, 42], - [42, 31], - [43, 44], - [44, 45], - [45, 46], - [46, 47], - [47, 48], - [48, 49], - [49, 50], - [50, 43]] - -CONFIG['face'] = {'kintree':[ [0,1],[1,2],[2,3],[3,4],[4,5],[5,6],[6,7],[7,8],[8,9],[9,10],[10,11],[11,12],[12,13],[13,14],[14,15],[15,16], #outline (ignored) - [17,18],[18,19],[19,20],[20,21], #right eyebrow - [22,23],[23,24],[24,25],[25,26], #left eyebrow - [27,28],[28,29],[29,30], #nose upper part - [31,32],[32,33],[33,34],[34,35], #nose lower part - [36,37],[37,38],[38,39],[39,40],[40,41],[41,36], #right eye - [42,43],[43,44],[44,45],[45,46],[46,47],[47,42], #left eye - [48,49],[49,50],[50,51],[51,52],[52,53],[53,54],[54,55],[55,56],[56,57],[57,58],[58,59],[59,48], #Lip outline - [60,61],[61,62],[62,63],[63,64],[64,65],[65,66],[66,67],[67,60] #Lip inner line - ]} - -CONFIG['h36m'] = { - 'kintree': [[0, 1], [1, 2], [2, 3], [0, 4], [4, 5], [5, 6], [0, 7], [7, 8], [8, 9], [9, 10], [8, 11], [11, 12], [ - 12, 13], [8, 14], [14, 15], [15, 16]], - 'color': ['r', 'r', 'r', 'g', 'g', 'g', 'k', 'k', 'k', 'k', 'g', 'g', 'g', 'r', 'r', 'r'], - 'joint_names': [ - 'hip', # 0 - 'LHip', # 1 - 'LKnee', # 2 - 'LAnkle', # 3 - 'RHip', # 4 - 'RKnee', # 5 - 'RAnkle', # 6 - 'Spine (H36M)', # 7 - 'Neck', # 8 - 'Head (H36M)', # 9 - 'headtop', # 10 - 'LShoulder', # 11 - 'LElbow', # 12 - 'LWrist', # 13 - 'RShoulder', # 14 - 'RElbow', # 15 - 'RWrist', # 16 - ], - 'nJoints': 17} - -NJOINTS_BODY = 25 -NJOINTS_HAND = 21 -NJOINTS_FACE = 70 -NLIMBS_BODY = len(CONFIG['body25']['kintree']) -NLIMBS_HAND = len(CONFIG['hand']['kintree']) -NLIMBS_FACE = len(CONFIG['face']['kintree']) - -def getKintree(name='total'): - if name == 'total': - # order: body25, face, rhand, lhand - kintree = CONFIG['body25']['kintree'] + CONFIG['hand']['kintree'] + CONFIG['hand']['kintree'] + CONFIG['face']['kintree'] - kintree = np.array(kintree) - kintree[NLIMBS_BODY:NLIMBS_BODY + NLIMBS_HAND] += NJOINTS_BODY - kintree[NLIMBS_BODY + NLIMBS_HAND:NLIMBS_BODY + 2*NLIMBS_HAND] += NJOINTS_BODY + NJOINTS_HAND - kintree[NLIMBS_BODY + 2*NLIMBS_HAND:] += NJOINTS_BODY + 2*NJOINTS_HAND - elif name == 'smplh': - # order: body25, lhand, rhand - kintree = CONFIG['body25']['kintree'] + CONFIG['hand']['kintree'] + CONFIG['hand']['kintree'] - kintree = np.array(kintree) - kintree[NLIMBS_BODY:NLIMBS_BODY + NLIMBS_HAND] += NJOINTS_BODY - kintree[NLIMBS_BODY + NLIMBS_HAND:NLIMBS_BODY + 2*NLIMBS_HAND] += NJOINTS_BODY + NJOINTS_HAND - return kintree -CONFIG['total'] = {} -CONFIG['total']['kintree'] = getKintree('total') -CONFIG['total']['nJoints'] = 137 - -COCO17_IN_BODY25 = [0,16,15,18,17,5,2,6,3,7,4,12,9,13,10,14,11] - -def coco17tobody25(points2d): - dim = 3 - if len(points2d.shape) == 2: - points2d = points2d[None, :, :] - dim = 2 - kpts = np.zeros((points2d.shape[0], 25, 3)) - kpts[:, COCO17_IN_BODY25, :2] = points2d[:, :, :2] - kpts[:, COCO17_IN_BODY25, 2:3] = points2d[:, :, 2:3] - kpts[:, 8, :2] = kpts[:, [9, 12], :2].mean(axis=1) - kpts[:, 8, 2] = kpts[:, [9, 12], 2].min(axis=1) - kpts[:, 1, :2] = kpts[:, [2, 5], :2].mean(axis=1) - kpts[:, 1, 2] = kpts[:, [2, 5], 2].min(axis=1) - if dim == 2: - kpts = kpts[0] - return kpts - diff --git a/code/dataset/mv1pmf.py b/code/dataset/mv1pmf.py deleted file mode 100644 index 8367ba1..0000000 --- a/code/dataset/mv1pmf.py +++ /dev/null @@ -1,106 +0,0 @@ -''' - @ Date: 2021-01-12 17:12:50 - @ Author: Qing Shuai - @ LastEditors: Qing Shuai - @ LastEditTime: 2021-01-21 14:51:45 - @ FilePath: /EasyMocap/code/dataset/mv1pmf.py -''' -import os -import ipdb -import torch -from os.path import join -import numpy as np -import cv2 -from .base import MVBase - -class MV1PMF(MVBase): - def __init__(self, root, cams=[], pid=0, out=None, config={}, - image_root='images', annot_root='annots', mode='body15', - undis=True, no_img=False) -> None: - super().__init__(root, cams, out, config, image_root, annot_root, - mode, undis, no_img) - self.pid = pid - - def write_keypoints3d(self, keypoints3d, nf): - results = [{'id': 0, 'keypoints3d': keypoints3d.tolist()}] - self.writer.write_keypoints3d(results, nf) - - def write_smpl(self, params, nf, images=[], to_img=False): - result = {'id': 0} - result.update(params) - self.writer.write_smpl([result], nf) - - def vis_smpl(self, vertices, faces, images, nf, sub_vis=[], - mode='smpl', extra_data=[], add_back=True): - render_data = {} - if len(vertices.shape) == 3: - vertices = vertices[0] - pid = self.pid - render_data[pid] = {'vertices': vertices, 'faces': faces, - 'vid': pid, 'name': 'human_{}_{}'.format(nf, pid)} - cameras = {'K': [], 'R':[], 'T':[]} - if len(sub_vis) == 0: - sub_vis = self.cams - for key in cameras.keys(): - cameras[key] = [self.cameras[cam][key] for cam in sub_vis] - images = [images[self.cams.index(cam)] for cam in sub_vis] - self.writer.vis_smpl(render_data, nf, images, cameras, mode, add_back=add_back) - - def vis_detections(self, images, annots, nf, to_img=True, sub_vis=[]): - lDetections = [] - for nv in range(len(images)): - det = { - 'id': self.pid, - 'bbox': annots['bbox'][nv], - 'keypoints': annots['keypoints'][nv] - } - lDetections.append([det]) - if len(sub_vis) != 0: - valid_idx = [self.cams.index(i) for i in sub_vis] - images = [images[i] for i in valid_idx] - lDetections = [lDetections[i] for i in valid_idx] - return self.writer.vis_detections(images, lDetections, nf, - key='keypoints', to_img=to_img, vis_id=False) - - def vis_repro(self, images, annots, kpts_repro, nf, to_img=True, sub_vis=[]): - lDetections = [] - for nv in range(len(images)): - det = { - 'id': -1, - 'repro': kpts_repro[nv] - } - lDetections.append([det]) - if len(sub_vis) != 0: - valid_idx = [self.cams.index(i) for i in sub_vis] - images = [images[i] for i in valid_idx] - lDetections = [lDetections[i] for i in valid_idx] - return self.writer.vis_detections(images, lDetections, nf, key='repro', - to_img=to_img, vis_id=False) - - def __getitem__(self, index: int): - images, annots_all = super().__getitem__(index) - annots = {'bbox': [], 'keypoints': []} - for nv, cam in enumerate(self.cams): - data = [d for d in annots_all[nv] if d['id'] == self.pid] - if len(data) == 1: - data = data[0] - bbox = data['bbox'] - keypoints = data['keypoints'] - else: - print('not found pid {} in {}, {}'.format(self.pid, index, nv)) - if self.add_hand_face: - keypoints = np.zeros((137, 3)) - else: - keypoints = np.zeros((25, 3)) - bbox = np.array([0, 0, 100., 100., 0.]) - annots['bbox'].append(bbox) - annots['keypoints'].append(keypoints) - for key in ['bbox', 'keypoints']: - annots[key] = np.stack(annots[key]) - return images, annots - - -if __name__ == "__main__": - root = '/home/qian/zjurv2/mnt/data/ftp/Human/vis/lightstage/CoreView_302_sync/' - dataset = MV1PMF(root) - images, annots = dataset[0] \ No newline at end of file diff --git a/code/demo_mv1pmf_skel.py b/code/demo_mv1pmf_skel.py deleted file mode 100644 index 60696cb..0000000 --- a/code/demo_mv1pmf_skel.py +++ /dev/null @@ -1,97 +0,0 @@ -''' - @ Date: 2021-01-12 17:08:25 - @ Author: Qing Shuai - @ LastEditors: Qing Shuai - @ LastEditTime: 2021-01-24 20:57:35 - @ FilePath: /EasyMocapRelease/code/demo_mv1pmf_skel.py -''' -# show skeleton and reprojection -from dataset.mv1pmf import MV1PMF -from dataset.config import CONFIG -from mytools.reconstruction import simple_recon_person, projectN3 -# from mytools.robust_triangulate import robust_triangulate -from tqdm import tqdm -import numpy as np -from smplmodel import check_keypoints - -def smooth_skeleton(skeleton): - # nFrames, nJoints, 4: [[(x, y, z, c)]] - nFrames = skeleton.shape[0] - span = 2 - # results = np.zeros((nFrames-2*span, skeleton.shape[1], skeleton.shape[2])) - origin = skeleton[span:nFrames-span, :, :].copy() - conf = origin[:, :, 3:4].copy() - skel = origin[:, :, :3] * conf - base_start = span - for i in range(-span, span+1): - sample = skeleton[base_start+i:base_start+i+skel.shape[0], :, :] - skel += sample[:, :, :3] * sample[:, :, 3:] - conf += sample[:, :, 3:] - not_f, not_j, _ = np.where(conf<0.1) - skel[not_f, not_j, :] = 0. - conf[not_f, not_j, :] = 1. - skel = skel/conf - skeleton[span:nFrames-span, :, :3] = skel - return skeleton - -def get_limb_length(config, keypoints): - skeleton = {} - for i, j_ in config['kintree']: - if j_ == 25: - j = 7 - elif j_ == 46: - j = 4 - else: - j = j_ - key = tuple(sorted([i, j])) - length, confs = 0, 0 - for nf in range(keypoints.shape[0]): - limb_length = np.linalg.norm(keypoints[nf, i, :3] - keypoints[nf, j, :3]) - conf = keypoints[nf, [i, j], -1].min() - length += limb_length * conf - confs += conf - limb_length = length/confs - skeleton[key] = {'mean': limb_length, 'std': limb_length*0.2} - print('{') - for key, val in skeleton.items(): - res = ' ({:2d}, {:2d}): {{\'mean\': {:.3f}, \'std\': {:.3f}}}, '.format(*key, val['mean'], val['std']) - if 'joint_names' in config.keys(): - res += '# {:9s}->{:9s}'.format(config['joint_names'][key[0]], config['joint_names'][key[1]]) - print(res) - print('}') - -def mv1pmf_skel(path, sub, out, mode, args): - MIN_CONF_THRES = 0.3 - no_img = not (args.vis_det or args.vis_repro) - config = CONFIG[mode] - dataset = MV1PMF(path, cams=sub, config=config, mode=mode, - undis=args.undis, no_img=no_img, out=out) - kp3ds = [] - start, end = args.start, min(args.end, len(dataset)) - for nf in tqdm(range(start, end), desc='triangulation'): - images, annots = dataset[nf] - conf = annots['keypoints'][..., -1] - conf[conf < MIN_CONF_THRES] = 0 - annots['keypoints'] = check_keypoints(annots['keypoints'], WEIGHT_DEBUFF=1) - keypoints3d, _, kpts_repro = simple_recon_person(annots['keypoints'], dataset.Pall, config=config, ret_repro=True) - # keypoints3d, _, kpts_repro = robust_triangulate(annots['keypoints'], dataset.Pall, config=config, ret_repro=True) - kp3ds.append(keypoints3d) - if args.vis_det: - dataset.vis_detections(images, annots, nf, sub_vis=args.sub_vis) - if args.vis_repro: - dataset.vis_repro(images, annots, kpts_repro, nf, sub_vis=args.sub_vis) - # smooth the skeleton - kp3ds = np.stack(kp3ds) - # 计算一下骨长 - # get_limb_length(config, kp3ds) - # if args.smooth: - # kp3ds = smooth_skeleton(kp3ds) - for nf in tqdm(range(kp3ds.shape[0]), desc='dump'): - dataset.write_keypoints3d(kp3ds[nf], nf + start) - -if __name__ == "__main__": - from mytools.cmd_loader import load_parser - parser = load_parser() - - args = parser.parse_args() - mv1pmf_skel(args.path, args.sub, args.out, args.body, args) \ No newline at end of file diff --git a/code/demo_mv1pmf_smpl.py b/code/demo_mv1pmf_smpl.py deleted file mode 100644 index f4ce352..0000000 --- a/code/demo_mv1pmf_smpl.py +++ /dev/null @@ -1,138 +0,0 @@ -''' - @ Date: 2021-01-12 17:08:25 - @ Author: Qing Shuai - @ LastEditors: Qing Shuai - @ LastEditTime: 2021-01-25 19:32:44 - @ FilePath: /EasyMocapRelease/code/demo_mv1pmf_smpl.py -''' -# show skeleton and reprojection -import pyrender # first import the pyrender -from pyfitting.optimize_simple import optimizeShape, optimizePose -from dataset.mv1pmf import MV1PMF -from dataset.config import CONFIG -from mytools.utils import Timer -from smplmodel import select_nf, init_params, Config, load_model, check_keypoints -from os.path import join -from tqdm import tqdm -import numpy as np - -def load_weight_shape(): - weight = {'s3d': 1., 'reg_shapes': 5e-3} - return weight - -def load_weight_pose(model): - if model == 'smpl': - weight = { - 'k3d': 1., 'reg_poses_zero': 1e-2, 'smooth_body': 1e-2 - } - elif model == 'smplh': - weight = { - 'k3d': 1., 'reg_poses_zero': 1e-3, - 'smooth_body': 1e-2, 'smooth_hand': 1e-2 - } - elif model == 'smplx': - weight = { - 'k3d': 1., 'reg_poses_zero': 1e-3, - 'reg_expression': 1e-2, - 'smooth_body': 1e-2, 'smooth_hand': 1e-2 - } - else: - raise NotImplementedError - return weight - -def print_mean_skel(mode): - with Timer('Loading {}, {}'.format(args.model, args.gender)): - body_model = load_model(args.gender, model_type=args.model) - params_init = init_params(nFrames=1, model_type=args.model) - skel = body_model(return_verts=False, return_tensor=False, **params_init)[0] - # skel: nJoints, 3 - config = CONFIG[mode] - skeleton = {} - for i, j_ in config['kintree']: - if j_ == 25: - j = 7 - elif j_ == 46: - j = 4 - else: - j = j_ - key = tuple(sorted([i, j])) - limb_length = np.linalg.norm(skel[i] - skel[j]) - skeleton[key] = {'mean': limb_length, 'std': limb_length*0.2} - print('{') - for key, val in skeleton.items(): - res = ' ({:2d}, {:2d}): {{\'mean\': {:.3f}, \'std\': {:.3f}}}, '.format(*key, val['mean'], val['std']) - if 'joint_names' in config.keys(): - res += '# {:9s}->{:9s}'.format(config['joint_names'][key[0]], config['joint_names'][key[1]]) - print(res) - print('}') - -def mv1pmf_smpl(path, sub, out, mode, args): - config = CONFIG[mode] - no_img = True - dataset = MV1PMF(path, cams=sub, config=CONFIG[mode], mode=args.body, - undis=args.undis, no_img=no_img, out=out) - if args.skel is None: - from demo_mv1pmf_skel import mv1pmf_skel - mv1pmf_skel(path, sub, out, mode, args) - args.skel = join(out, 'keypoints3d') - dataset.skel_path = args.skel - kp3ds = [] - start, end = args.start, min(args.end, len(dataset)) - dataset.no_img = True - annots_all = [] - for nf in tqdm(range(start, end), desc='loading'): - images, annots = dataset[nf] - infos = dataset.read_skel(nf) - kp3ds.append(infos[0]['keypoints3d']) - annots_all.append(annots) - kp3ds = np.stack(kp3ds) - kp3ds = check_keypoints(kp3ds, 1) - # optimize the human shape - with Timer('Loading {}, {}'.format(args.model, args.gender)): - body_model = load_model(args.gender, model_type=args.model) - params_init = init_params(nFrames=1, model_type=args.model) - weight = load_weight_shape() - if args.model in ['smpl', 'smplh', 'smplx']: - # when use SMPL model, optimize the shape only with first 14 limbs - params_shape = optimizeShape(body_model, params_init, kp3ds, weight_loss=weight, kintree=CONFIG['body15']['kintree']) - else: - params_shape = optimizeShape(body_model, params_init, kp3ds, weight_loss=weight, kintree=config['kintree']) - # optimize 3D pose - cfg = Config() - cfg.VERBOSE = args.verbose - cfg.MODEL = args.model - params = init_params(nFrames=kp3ds.shape[0], model_type=args.model) - params['shapes'] = params_shape['shapes'].copy() - weight = load_weight_pose(args.model) - with Timer('Optimize global RT'): - cfg.OPT_R = True - cfg.OPT_T = True - params = optimizePose(body_model, params, kp3ds, weight_loss=weight, kintree=config['kintree'], cfg=cfg) - with Timer('Optimize Pose/{} frames'.format(end-start)): - cfg.OPT_POSE = True - params = optimizePose(body_model, params, kp3ds, weight_loss=weight, kintree=config['kintree'], cfg=cfg) - if args.model in ['smplh', 'smplx']: - cfg.OPT_HAND = True - params = optimizePose(body_model, params, kp3ds, weight_loss=weight, kintree=config['kintree'], cfg=cfg) - if args.model == 'smplx': - cfg.OPT_EXPR = True - params = optimizePose(body_model, params, kp3ds, weight_loss=weight, kintree=config['kintree'], cfg=cfg) - # TODO:optimize 2D pose - # write out the results - dataset.no_img = not args.vis_smpl - for nf in tqdm(range(start, end), desc='render'): - images, annots = dataset[nf] - dataset.write_smpl(select_nf(params, nf-start), nf) - if args.vis_smpl: - vertices = body_model(return_verts=True, return_tensor=False, **select_nf(params, nf-start)) - dataset.vis_smpl(vertices=vertices, faces=body_model.faces, images=images, nf=nf, sub_vis=args.sub_vis, add_back=True) - -if __name__ == "__main__": - from mytools.cmd_loader import load_parser - parser = load_parser() - parser.add_argument('--skel', type=str, default=None, - help='path to keypoints3d') - parser.add_argument('--vis_smpl', action='store_true') - args = parser.parse_args() - # print_mean_skel(args.body) - mv1pmf_smpl(args.path, args.sub, args.out, args.body, args) \ No newline at end of file diff --git a/code/mytools/camera_utils.py b/code/mytools/camera_utils.py deleted file mode 100644 index e182d0e..0000000 --- a/code/mytools/camera_utils.py +++ /dev/null @@ -1,306 +0,0 @@ -import cv2 -import numpy as np -from tqdm import tqdm -import os - -class FileStorage(object): - def __init__(self, filename, isWrite=False): - version = cv2.__version__ - self.version = '.'.join(version.split('.')[:2]) - if isWrite: - self.fs = cv2.FileStorage(filename, cv2.FILE_STORAGE_WRITE) - else: - self.fs = cv2.FileStorage(filename, cv2.FILE_STORAGE_READ) - - def __del__(self): - cv2.FileStorage.release(self.fs) - - def write(self, key, value, dt='mat'): - if dt == 'mat': - cv2.FileStorage.write(self.fs, key, value) - elif dt == 'list': - # import ipdb;ipdb.set_trace() - if self.version == '4.4': # 4.4 - # self.fs.write(key, '[') - # for elem in value: - # self.fs.write('none', elem) - # self.fs.write('none', ']') - # import ipdb; ipdb.set_trace() - self.fs.startWriteStruct(key, cv2.FileNode_SEQ) - for elem in value: - self.fs.write('', elem) - self.fs.endWriteStruct() - else: # 3.4 - self.fs.write(key, '[') - for elem in value: - self.fs.write('none', elem) - self.fs.write('none', ']') - - def read(self, key, dt='mat'): - if dt == 'mat': - output = self.fs.getNode(key).mat() - elif dt == 'list': - results = [] - n = self.fs.getNode(key) - for i in range(n.size()): - val = n.at(i).string() - if val == '': - val = str(int(n.at(i).real())) - if val != 'none': - results.append(val) - output = results - else: - raise NotImplementedError - return output - - def close(self): - self.__del__(self) - -def _FindChessboardCorners(img, patternSize = (9, 6)): - if len(img.shape) == 3: - img = cv2.cvtColor(img,cv2.COLOR_BGR2GRAY) - criteria = (cv2.TERM_CRITERIA_EPS + cv2.TERM_CRITERIA_MAX_ITER, 30, 0.001) - - retval, corners = cv2.findChessboardCorners(img, patternSize, - flags=cv2.CALIB_CB_ADAPTIVE_THRESH + cv2.CALIB_CB_NORMALIZE_IMAGE) - if not retval: - return False, False - corners = cv2.cornerSubPix(img, corners, (11, 11), (-1, -1), criteria) - return True, corners - -def FindChessboardCorners(image_names, patternSize=(9, 6), gridSize=0.1, debug=False, remove=False, resize_rate = 1): - # prepare object points, like (0,0,0), (1,0,0), (2,0,0) ....,(6,5,0) - object_points = np.zeros((patternSize[1]*patternSize[0], 3), np.float32) - object_points[:,:2] = np.mgrid[0:patternSize[0], 0:patternSize[1]].T.reshape(-1,2) - object_points = object_points * gridSize - # Arrays to store object points and image points from all the images. - infos = [] - for fname in tqdm(image_names, desc='detecting chessboard'): - assert os.path.exists(fname), fname - tmpname = fname+'.corners.txt' - img = cv2.imread(fname) - img = cv2.resize(img, None, fx=resize_rate, fy=resize_rate) - if debug: - if img.shape[0] > 1000: - show = cv2.resize(img, None, fx=0.5, fy=0.5) - else: - show = img - cv2.imshow('img', show) - cv2.waitKey(10) - - - if os.path.exists(tmpname) and not debug: - ret = True - tmp = np.loadtxt(tmpname) - if len(tmp.shape) < 2: - ret = False - else: - corners = tmp.reshape((-1, 1, 2)) - corners = np.ascontiguousarray(corners.astype(np.float32)) - else: - gray = cv2.cvtColor(img,cv2.COLOR_BGR2GRAY) - # Find the chess board corners - ret, corners = _FindChessboardCorners(gray, patternSize) - if not ret: - ret, corners = _FindChessboardCorners(gray, patternSize, False) - print('Not found in adaptive mode, but retry = {}'.format(ret)) - # If found, add object points, image points (after refining them) - if ret: - np.savetxt(tmpname, corners[:, 0]) - else: - np.savetxt(tmpname, np.empty((0, 2), dtype=np.float32)) - if ret: - infos.append({ - 'point_object': object_points, - 'point_image': corners, - 'image': img, - 'image_name': fname - }) - if debug: - show = img.copy() - show = cv2.drawChessboardCorners(show, patternSize, corners, ret) - if show.shape[0] > 1000: - show = cv2.resize(show, None, fx=0.5, fy=0.5) - cv2.imshow('img', show) - cv2.waitKey(10) - elif remove: - os.remove(fname) - os.remove(tmpname) - return infos - - -def safe_mkdir(path): - if not os.path.exists(path): - os.makedirs(path) - -def read_intri(intri_name): - assert os.path.exists(intri_name), intri_name - intri = FileStorage(intri_name) - camnames = intri.read('names', dt='list') - from collections import OrderedDict - cameras = OrderedDict() - for key in camnames: - cam = {} - cam['K'] = intri.read('K_{}'.format(key)) - cam['invK'] = np.linalg.inv(cam['K']) - cam['dist'] = intri.read('dist_{}'.format(key)) - cameras[key] = cam - return cameras - -def write_extri(camera, path, base='extri.yml'): - extri_name = os.path.join(path, base) - extri = FileStorage(extri_name, True) - results = {} - camnames = [key_.split('.')[0] for key_ in camera.keys()] - extri.write('names', camnames, 'list') - for key_, val in camera.items(): - key = key_.split('.')[0] - extri.write('R_{}'.format(key), val['Rvec']) - extri.write('Rot_{}'.format(key), val['R']) - extri.write('T_{}'.format(key), val['T']) - return 0 - -def read_camera(intri_name, extri_name, cam_names=[0,1,2,3]): - assert os.path.exists(intri_name), intri_name - assert os.path.exists(extri_name), extri_name - - intri = FileStorage(intri_name) - extri = FileStorage(extri_name) - cams, P = {}, {} - for cam in cam_names: - # 内参只读子码流的 - cams[cam] = {} - cams[cam]['K'] = intri.read('K_{}'.format( cam)) - cams[cam]['invK'] = np.linalg.inv(cams[cam]['K']) - Rvec = extri.read('R_{}'.format(cam)) - Tvec = extri.read('T_{}'.format(cam)) - R = cv2.Rodrigues(Rvec)[0] - RT = np.hstack((R, Tvec)) - - cams[cam]['RT'] = RT - cams[cam]['R'] = R - cams[cam]['T'] = Tvec - P[cam] = cams[cam]['K'] @ cams[cam]['RT'] - cams[cam]['P'] = P[cam] - - cams[cam]['dist'] = intri.read('dist_{}'.format(cam)) - cams['basenames'] = cam_names - return cams - -def write_camera(camera, path): - from os.path import join - intri_name = join(path, 'intri.yml') - extri_name = join(path, 'extri.yml') - intri = FileStorage(intri_name, True) - extri = FileStorage(extri_name, True) - results = {} - camnames = [key_.split('.')[0] for key_ in camera.keys()] - intri.write('names', camnames, 'list') - extri.write('names', camnames, 'list') - for key_, val in camera.items(): - if key_ == 'basenames': - continue - key = key_.split('.')[0] - intri.write('K_{}'.format(key), val['K']) - intri.write('dist_{}'.format(key), val['dist']) - if 'Rvec' not in val.keys(): - val['Rvec'] = cv2.Rodrigues(val['R'])[0] - extri.write('R_{}'.format(key), val['Rvec']) - extri.write('Rot_{}'.format(key), val['R']) - extri.write('T_{}'.format(key), val['T']) - -def undistort(camera, frame=None, keypoints=None, output=None, bbox=None): - # bbox: 1, 7 - mtx = camera['K'] - dist = camera['dist'] - if frame is not None: - frame = cv2.undistort(frame, mtx, dist, None) - if output is not None: - output = cv2.undistort(output, mtx, dist, None) - if keypoints is not None: - for nP in range(keypoints.shape[0]): - kpts = keypoints[nP][:, None, :2] - kpts = np.ascontiguousarray(kpts) - kpts = cv2.undistortPoints(kpts, mtx, dist, P=mtx) - keypoints[nP, :, :2] = kpts[:, 0] - if bbox is not None: - kpts = np.zeros((2, 1, 2)) - kpts[0, 0, 0] = bbox[0] - kpts[0, 0, 1] = bbox[1] - kpts[1, 0, 0] = bbox[2] - kpts[1, 0, 1] = bbox[3] - kpts = cv2.undistortPoints(kpts, mtx, dist, P=mtx) - bbox[0] = kpts[0, 0, 0] - bbox[1] = kpts[0, 0, 1] - bbox[2] = kpts[1, 0, 0] - bbox[3] = kpts[1, 0, 1] - return bbox - return frame, keypoints, output - -def get_bbox(points_set, H, W, thres=0.1, scale=1.2): - bboxes = np.zeros((points_set.shape[0], 6)) - for iv in range(points_set.shape[0]): - pose = points_set[iv, :, :] - use_idx = pose[:,2] > thres - if np.sum(use_idx) < 1: - continue - ll, rr = np.min(pose[use_idx, 0]), np.max(pose[use_idx, 0]) - bb, tt = np.min(pose[use_idx, 1]), np.max(pose[use_idx, 1]) - center = (int((ll + rr) / 2), int((bb + tt) / 2)) - length = [int(scale*(rr-ll)/2), int(scale*(tt-bb)/2)] - l = max(0, center[0] - length[0]) - r = min(W, center[0] + length[0]) # img.shape[1] - b = max(0, center[1] - length[1]) - t = min(H, center[1] + length[1]) # img.shape[0] - conf = pose[:, 2].mean() - cls_conf = pose[use_idx, 2].mean() - bboxes[iv, 0] = l - bboxes[iv, 1] = r - bboxes[iv, 2] = b - bboxes[iv, 3] = t - bboxes[iv, 4] = conf - bboxes[iv, 5] = cls_conf - return bboxes - -def filterKeypoints(keypoints, thres = 0.1, min_width=40, \ - min_height=40, min_area= 50000, min_count=6): - add_list = [] - # TODO:并行化 - for ik in range(keypoints.shape[0]): - pose = keypoints[ik] - vis_count = np.sum(pose[:15, 2] > thres) #TODO: - if vis_count < min_count: - continue - ll, rr = np.min(pose[pose[:,2]>thres,0]), np.max(pose[pose[:,2]>thres,0]) - bb, tt = np.min(pose[pose[:,2]>thres,1]), np.max(pose[pose[:,2]>thres,1]) - center = (int((ll+rr)/2), int((bb+tt)/2)) - length = [int(1.2*(rr-ll)/2), int(1.2*(tt-bb)/2)] - l = center[0] - length[0] - r = center[0] + length[0] - b = center[1] - length[1] - t = center[1] + length[1] - if (r - l) < min_width: - continue - if (t - b) < min_height: - continue - if (r - l)*(t - b) < min_area: - continue - add_list.append(ik) - keypoints = keypoints[add_list, :, :] - return keypoints, add_list - - -def get_fundamental_matrix(cameras, basenames): - skew_op = lambda x: np.array([[0, -x[2], x[1]], [x[2], 0, -x[0]], [-x[1], x[0], 0]]) - fundamental_op = lambda K_0, R_0, T_0, K_1, R_1, T_1: np.linalg.inv(K_0).T @ ( - R_0 @ R_1.T) @ K_1.T @ skew_op(K_1 @ R_1 @ R_0.T @ (T_0 - R_0 @ R_1.T @ T_1)) - fundamental_RT_op = lambda K_0, RT_0, K_1, RT_1: fundamental_op (K_0, RT_0[:, :3], RT_0[:, 3], K_1, - RT_1[:, :3], RT_1[:, 3] ) - F = np.zeros((len(basenames), len(basenames), 3, 3)) # N x N x 3 x 3 matrix - F = {(icam, jcam): np.zeros((3, 3)) for jcam in basenames for icam in basenames} - for icam in basenames: - for jcam in basenames: - F[(icam, jcam)] += fundamental_RT_op(cameras[icam]['K'], cameras[icam]['RT'], cameras[jcam]['K'], cameras[jcam]['RT']) - if F[(icam, jcam)].sum() == 0: - F[(icam, jcam)] += 1e-12 # to avoid nan - return F diff --git a/code/mytools/cmd_loader.py b/code/mytools/cmd_loader.py deleted file mode 100644 index bc93f4c..0000000 --- a/code/mytools/cmd_loader.py +++ /dev/null @@ -1,44 +0,0 @@ -''' - @ Date: 2021-01-15 12:09:27 - @ Author: Qing Shuai - @ LastEditors: Qing Shuai - @ LastEditTime: 2021-01-24 20:57:22 - @ FilePath: /EasyMocapRelease/code/mytools/cmd_loader.py -''' - -import argparse - -def load_parser(): - parser = argparse.ArgumentParser('EasyMocap commond line tools') - parser.add_argument('path', type=str) - parser.add_argument('--out', type=str, default=None) - parser.add_argument('--annot', type=str, default=None) - parser.add_argument('--sub', type=str, nargs='+', default=[], - help='the sub folder lists when in video mode') - parser.add_argument('--start', type=int, default=0, - help='frame start') - parser.add_argument('--end', type=int, default=10000, - help='frame end') - parser.add_argument('--step', type=int, default=1, - help='frame step') - # - # keypoints and body model - # - parser.add_argument('--body', type=str, default='body25', choices=['body15', 'body25', 'bodyhand', 'bodyhandface', 'total']) - parser.add_argument('--model', type=str, default='smpl', choices=['smpl', 'smplh', 'smplx', 'mano']) - parser.add_argument('--gender', type=str, default='neutral', - choices=['neutral', 'male', 'female']) - # - # visualization part - # - parser.add_argument('--vis_det', action='store_true') - parser.add_argument('--vis_repro', action='store_true') - parser.add_argument('--undis', action='store_true') - parser.add_argument('--sub_vis', type=str, nargs='+', default=[], - help='the sub folder lists for visualization') - # - # debug - # - parser.add_argument('--verbose', action='store_true') - parser.add_argument('--debug', action='store_true') - return parser \ No newline at end of file diff --git a/code/mytools/reconstruction.py b/code/mytools/reconstruction.py deleted file mode 100644 index 5a11d15..0000000 --- a/code/mytools/reconstruction.py +++ /dev/null @@ -1,106 +0,0 @@ -''' - * @ Date: 2020-09-14 11:01:52 - * @ Author: Qing Shuai - @ LastEditors: Qing Shuai - @ LastEditTime: 2021-01-25 16:06:41 - @ FilePath: /EasyMocap/code/mytools/reconstruction.py -''' - -import numpy as np - -def solveZ(A): - u, s, v = np.linalg.svd(A) - X = v[-1, :] - X = X / X[3] - return X[:3] - -def projectN3(kpts3d, Pall): - # kpts3d: (N, 3) - nViews = len(Pall) - kp3d = np.hstack((kpts3d[:, :3], np.ones((kpts3d.shape[0], 1)))) - kp2ds = [] - for nv in range(nViews): - kp2d = Pall[nv] @ kp3d.T - kp2d[:2, :] /= kp2d[2:, :] - kp2ds.append(kp2d.T[None, :, :]) - kp2ds = np.vstack(kp2ds) - return kp2ds - -def simple_reprojection_error(kpts1, kpts1_proj): - # (N, 3) - error = np.mean((kpts1[:, :2] - kpts1_proj[:, :2])**2) - return error - -def simple_triangulate(kpts, Pall): - # kpts: (nViews, 3) - # Pall: (nViews, 3, 4) - # return: kpts3d(3,), conf: float - nViews = len(kpts) - A = np.zeros((nViews*2, 4), dtype=np.float) - result = np.zeros(4) - result[3] = kpts[:, 2].sum()/(kpts[:, 2]>0).sum() - for i in range(nViews): - P = Pall[i] - A[i*2, :] = kpts[i, 2]*(kpts[i, 0]*P[2:3,:] - P[0:1,:]) - A[i*2 + 1, :] = kpts[i, 2]*(kpts[i, 1]*P[2:3,:] - P[1:2,:]) - result[:3] = solveZ(A) - return result - -def simple_recon_person(keypoints_use, Puse, config=None, ret_repro=False): - eps = 0.01 - nJoints = keypoints_use[0].shape[0] - if isinstance(keypoints_use, list): - keypoints_use = np.stack(keypoints_use) - out = np.zeros((nJoints, 4)) - for nj in range(nJoints): - keypoints = keypoints_use[:, nj] - if (keypoints[:, 2] > 0.01).sum() < 2: - continue - out[nj] = simple_triangulate(keypoints, Puse) - if config is not None: - # remove the false limb with the help of limb - for (i, j), mean_std in config['skeleton'].items(): - ii, jj = min(i, j), max(i, j) - if out[ii, -1] < eps: - out[jj, -1] = 0 - if out[jj, -1] < eps: - continue - length = np.linalg.norm(out[ii, :3] - out[jj, :3]) - if abs(length - mean_std['mean'])/(3*mean_std['std']) > 1: - # print((i, j), length, mean_std) - out[jj, :] = 0 - # 计算重投影误差 - kpts_repro = projectN3(out, Puse) - square_diff = (keypoints_use[:, :, :2] - kpts_repro[:, :, :2])**2 - conf = np.repeat(out[None, :, -1:], len(Puse), 0) - kpts_repro = np.concatenate((kpts_repro, conf), axis=2) - if conf.sum() < 3: # 至少得有3个有效的关节 - repro_error = 1e3 - else: - conf2d = conf *(keypoints_use[:, :, -1:] > 0.01) - # (nViews, nJoints): reprojection error for each joint in each view - repro_error_joint = np.sqrt(square_diff.sum(axis=2, keepdims=True))*conf2d - # remove the not valid joints - # remove the bad views - repro_error = repro_error_joint.sum()/conf.sum() - - if ret_repro: - return out, repro_error, kpts_repro - return out, repro_error - -def check_limb(keypoints3d, limb_means, thres=0.5): - # keypoints3d: (nJ, 4) - valid = True - cnt = 0 - for (src, dst), val in limb_means.items(): - if not (keypoints3d[src, 3] > 0 and keypoints3d[dst, 3] > 0): - continue - cnt += 1 - # 计算骨长 - l_est = np.linalg.norm(keypoints3d[src, :3] - keypoints3d[dst, :3]) - if abs(l_est - val['mean'])/val['mean']/val['std'] > thres: - valid = False - break - # 至少两段骨头可以使用 - valid = valid and cnt > 2 - return valid \ No newline at end of file diff --git a/code/mytools/utils.py b/code/mytools/utils.py deleted file mode 100644 index 0de3d8a..0000000 --- a/code/mytools/utils.py +++ /dev/null @@ -1,21 +0,0 @@ -''' - @ Date: 2021-01-15 11:12:00 - @ Author: Qing Shuai - @ LastEditors: Qing Shuai - @ LastEditTime: 2021-01-25 21:36:42 - @ FilePath: /EasyMocap/code/mytools/utils.py -''' -import time - -class Timer: - def __init__(self, name, silent=False): - self.name = name - self.silent = silent - - def __enter__(self): - self.start = time.time() - - def __exit__(self, exc_type, exc_value, exc_tb): - end = time.time() - if not self.silent: - print('-> [{:20s}]: {:5.1f}ms'.format(self.name, (end-self.start)*1000)) diff --git a/code/mytools/vis_base.py b/code/mytools/vis_base.py deleted file mode 100644 index acfea4a..0000000 --- a/code/mytools/vis_base.py +++ /dev/null @@ -1,121 +0,0 @@ -''' - @ Date: 2020-11-28 17:23:04 - @ Author: Qing Shuai - @ LastEditors: Qing Shuai - @ LastEditTime: 2021-01-21 15:16:52 - @ FilePath: /EasyMocap/code/mytools/vis_base.py -''' -import cv2 -import numpy as np - -import json -def read_json(json_path): - with open(json_path, 'r') as f: - return json.load(f) - -def generate_colorbar(N = 1000, cmap = 'gist_rainbow'): - from matplotlib import cm - import numpy as np - import random - random.seed(666) - - cmaps = cm.get_cmap(cmap, N) - x = np.linspace(0.0, 1.0, N) - index = [i for i in range(N)] - random.shuffle(index) - rgb = cm.get_cmap(cmap)(x)[:, :3] - rgb = rgb[index, :] - rgb = (rgb*255).astype(np.uint8).tolist() - return rgb - -colors_bar_rgb = generate_colorbar(cmap='hsv') -# colors_bar_rgb = read_json('config/colors.json') - -def get_rgb(index): - index = int(index) - if index == -1: - return (255, 255, 255) - if index < -1: - return (0, 0, 0) - col = colors_bar_rgb[index%len(colors_bar_rgb)] - # color = tuple([int(c*255) for c in col]) - return col - -def plot_point(img, x, y, r, col, pid=-1): - cv2.circle(img, (int(x+0.5), int(y+0.5)), r, col, -1) - if pid != -1: - cv2.putText(img, '{}'.format(pid), (int(x+0.5), int(y+0.5)), cv2.FONT_HERSHEY_SIMPLEX, 1, col, 2) - - -def plot_line(img, pt1, pt2, lw, col): - cv2.line(img, (int(pt1[0]+0.5), int(pt1[1]+0.5)), (int(pt2[0]+0.5), int(pt2[1]+0.5)), - col, lw) - -def plot_bbox(img, bbox, pid, vis_id=True): - # 画bbox: (l, t, r, b) - x1, y1, x2, y2 = bbox[:4] - x1 = int(round(x1)) - x2 = int(round(x2)) - y1 = int(round(y1)) - y2 = int(round(y2)) - color = get_rgb(pid) - lw = max(img.shape[0]//300, 2) - cv2.rectangle(img, (x1, y1), (x2, y2), color, lw) - if vis_id: - cv2.putText(img, '{}'.format(pid), (x1, y1+20), cv2.FONT_HERSHEY_SIMPLEX, 1, color, 2) - -def plot_keypoints(img, points, pid, config, vis_conf=False, use_limb_color=True, lw=2): - for ii, (i, j) in enumerate(config['kintree']): - if i >= points.shape[0] or j >= points.shape[0]: - continue - pt1, pt2 = points[i], points[j] - if use_limb_color: - col = get_rgb(config['colors'][ii]) - else: - col = get_rgb(pid) - if pt1[-1] > 0.01 and pt2[-1] > 0.01: - image = cv2.line( - img, (int(pt1[0]+0.5), int(pt1[1]+0.5)), (int(pt2[0]+0.5), int(pt2[1]+0.5)), - col, lw) - for i in range(len(points)): - x, y = points[i][0], points[i][1] - c = points[i][-1] - if c > 0.01: - col = get_rgb(pid) - cv2.circle(img, (int(x+0.5), int(y+0.5)), lw*2, col, -1) - if vis_conf: - cv2.putText(img, '{:.1f}'.format(c), (int(x), int(y)), cv2.FONT_HERSHEY_SIMPLEX, 1, col, 2) - -def merge(images, row=-1, col=-1, resize=False, ret_range=False): - if row == -1 and col == -1: - from math import sqrt - row = int(sqrt(len(images)) + 0.5) - col = int(len(images)/ row + 0.5) - if row > col: - row, col = col, row - if len(images) == 8: - # basketball 场景 - row, col = 2, 4 - images = [images[i] for i in [0, 1, 2, 3, 7, 6, 5, 4]] - if len(images) == 7: - row, col = 3, 3 - elif len(images) == 2: - row, col = 2, 1 - height = images[0].shape[0] - width = images[0].shape[1] - ret_img = np.zeros((height * row, width * col, images[0].shape[2]), dtype=np.uint8) + 255 - ranges = [] - for i in range(row): - for j in range(col): - if i*col + j >= len(images): - break - img = images[i * col + j] - ret_img[height * i: height * (i+1), width * j: width * (j+1)] = img - ranges.append((width*j, height*i, width*(j+1), height*(i+1))) - if resize: - scale = min(1000/ret_img.shape[0], 1800/ret_img.shape[1]) - while ret_img.shape[0] > 2000: - ret_img = cv2.resize(ret_img, None, fx=scale, fy=scale) - if ret_range: - return ret_img, ranges - return ret_img \ No newline at end of file diff --git a/code/pyfitting/lbfgs.py b/code/pyfitting/lbfgs.py deleted file mode 100644 index a2394d1..0000000 --- a/code/pyfitting/lbfgs.py +++ /dev/null @@ -1,471 +0,0 @@ -import torch -from functools import reduce -from torch.optim.optimizer import Optimizer - - -def _cubic_interpolate(x1, f1, g1, x2, f2, g2, bounds=None): - # ported from https://github.com/torch/optim/blob/master/polyinterp.lua - # Compute bounds of interpolation area - if bounds is not None: - xmin_bound, xmax_bound = bounds - else: - xmin_bound, xmax_bound = (x1, x2) if x1 <= x2 else (x2, x1) - - # Code for most common case: cubic interpolation of 2 points - # w/ function and derivative values for both - # Solution in this case (where x2 is the farthest point): - # d1 = g1 + g2 - 3*(f1-f2)/(x1-x2); - # d2 = sqrt(d1^2 - g1*g2); - # min_pos = x2 - (x2 - x1)*((g2 + d2 - d1)/(g2 - g1 + 2*d2)); - # t_new = min(max(min_pos,xmin_bound),xmax_bound); - d1 = g1 + g2 - 3 * (f1 - f2) / (x1 - x2) - d2_square = d1**2 - g1 * g2 - if d2_square >= 0: - d2 = d2_square.sqrt() - if x1 <= x2: - min_pos = x2 - (x2 - x1) * ((g2 + d2 - d1) / (g2 - g1 + 2 * d2)) - else: - min_pos = x1 - (x1 - x2) * ((g1 + d2 - d1) / (g1 - g2 + 2 * d2)) - return min(max(min_pos, xmin_bound), xmax_bound) - else: - return (xmin_bound + xmax_bound) / 2. - - -def _strong_wolfe(obj_func, - x, - t, - d, - f, - g, - gtd, - c1=1e-4, - c2=0.9, - tolerance_change=1e-9, - max_ls=25): - # ported from https://github.com/torch/optim/blob/master/lswolfe.lua - d_norm = d.abs().max() - g = g.clone() - # evaluate objective and gradient using initial step - f_new, g_new = obj_func(x, t, d) - ls_func_evals = 1 - gtd_new = g_new.dot(d) - - # bracket an interval containing a point satisfying the Wolfe criteria - t_prev, f_prev, g_prev, gtd_prev = 0, f, g, gtd - done = False - ls_iter = 0 - while ls_iter < max_ls: - # check conditions - if f_new > (f + c1 * t * gtd) or (ls_iter > 1 and f_new >= f_prev): - bracket = [t_prev, t] - bracket_f = [f_prev, f_new] - bracket_g = [g_prev, g_new.clone()] - bracket_gtd = [gtd_prev, gtd_new] - break - - if abs(gtd_new) <= -c2 * gtd: - bracket = [t] - bracket_f = [f_new] - bracket_g = [g_new] - done = True - break - - if gtd_new >= 0: - bracket = [t_prev, t] - bracket_f = [f_prev, f_new] - bracket_g = [g_prev, g_new.clone()] - bracket_gtd = [gtd_prev, gtd_new] - break - - # interpolate - min_step = t + 0.01 * (t - t_prev) - max_step = t * 10 - tmp = t - t = _cubic_interpolate( - t_prev, - f_prev, - gtd_prev, - t, - f_new, - gtd_new, - bounds=(min_step, max_step)) - - # next step - t_prev = tmp - f_prev = f_new - g_prev = g_new.clone() - gtd_prev = gtd_new - f_new, g_new = obj_func(x, t, d) - ls_func_evals += 1 - gtd_new = g_new.dot(d) - ls_iter += 1 - - # reached max number of iterations? - if ls_iter == max_ls: - bracket = [0, t] - bracket_f = [f, f_new] - bracket_g = [g, g_new] - - # zoom phase: we now have a point satisfying the criteria, or - # a bracket around it. We refine the bracket until we find the - # exact point satisfying the criteria - insuf_progress = False - # find high and low points in bracket - low_pos, high_pos = (0, 1) if bracket_f[0] <= bracket_f[-1] else (1, 0) - while not done and ls_iter < max_ls: - # compute new trial value - t = _cubic_interpolate(bracket[0], bracket_f[0], bracket_gtd[0], - bracket[1], bracket_f[1], bracket_gtd[1]) - - # test that we are making sufficient progress: - # in case `t` is so close to boundary, we mark that we are making - # insufficient progress, and if - # + we have made insufficient progress in the last step, or - # + `t` is at one of the boundary, - # we will move `t` to a position which is `0.1 * len(bracket)` - # away from the nearest boundary point. - eps = 0.1 * (max(bracket) - min(bracket)) - if min(max(bracket) - t, t - min(bracket)) < eps: - # interpolation close to boundary - if insuf_progress or t >= max(bracket) or t <= min(bracket): - # evaluate at 0.1 away from boundary - if abs(t - max(bracket)) < abs(t - min(bracket)): - t = max(bracket) - eps - else: - t = min(bracket) + eps - insuf_progress = False - else: - insuf_progress = True - else: - insuf_progress = False - - # Evaluate new point - f_new, g_new = obj_func(x, t, d) - ls_func_evals += 1 - gtd_new = g_new.dot(d) - ls_iter += 1 - - if f_new > (f + c1 * t * gtd) or f_new >= bracket_f[low_pos]: - # Armijo condition not satisfied or not lower than lowest point - bracket[high_pos] = t - bracket_f[high_pos] = f_new - bracket_g[high_pos] = g_new.clone() - bracket_gtd[high_pos] = gtd_new - low_pos, high_pos = (0, 1) if bracket_f[0] <= bracket_f[1] else (1, 0) - else: - if abs(gtd_new) <= -c2 * gtd: - # Wolfe conditions satisfied - done = True - elif gtd_new * (bracket[high_pos] - bracket[low_pos]) >= 0: - # old high becomes new low - bracket[high_pos] = bracket[low_pos] - bracket_f[high_pos] = bracket_f[low_pos] - bracket_g[high_pos] = bracket_g[low_pos] - bracket_gtd[high_pos] = bracket_gtd[low_pos] - - # new point becomes new low - bracket[low_pos] = t - bracket_f[low_pos] = f_new - bracket_g[low_pos] = g_new.clone() - bracket_gtd[low_pos] = gtd_new - - # line-search bracket is so small - if abs(bracket[1] - bracket[0]) * d_norm < tolerance_change: - break - - # return stuff - t = bracket[low_pos] - f_new = bracket_f[low_pos] - g_new = bracket_g[low_pos] - return f_new, g_new, t, ls_func_evals - - -class LBFGS(Optimizer): - """Implements L-BFGS algorithm, heavily inspired by `minFunc - `. - - .. warning:: - This optimizer doesn't support per-parameter options and parameter - groups (there can be only one). - - .. warning:: - Right now all parameters have to be on a single device. This will be - improved in the future. - - .. note:: - This is a very memory intensive optimizer (it requires additional - ``param_bytes * (history_size + 1)`` bytes). If it doesn't fit in memory - try reducing the history size, or use a different algorithm. - - Arguments: - lr (float): learning rate (default: 1) - max_iter (int): maximal number of iterations per optimization step - (default: 20) - max_eval (int): maximal number of function evaluations per optimization - step (default: max_iter * 1.25). - tolerance_grad (float): termination tolerance on first order optimality - (default: 1e-5). - tolerance_change (float): termination tolerance on function - value/parameter changes (default: 1e-9). - history_size (int): update history size (default: 100). - line_search_fn (str): either 'strong_wolfe' or None (default: None). - """ - - def __init__(self, - params, - lr=1, - max_iter=20, - max_eval=None, - tolerance_grad=1e-5, - tolerance_change=1e-9, - history_size=100, - line_search_fn=None): - if max_eval is None: - max_eval = max_iter * 5 // 4 - defaults = dict( - lr=lr, - max_iter=max_iter, - max_eval=max_eval, - tolerance_grad=tolerance_grad, - tolerance_change=tolerance_change, - history_size=history_size, - line_search_fn=line_search_fn) - super(LBFGS, self).__init__(params, defaults) - - if len(self.param_groups) != 1: - raise ValueError("LBFGS doesn't support per-parameter options " - "(parameter groups)") - - self._params = self.param_groups[0]['params'] - self._numel_cache = None - - def _numel(self): - if self._numel_cache is None: - self._numel_cache = reduce(lambda total, p: total + p.numel(), self._params, 0) - return self._numel_cache - - def _gather_flat_grad(self): - views = [] - for p in self._params: - if p.grad is None: - view = p.new(p.numel()).zero_() - elif p.grad.is_sparse: - view = p.grad.to_dense().view(-1) - else: - view = p.grad.view(-1) - views.append(view) - return torch.cat(views, 0) - - def _add_grad(self, step_size, update): - offset = 0 - for p in self._params: - numel = p.numel() - # view as to avoid deprecated pointwise semantics - p.data.add_(step_size, update[offset:offset + numel].view_as(p.data)) - offset += numel - assert offset == self._numel() - - def _clone_param(self): - return [p.clone() for p in self._params] - - def _set_param(self, params_data): - for p, pdata in zip(self._params, params_data): - p.data.copy_(pdata) - - def _directional_evaluate(self, closure, x, t, d): - self._add_grad(t, d) - loss = float(closure()) - flat_grad = self._gather_flat_grad() - self._set_param(x) - return loss, flat_grad - - def step(self, closure): - """Performs a single optimization step. - - Arguments: - closure (callable): A closure that reevaluates the model - and returns the loss. - """ - assert len(self.param_groups) == 1 - - group = self.param_groups[0] - lr = group['lr'] - max_iter = group['max_iter'] - max_eval = group['max_eval'] - tolerance_grad = group['tolerance_grad'] - tolerance_change = group['tolerance_change'] - line_search_fn = group['line_search_fn'] - history_size = group['history_size'] - - # NOTE: LBFGS has only global state, but we register it as state for - # the first param, because this helps with casting in load_state_dict - state = self.state[self._params[0]] - state.setdefault('func_evals', 0) - state.setdefault('n_iter', 0) - - # evaluate initial f(x) and df/dx - orig_loss = closure() - loss = float(orig_loss) - current_evals = 1 - state['func_evals'] += 1 - - flat_grad = self._gather_flat_grad() - opt_cond = flat_grad.abs().max() <= tolerance_grad - - # optimal condition - if opt_cond: - return orig_loss - - # tensors cached in state (for tracing) - d = state.get('d') - t = state.get('t') - old_dirs = state.get('old_dirs') - old_stps = state.get('old_stps') - ro = state.get('ro') - H_diag = state.get('H_diag') - prev_flat_grad = state.get('prev_flat_grad') - prev_loss = state.get('prev_loss') - - n_iter = 0 - # optimize for a max of max_iter iterations - while n_iter < max_iter: - # keep track of nb of iterations - n_iter += 1 - state['n_iter'] += 1 - - ############################################################ - # compute gradient descent direction - ############################################################ - if state['n_iter'] == 1: - d = flat_grad.neg() - old_dirs = [] - old_stps = [] - ro = [] - H_diag = 1 - else: - # do lbfgs update (update memory) - y = flat_grad.sub(prev_flat_grad) - s = d.mul(t) - ys = y.dot(s) # y*s - if ys > 1e-10: - # updating memory - if len(old_dirs) == history_size: - # shift history by one (limited-memory) - old_dirs.pop(0) - old_stps.pop(0) - ro.pop(0) - - # store new direction/step - old_dirs.append(y) - old_stps.append(s) - ro.append(1. / ys) - - # update scale of initial Hessian approximation - H_diag = ys / y.dot(y) # (y*y) - - # compute the approximate (L-BFGS) inverse Hessian - # multiplied by the gradient - num_old = len(old_dirs) - - if 'al' not in state: - state['al'] = [None] * history_size - al = state['al'] - - # iteration in L-BFGS loop collapsed to use just one buffer - q = flat_grad.neg() - for i in range(num_old - 1, -1, -1): - al[i] = old_stps[i].dot(q) * ro[i] - q.add_(-al[i], old_dirs[i]) - - # multiply by initial Hessian - # r/d is the final direction - d = r = torch.mul(q, H_diag) - for i in range(num_old): - be_i = old_dirs[i].dot(r) * ro[i] - r.add_(al[i] - be_i, old_stps[i]) - - if prev_flat_grad is None: - prev_flat_grad = flat_grad.clone() - else: - prev_flat_grad.copy_(flat_grad) - prev_loss = loss - - ############################################################ - # compute step length - ############################################################ - # reset initial guess for step size - if state['n_iter'] == 1: - t = min(1., 1. / flat_grad.abs().sum()) * lr - else: - t = lr - - # directional derivative - gtd = flat_grad.dot(d) # g * d - - # directional derivative is below tolerance - if gtd > -tolerance_change: - break - - # optional line search: user function - ls_func_evals = 0 - if line_search_fn is not None: - # perform line search, using user function - if line_search_fn != "strong_wolfe": - raise RuntimeError("only 'strong_wolfe' is supported") - else: - x_init = self._clone_param() - - def obj_func(x, t, d): - return self._directional_evaluate(closure, x, t, d) - - loss, flat_grad, t, ls_func_evals = _strong_wolfe( - obj_func, x_init, t, d, loss, flat_grad, gtd) - self._add_grad(t, d) - opt_cond = flat_grad.abs().max() <= tolerance_grad - else: - # no line search, simply move with fixed-step - self._add_grad(t, d) - if n_iter != max_iter: - # re-evaluate function only if not in last iteration - # the reason we do this: in a stochastic setting, - # no use to re-evaluate that function here - loss = float(closure()) - flat_grad = self._gather_flat_grad() - opt_cond = flat_grad.abs().max() <= tolerance_grad - ls_func_evals = 1 - - # update func eval - current_evals += ls_func_evals - state['func_evals'] += ls_func_evals - - ############################################################ - # check conditions - ############################################################ - if n_iter == max_iter: - break - - if current_evals >= max_eval: - break - - # optimal condition - if opt_cond: - break - - # lack of progress - if d.mul(t).abs().max() <= tolerance_change: - break - - if abs(loss - prev_loss) < tolerance_change: - break - - state['d'] = d - state['t'] = t - state['old_dirs'] = old_dirs - state['old_stps'] = old_stps - state['ro'] = ro - state['H_diag'] = H_diag - state['prev_flat_grad'] = prev_flat_grad - state['prev_loss'] = prev_loss - - return orig_loss - diff --git a/code/pyfitting/lossfactory.py b/code/pyfitting/lossfactory.py deleted file mode 100644 index 7556fd9..0000000 --- a/code/pyfitting/lossfactory.py +++ /dev/null @@ -1,113 +0,0 @@ -''' - @ Date: 2020-11-19 17:46:04 - @ Author: Qing Shuai - @ LastEditors: Qing Shuai - @ LastEditTime: 2021-01-22 16:51:55 - @ FilePath: /EasyMocap/code/pyfitting/lossfactory.py -''' -import torch -from .operation import projection, batch_rodrigues - -def ReprojectionLoss(keypoints3d, keypoints2d, K, Rc, Tc, inv_bbox_sizes, norm='l2'): - img_points = projection(keypoints3d, K, Rc, Tc) - residual = (img_points - keypoints2d[:, :, :2]) * keypoints2d[:, :, -1:] - # squared_res: (nFrames, nJoints, 2) - if norm == 'l2': - squared_res = (residual ** 2) * inv_bbox_sizes - elif norm == 'l1': - squared_res = torch.abs(residual) * inv_bbox_sizes - else: - import ipdb; ipdb.set_trace() - return torch.sum(squared_res) - -class SMPLAngleLoss: - def __init__(self, keypoints, model_type='smpl'): - if keypoints.shape[1] <= 15: - use_feet = False - use_head = False - else: - use_feet = keypoints[:, [19, 20, 21, 22, 23, 24], -1].sum() > 0.1 - use_head = keypoints[:, [15, 16, 17, 18], -1].sum() > 0.1 - if model_type == 'smpl': - SMPL_JOINT_ZERO_IDX = [3, 6, 9, 10, 11, 13, 14, 20, 21, 22, 23] - elif model_type == 'smplh': - SMPL_JOINT_ZERO_IDX = [3, 6, 9, 10, 11, 13, 14] - elif model_type == 'smplx': - SMPL_JOINT_ZERO_IDX = [3, 6, 9, 10, 11, 13, 14] - else: - raise NotImplementedError - if not use_feet: - SMPL_JOINT_ZERO_IDX.extend([7, 8]) - if not use_head: - SMPL_JOINT_ZERO_IDX.extend([12, 15]) - SMPL_POSES_ZERO_IDX = [[j for j in range(3*i, 3*i+3)] for i in SMPL_JOINT_ZERO_IDX] - SMPL_POSES_ZERO_IDX = sum(SMPL_POSES_ZERO_IDX, []) - # SMPL_POSES_ZERO_IDX.extend([36, 37, 38, 45, 46, 47]) - self.idx = SMPL_POSES_ZERO_IDX - - def loss(self, poses): - return torch.sum(torch.abs(poses[:, self.idx])) - -def SmoothLoss(body_params, keys, weight_loss, span=4, model_type='smpl'): - spans = [i for i in range(1, span)] - span_weights = {i:1/i for i in range(1, span)} - span_weights = {key: i/sum(span_weights) for key, i in span_weights.items()} - loss_dict = {} - nFrames = body_params['poses'].shape[0] - nPoses = body_params['poses'].shape[1] - if model_type == 'smplh' or model_type == 'smplx': - nPoses = 66 - for key in ['poses', 'Th', 'poses_hand', 'expression']: - if key not in keys: - continue - k = 'smooth_' + key - if k in weight_loss.keys() and weight_loss[k] > 0.: - loss_dict[k] = 0. - for span in spans: - if key == 'poses_hand': - val = torch.sum((body_params['poses'][span:, 66:] - body_params['poses'][:nFrames-span, 66:])**2) - else: - val = torch.sum((body_params[key][span:, :nPoses] - body_params[key][:nFrames-span, :nPoses])**2) - loss_dict[k] += span_weights[span] * val - k = 'smooth_' + key + '_l1' - if k in weight_loss.keys() and weight_loss[k] > 0.: - loss_dict[k] = 0. - for span in spans: - if key == 'poses_hand': - val = torch.sum((body_params['poses'][span:, 66:] - body_params['poses'][:nFrames-span, 66:]).abs()) - else: - val = torch.sum((body_params[key][span:, :nPoses] - body_params[key][:nFrames-span, :nPoses]).abs()) - loss_dict[k] += span_weights[span] * val - # smooth rotation - rot = batch_rodrigues(body_params['Rh']) - key, k = 'Rh', 'smooth_Rh' - if key in keys and k in weight_loss.keys() and weight_loss[k] > 0.: - loss_dict[k] = 0. - for span in spans: - val = torch.sum((rot[span:, :] - rot[:nFrames-span, :])**2) - loss_dict[k] += span_weights[span] * val - return loss_dict - -def RegularizationLoss(body_params, body_params_init, weight_loss): - loss_dict = {} - for key in ['poses', 'shapes', 'Th', 'hands', 'head', 'expression']: - if 'init_'+key in weight_loss.keys() and weight_loss['init_'+key] > 0.: - if key == 'poses': - loss_dict['init_'+key] = torch.sum((body_params[key][:, :66] - body_params_init[key][:, :66])**2) - elif key == 'hands': - loss_dict['init_'+key] = torch.sum((body_params['poses'][: , 66:66+12] - body_params_init['poses'][:, 66:66+12])**2) - elif key == 'head': - loss_dict['init_'+key] = torch.sum((body_params['poses'][: , 78:78+9] - body_params_init['poses'][:, 78:78+9])**2) - elif key in body_params.keys(): - loss_dict['init_'+key] = torch.sum((body_params[key] - body_params_init[key])**2) - for key in ['poses', 'shapes', 'hands', 'head', 'expression']: - if 'reg_'+key in weight_loss.keys() and weight_loss['reg_'+key] > 0.: - if key == 'poses': - loss_dict['reg_'+key] = torch.sum((body_params[key][:, :66])**2) - elif key == 'hands': - loss_dict['reg_'+key] = torch.sum((body_params['poses'][: , 66:66+12])**2) - elif key == 'head': - loss_dict['reg_'+key] = torch.sum((body_params['poses'][: , 78:78+9])**2) - elif key in body_params.keys(): - loss_dict['reg_'+key] = torch.sum((body_params[key])**2) - return loss_dict \ No newline at end of file diff --git a/code/pyfitting/operation.py b/code/pyfitting/operation.py deleted file mode 100644 index f45ea63..0000000 --- a/code/pyfitting/operation.py +++ /dev/null @@ -1,74 +0,0 @@ -''' - @ Date: 2020-11-19 11:39:45 - @ Author: Qing Shuai - @ LastEditors: Qing Shuai - @ LastEditTime: 2021-01-20 15:06:28 - @ FilePath: /EasyMocap/code/pyfitting/operation.py -''' -import torch - -def batch_rodrigues(rot_vecs, epsilon=1e-8, dtype=torch.float32): - ''' Calculates the rotation matrices for a batch of rotation vectors - Parameters - ---------- - rot_vecs: torch.tensor Nx3 - array of N axis-angle vectors - Returns - ------- - R: torch.tensor Nx3x3 - The rotation matrices for the given axis-angle parameters - ''' - - batch_size = rot_vecs.shape[0] - device = rot_vecs.device - - angle = torch.norm(rot_vecs + 1e-8, dim=1, keepdim=True) - rot_dir = rot_vecs / angle - - cos = torch.unsqueeze(torch.cos(angle), dim=1) - sin = torch.unsqueeze(torch.sin(angle), dim=1) - - # Bx1 arrays - rx, ry, rz = torch.split(rot_dir, 1, dim=1) - K = torch.zeros((batch_size, 3, 3), dtype=dtype, device=device) - - zeros = torch.zeros((batch_size, 1), dtype=dtype, device=device) - K = torch.cat([zeros, -rz, ry, rz, zeros, -rx, -ry, rx, zeros], dim=1) \ - .view((batch_size, 3, 3)) - - ident = torch.eye(3, dtype=dtype, device=device).unsqueeze(dim=0) - rot_mat = ident + sin * K + (1 - cos) * torch.bmm(K, K) - return rot_mat - -def projection(points3d, camera_intri, R=None, T=None, distance=None): - """ project the 3d points to camera coordinate - - Arguments: - points3d {Tensor} -- (bn, N, 3) - camera_intri {Tensor} -- (bn, 3, 3) - distance {Tensor} -- (bn, 1, 1) - R: bn, 3, 3 - T: bn, 3, 1 - Returns: - points2d -- (bn, N, 2) - """ - if R is not None: - Rt = torch.transpose(R, 1, 2) - if T.shape[-1] == 1: - Tt = torch.transpose(T, 1, 2) - points3d = torch.matmul(points3d, Rt) + Tt - else: - points3d = torch.matmul(points3d, Rt) + T - - if distance is None: - img_points = torch.div(points3d[:, :, :2], - points3d[:, :, 2:3]) - else: - img_points = torch.div(points3d[:, :, :2], - distance) - camera_mat = camera_intri[:, :2, :2] - center = torch.transpose(camera_intri[:, :2, 2:3], 1, 2) - img_points = torch.matmul(img_points, camera_mat.transpose(1, 2)) + center - # img_points = torch.einsum('bki,bji->bjk', [camera_mat, img_points]) \ - # + center - return img_points \ No newline at end of file diff --git a/code/pyfitting/optimize.py b/code/pyfitting/optimize.py deleted file mode 100644 index 4f378f3..0000000 --- a/code/pyfitting/optimize.py +++ /dev/null @@ -1,131 +0,0 @@ -''' - @ Date: 2020-06-26 12:06:25 - @ LastEditors: Qing Shuai - @ LastEditTime: 2020-06-26 12:08:37 - @ Author: Qing Shuai - @ Mail: s_q@zju.edu.cn -''' -import numpy as np -import os -from tqdm import tqdm -import torch -import json - -def rel_change(prev_val, curr_val): - return (prev_val - curr_val) / max([np.abs(prev_val), np.abs(curr_val), 1]) - -class FittingMonitor: - def __init__(self, ftol=1e-5, gtol=1e-6, maxiters=100, visualize=False, verbose=False, **kwargs): - self.maxiters = maxiters - self.ftol = ftol - self.gtol = gtol - self.visualize = visualize - self.verbose = verbose - if self.visualize: - from utils.mesh_viewer import MeshViewer - self.mv = MeshViewer(width=1024, height=1024, bg_color=[1.0, 1.0, 1.0, 1.0], - body_color=[0.65098039, 0.74117647, 0.85882353, 1.0], - offscreen=False) - - def run_fitting(self, optimizer, closure, params, smpl_render=None, **kwargs): - prev_loss = None - grad_require(params, True) - if self.verbose: - trange = tqdm(range(self.maxiters), desc='Fitting') - else: - trange = range(self.maxiters) - for iter in trange: - loss = optimizer.step(closure) - if torch.isnan(loss).sum() > 0: - print('NaN loss value, stopping!') - break - - if torch.isinf(loss).sum() > 0: - print('Infinite loss value, stopping!') - break - - # if all([torch.abs(var.grad.view(-1).max()).item() < self.gtol - # for var in params if var.grad is not None]): - # print('Small grad, stopping!') - # break - - if iter > 0 and prev_loss is not None and self.ftol > 0: - loss_rel_change = rel_change(prev_loss, loss.item()) - - if loss_rel_change <= self.ftol: - break - - if self.visualize: - vertices = smpl_render.GetVertices(**kwargs) - self.mv.update_mesh(vertices[::10], smpl_render.faces) - prev_loss = loss.item() - grad_require(params, False) - return prev_loss - - def close(self): - if self.visualize: - self.mv.close_viewer() -class FittingLog: - if False: - from tensorboardX import SummaryWriter - swriter = SummaryWriter() - def __init__(self, log_name, useVisdom=False): - if not os.path.exists(log_name): - log_file = open(log_name, 'w') - self.index = {log_name:0} - - else: - log_file = open(log_name, 'r') - log_pre = log_file.readlines() - log_file.close() - self.index = {log_name:len(log_pre)} - log_file = open(log_name, 'a') - self.log_file = log_file - self.useVisdom = useVisdom - if useVisdom: - import visdom - self.vis = visdom.Visdom(env=os.path.realpath( - join(os.path.dirname(log_name), '..')).replace(os.sep, '_')) - elif False: - self.writer = FittingLog.swriter - self.log_name = log_name - - def step(self, loss_dict, weight_loss): - print(' '.join([key + ' %f'%(loss_dict[key].item()*weight_loss[key]) - for key in loss_dict.keys() if weight_loss[key]>0]), file=self.log_file) - loss = {key:loss_dict[key].item()*weight_loss[key] - for key in loss_dict.keys() if weight_loss[key]>0} - if self.useVisdom: - name = list(loss.keys()) - val = list(loss.values()) - x = self.index.get(self.log_name, 0) - if len(val) == 1: - y = np.array(val) - else: - y = np.array(val).reshape(-1, len(val)) - self.vis.line(Y=y,X=np.ones(y.shape)*x, - win=str(self.log_name),#unicode - opts=dict(legend=name, - title=self.log_name), - update=None if x == 0 else 'append' - ) - elif False: - self.writer.add_scalars('data/{}'.format(self.log_name), loss, self.index[self.log_name]) - self.index[self.log_name] += 1 - - def log_loss(self, weight_loss): - loss = json.dumps(weight_loss, indent=4) - self.log_file.writelines(loss) - self.log_file.write('\n') - - def close(self): - self.log_file.close() - - -def grad_require(paras, flag=False): - if isinstance(paras, list): - for par in paras: - par.requires_grad = flag - elif isinstance(paras, dict): - for key, par in paras.items(): - par.requires_grad = flag \ No newline at end of file diff --git a/code/pyfitting/optimize_simple.py b/code/pyfitting/optimize_simple.py deleted file mode 100644 index 0fd3a07..0000000 --- a/code/pyfitting/optimize_simple.py +++ /dev/null @@ -1,364 +0,0 @@ -''' - @ Date: 2020-11-19 10:49:26 - @ Author: Qing Shuai - @ LastEditors: Qing Shuai - @ LastEditTime: 2021-01-24 21:29:12 - @ FilePath: /EasyMocapRelease/code/pyfitting/optimize_simple.py -''' -import numpy as np -import torch -from .lbfgs import LBFGS -from .optimize import FittingMonitor, grad_require, FittingLog -from .lossfactory import SMPLAngleLoss, SmoothLoss, RegularizationLoss, ReprojectionLoss - -def create_closure(optimizer, body_model, body_params, body_params_init, cam_params, - keypoints2d, bboxes, weight_loss_, debug=False, verbose=False): - K, Rc, Tc = cam_params['K'], cam_params['Rc'], cam_params['Tc'] - bbox_sizes = np.maximum(bboxes[:, 2] - bboxes[:, 0], bboxes[:, 3] - bboxes[:, 1])/100 - inv_bbox_sizes = torch.Tensor(1./bbox_sizes[:, None, None]).to(body_model.device)**2 - nFrames = keypoints2d.shape[0] - nPoses = body_params['poses'].shape[0] - if nFrames == nPoses: - weight_loss = {key:val/nFrames for key, val in weight_loss_.items()} # normalize by frames - else: - # the multiple views case - weight_loss = weight_loss_.copy() - weight_loss['repro'] /= nFrames - angle_prior = SMPLAngleLoss(keypoints2d) - - if len(K.shape) == 2: - K, Rc, Tc = K[None, :, :], Rc[None, :, :], Tc[None, :, :] - def closure(debug=False): - optimizer.zero_grad() - keypoints3d = body_model(return_verts=False, return_tensor=True, **body_params) - loss_dict = {} - loss_dict['repro'] = ReprojectionLoss(keypoints3d, keypoints2d, K, Rc, Tc, inv_bbox_sizes) - # smooth - loss_dict.update(SmoothLoss(body_params, ['poses', 'Th'], weight_loss)) - # regularize - loss_dict.update(RegularizationLoss(body_params, body_params_init, weight_loss)) - loss_dict['reg_poses_zero'] = angle_prior.loss(body_params['poses']) - # fittingLog.step(loss_dict, weight_loss) - if verbose: - print(' '.join([key + ' %f'%(loss_dict[key].item()*weight_loss[key]) - for key in loss_dict.keys() if weight_loss[key]>0])) - loss = sum([loss_dict[key]*weight_loss[key] - for key in loss_dict.keys()]) - if not debug: - loss.backward() - return loss - else: - return loss_dict - return closure - -def findNeighborIdx(nf, nF, nspan): - idx = [i for i in range(nf-nspan, nf+nspan+1) if i >=0 and i min_thres[key]: - weight[nf] = 0 - for nf in range(nF): - neighbor_idx = findNeighborIdx(nf, nF, nspan) + [nf] - weight_cur = weight[neighbor_idx] - weight_sum = weight_cur.sum() - if weight_sum == 0: - pass - else: - val = body_params[key][neighbor_idx, :]*weight_cur[:, None] - val = val.sum(axis=0)/weight_sum - # simply remove outliers - body_params[key][nf] = val - # for rotation data - pass - return body_params - - -def optimizeVideo(body_model, params_init, cam_params, - keypoints, bbox, - weight, cfg=None): - """ simple function for optimizing video/image - - Args: - body_model (SMPL model) - params_init (DictParam): poses(F, 72), shapes(1/F, 10), Rh(F, 3), Th(F, 3) - cam_params (DictParam): K, R, T - keypoints (F, J, 3): 2D keypoints - bbox (F, 7): bounding box - weight (Dict): string:float - cfg (Config): Config Node controling running mode - """ - device = body_model.device - cam_params = {key:torch.Tensor(val).to(device) for key, val in cam_params.items()} - keypoints = torch.Tensor(keypoints).to(device) - body_params = {key:torch.Tensor(val).to(device) for key, val in params_init.items()} - body_params_init = {key:val.clone() for key, val in body_params.items()} - if cfg is None: - opt_params = [body_params['Rh'], body_params['Th'], body_params['poses']] - else: - opt_params = [] - if cfg.OPT_R: - opt_params.append(body_params['Rh']) - if cfg.OPT_T: - opt_params.append(body_params['Th']) - if cfg.OPT_POSE: - opt_params.append(body_params['poses']) - - grad_require(opt_params, True) - optimizer = LBFGS( - opt_params, line_search_fn='strong_wolfe') - - closure = create_closure(optimizer, body_model, body_params, - body_params_init, cam_params, - keypoints, bbox, weight, verbose=cfg.VERBOSE) - - fitting = FittingMonitor(ftol=1e-4) - final_loss = fitting.run_fitting(optimizer, closure, opt_params) - fitting.close() - grad_require(opt_params, False) - loss_dict = closure(debug=True) - optimizer = LBFGS( - opt_params, line_search_fn='strong_wolfe') - body_params = {key:val.detach().cpu().numpy() for key, val in body_params.items()} - return body_params - -def optimizeMultiImage(body_model, params_init, cam_params, - keypoints, bbox, - weight, cfg): - """ simple function for optimizing multiple images - - Args: - body_model (SMPL model) - params_init (DictParam): poses(1, 72), shapes(1, 10), Rh(1, 3), Th(1, 3) - cam_params (DictParam): K(nV, 3, 3), R(nV, 3, 3), T(nV, 3, 1) - keypoints (nV, J, 3): 2D keypoints - bbox (nV, 7): bounding box - weight (Dict): string:float - cfg (Config): Config Node controling running mode - """ - device = body_model.device - cam_params = {key:torch.Tensor(val).to(device) for key, val in cam_params.items()} - keypoints = torch.Tensor(keypoints).to(device) - body_params = {key:torch.Tensor(val).to(device) for key, val in params_init.items()} - body_params_init = {key:val.clone() for key, val in body_params.items()} - if cfg is None: - opt_params = [body_params['Rh'], body_params['Th'], body_params['poses']] - else: - opt_params = [] - if cfg.OPT_R: - opt_params.append(body_params['Rh']) - if cfg.OPT_T: - opt_params.append(body_params['Th']) - if cfg.OPT_POSE: - opt_params.append(body_params['poses']) - if cfg.OPT_SHAPE: - opt_params.append(body_params['shapes']) - grad_require(opt_params, True) - optimizer = LBFGS( - opt_params, line_search_fn='strong_wolfe') - - closure = create_closure(optimizer, body_model, body_params, - body_params_init, cam_params, - keypoints, bbox, weight, verbose=cfg.VERBOSE) - - fitting = FittingMonitor(ftol=1e-4) - final_loss = fitting.run_fitting(optimizer, closure, opt_params) - fitting.close() - grad_require(opt_params, False) - loss_dict = closure(debug=True) - for key in loss_dict.keys(): - loss_dict[key] = loss_dict[key].item() - optimizer = LBFGS( - opt_params, line_search_fn='strong_wolfe') - body_params = {key:val.detach().cpu().numpy() for key, val in body_params.items()} - return body_params, loss_dict - -def optimizeShape(body_model, body_params, keypoints3d, - weight_loss, kintree, cfg=None): - """ simple function for optimizing model shape given 3d keypoints - - Args: - body_model (SMPL model) - params_init (DictParam): poses(1, 72), shapes(1, 10), Rh(1, 3), Th(1, 3) - keypoints (nFrames, nJoints, 3): 3D keypoints - weight (Dict): string:float - kintree ([[src, dst]]): list of list:int - cfg (Config): Config Node controling running mode - """ - device = body_model.device - # 计算不同的骨长 - kintree = np.array(kintree, dtype=np.int) - # limb_length: nFrames, nLimbs, 1 - limb_length = np.linalg.norm(keypoints3d[:, kintree[:, 1], :3] - keypoints3d[:, kintree[:, 0], :3], axis=2, keepdims=True) - # conf: nFrames, nLimbs, 1 - limb_conf = np.minimum(keypoints3d[:, kintree[:, 1], 3:], keypoints3d[:, kintree[:, 0], 3:]) - limb_length = torch.Tensor(limb_length).to(device) - limb_conf = torch.Tensor(limb_conf).to(device) - body_params = {key:torch.Tensor(val).to(device) for key, val in body_params.items()} - body_params_init = {key:val.clone() for key, val in body_params.items()} - opt_params = [body_params['shapes']] - grad_require(opt_params, True) - optimizer = LBFGS( - opt_params, line_search_fn='strong_wolfe', max_iter=10) - nFrames = keypoints3d.shape[0] - verbose = False - def closure(debug=False): - optimizer.zero_grad() - keypoints3d = body_model(return_verts=False, return_tensor=True, only_shape=True, **body_params) - src = keypoints3d[:, kintree[:, 0], :3] #.detach() - dst = keypoints3d[:, kintree[:, 1], :3] - direct_est = (dst - src).detach() - direct_norm = torch.norm(direct_est, dim=2, keepdim=True) - direct_normalized = direct_est/(direct_norm + 1e-4) - err = dst - src - direct_normalized * limb_length - loss_dict = { - 's3d': torch.sum(err**2*limb_conf)/nFrames, - 'reg_shapes': torch.sum(body_params['shapes']**2)} - if 'init_shape' in weight_loss.keys(): - loss_dict['init_shape'] = torch.sum((body_params['shapes'] - body_params_init['shapes'])**2) - # fittingLog.step(loss_dict, weight_loss) - if verbose: - print(' '.join([key + ' %.3f'%(loss_dict[key].item()*weight_loss[key]) - for key in loss_dict.keys() if weight_loss[key]>0])) - loss = sum([loss_dict[key]*weight_loss[key] - for key in loss_dict.keys()]) - if not debug: - loss.backward() - return loss - else: - return loss_dict - - fitting = FittingMonitor(ftol=1e-4) - final_loss = fitting.run_fitting(optimizer, closure, opt_params) - fitting.close() - grad_require(opt_params, False) - loss_dict = closure(debug=True) - for key in loss_dict.keys(): - loss_dict[key] = loss_dict[key].item() - optimizer = LBFGS( - opt_params, line_search_fn='strong_wolfe') - body_params = {key:val.detach().cpu().numpy() for key, val in body_params.items()} - return body_params - -N_BODY = 25 -N_HAND = 21 - -def optimizePose(body_model, body_params, keypoints3d, - weight_loss, kintree, cfg=None): - """ simple function for optimizing model pose given 3d keypoints - - Args: - body_model (SMPL model) - params_init (DictParam): poses(1, 72), shapes(1, 10), Rh(1, 3), Th(1, 3) - keypoints (nFrames, nJoints, 3): 3D keypoints - weight (Dict): string:float - kintree ([[src, dst]]): list of list:int - cfg (Config): Config Node controling running mode - """ - device = body_model.device - model_type = body_model.model_type - # 计算不同的骨长 - kintree = np.array(kintree, dtype=np.int) - nFrames = keypoints3d.shape[0] - nJoints = keypoints3d.shape[1] - keypoints3d = torch.Tensor(keypoints3d).to(device) - angle_prior = SMPLAngleLoss(keypoints3d, body_model.model_type) - - body_params = {key:torch.Tensor(val).to(device) for key, val in body_params.items()} - body_params_init = {key:val.clone() for key, val in body_params.items()} - if cfg is None: - opt_params = [body_params['Rh'], body_params['Th'], body_params['poses']] - verbose = False - else: - opt_params = [] - if cfg.OPT_R: - opt_params.append(body_params['Rh']) - if cfg.OPT_T: - opt_params.append(body_params['Th']) - if cfg.OPT_POSE: - opt_params.append(body_params['poses']) - if cfg.OPT_SHAPE: - opt_params.append(body_params['shapes']) - if cfg.OPT_EXPR and model_type == 'smplx': - opt_params.append(body_params['expression']) - verbose = cfg.VERBOSE - grad_require(opt_params, True) - optimizer = LBFGS( - opt_params, line_search_fn='strong_wolfe') - zero_pose = torch.zeros((nFrames, 3), device=device) - if not cfg.OPT_HAND and model_type in ['smplh', 'smplx']: - zero_pose_hand = torch.zeros((nFrames, body_params['poses'].shape[1] - 66), device=device) - nJoints = N_BODY - keypoints3d = keypoints3d[:, :nJoints] - elif cfg.OPT_HAND and not cfg.OPT_EXPR and model_type == 'smplx': - zero_pose_face = torch.zeros((nFrames, body_params['poses'].shape[1] - 78), device=device) - nJoints = N_BODY + N_HAND * 2 - keypoints3d = keypoints3d[:, :nJoints] - else: - nJoints = keypoints3d.shape[1] - def closure(debug=False): - optimizer.zero_grad() - new_params = body_params.copy() - if not cfg.OPT_HAND and cfg.MODEL in ['smplh', 'smplx']: - new_params['poses'] = torch.cat([zero_pose, body_params['poses'][:, 3:66], zero_pose_hand], dim=1) - else: - new_params['poses'] = torch.cat([zero_pose, body_params['poses'][:, 3:]], dim=1) - kpts_est = body_model(return_verts=False, return_tensor=True, **new_params)[:, :nJoints, :] - diff_square = (kpts_est[:, :nJoints, :3] - keypoints3d[..., :3])**2 - # TODO:add robust loss - conf = keypoints3d[..., 3:] - loss_3d = torch.sum(conf * diff_square) - loss_dict = { - 'k3d': loss_3d, - 'reg_poses_zero': angle_prior.loss(body_params['poses']) - } - # regularize - loss_dict.update(RegularizationLoss(body_params, body_params_init, weight_loss)) - # smooth - smooth_conf = keypoints3d[1:, ..., -1:]**2 - loss_dict['smooth_body'] = torch.sum(smooth_conf[:, :N_BODY] * torch.abs(kpts_est[:-1, :N_BODY] - kpts_est[1:, :N_BODY])) - if cfg.OPT_HAND and cfg.MODEL in ['smplh', 'smplx']: - loss_dict['smooth_hand'] = torch.sum(smooth_conf[:, N_BODY:N_BODY+N_HAND*2] * torch.abs(kpts_est[:-1, N_BODY:N_BODY+N_HAND*2] - kpts_est[1:, N_BODY:N_BODY+N_HAND*2])) - for key in loss_dict.keys(): - loss_dict[key] = loss_dict[key]/nFrames - # fittingLog.step(loss_dict, weight_loss) - if verbose: - print(' '.join([key + ' %f'%(loss_dict[key].item()*weight_loss[key]) - for key in loss_dict.keys() if weight_loss[key]>0])) - loss = sum([loss_dict[key]*weight_loss[key] - for key in loss_dict.keys()]) - if not debug: - loss.backward() - return loss - else: - return loss_dict - - fitting = FittingMonitor(ftol=1e-4) - final_loss = fitting.run_fitting(optimizer, closure, opt_params) - fitting.close() - grad_require(opt_params, False) - loss_dict = closure(debug=True) - for key in loss_dict.keys(): - loss_dict[key] = loss_dict[key].item() - optimizer = LBFGS( - opt_params, line_search_fn='strong_wolfe') - body_params = {key:val.detach().cpu().numpy() for key, val in body_params.items()} - return body_params \ No newline at end of file diff --git a/code/smplmodel/__init__.py b/code/smplmodel/__init__.py deleted file mode 100644 index 08988ac..0000000 --- a/code/smplmodel/__init__.py +++ /dev/null @@ -1,10 +0,0 @@ -''' - @ Date: 2020-11-18 14:33:20 - @ Author: Qing Shuai - @ LastEditors: Qing Shuai - @ LastEditTime: 2021-01-20 16:33:02 - @ FilePath: /EasyMocap/code/smplmodel/__init__.py -''' -from .body_model import SMPLlayer -from .body_param import load_model -from .body_param import merge_params, select_nf, init_params, Config, check_params, check_keypoints \ No newline at end of file diff --git a/code/smplmodel/body_model.py b/code/smplmodel/body_model.py deleted file mode 100644 index 5e9a045..0000000 --- a/code/smplmodel/body_model.py +++ /dev/null @@ -1,209 +0,0 @@ -''' - @ Date: 2020-11-18 14:04:10 - @ Author: Qing Shuai - @ LastEditors: Qing Shuai - @ LastEditTime: 2021-01-22 16:04:54 - @ FilePath: /EasyMocap/code/smplmodel/body_model.py -''' -import torch -import torch.nn as nn -from .lbs import lbs, batch_rodrigues -import os.path as osp -import pickle -import numpy as np -import os - -def to_tensor(array, dtype=torch.float32, device=torch.device('cpu')): - if 'torch.tensor' not in str(type(array)): - return torch.tensor(array, dtype=dtype).to(device) - else: - return array.to(device) - -def to_np(array, dtype=np.float32): - if 'scipy.sparse' in str(type(array)): - array = array.todense() - return np.array(array, dtype=dtype) - -def load_regressor(regressor_path): - if regressor_path.endswith('.npy'): - X_regressor = to_tensor(np.load(regressor_path)) - elif regressor_path.endswith('.txt'): - data = np.loadtxt(regressor_path) - with open(regressor_path, 'r') as f: - shape = f.readline().split()[1:] - reg = np.zeros((int(shape[0]), int(shape[1]))) - for i, j, v in data: - reg[int(i), int(j)] = v - X_regressor = to_tensor(reg) - else: - import ipdb; ipdb.set_trace() - return X_regressor - -class SMPLlayer(nn.Module): - def __init__(self, model_path, model_type='smpl', gender='neutral', device=None, - regressor_path=None) -> None: - super(SMPLlayer, self).__init__() - dtype = torch.float32 - self.dtype = dtype - self.device = device - self.model_type = model_type - # create the SMPL model - if osp.isdir(model_path): - model_fn = 'SMPL_{}.{ext}'.format(gender.upper(), ext='pkl') - smpl_path = osp.join(model_path, model_fn) - else: - smpl_path = model_path - assert osp.exists(smpl_path), 'Path {} does not exist!'.format( - smpl_path) - - with open(smpl_path, 'rb') as smpl_file: - data = pickle.load(smpl_file, encoding='latin1') - self.faces = data['f'] - self.register_buffer('faces_tensor', - to_tensor(to_np(self.faces, dtype=np.int64), - dtype=torch.long)) - # Pose blend shape basis: 6890 x 3 x 207, reshaped to 6890*3 x 207 - num_pose_basis = data['posedirs'].shape[-1] - # 207 x 20670 - posedirs = data['posedirs'] - data['posedirs'] = np.reshape(data['posedirs'], [-1, num_pose_basis]).T - - for key in ['J_regressor', 'v_template', 'weights', 'posedirs', 'shapedirs']: - val = to_tensor(to_np(data[key]), dtype=dtype) - self.register_buffer(key, val) - # indices of parents for each joints - parents = to_tensor(to_np(data['kintree_table'][0])).long() - parents[0] = -1 - self.register_buffer('parents', parents) - if self.model_type == 'smplx': - # shape - self.num_expression_coeffs = 10 - self.num_shapes = 10 - self.shapedirs = self.shapedirs[:, :, :self.num_shapes+self.num_expression_coeffs] - # joints regressor - if regressor_path is not None: - X_regressor = load_regressor(regressor_path) - X_regressor = torch.cat((self.J_regressor, X_regressor), dim=0) - - j_J_regressor = torch.zeros(self.J_regressor.shape[0], X_regressor.shape[0], device=device) - for i in range(self.J_regressor.shape[0]): - j_J_regressor[i, i] = 1 - j_v_template = X_regressor @ self.v_template - # - j_shapedirs = torch.einsum('vij,kv->kij', [self.shapedirs, X_regressor]) - # (25, 24) - j_weights = X_regressor @ self.weights - j_posedirs = torch.einsum('ab, bde->ade', [X_regressor, torch.Tensor(posedirs)]).numpy() - j_posedirs = np.reshape(j_posedirs, [-1, num_pose_basis]).T - j_posedirs = to_tensor(j_posedirs) - self.register_buffer('j_posedirs', j_posedirs) - self.register_buffer('j_shapedirs', j_shapedirs) - self.register_buffer('j_weights', j_weights) - self.register_buffer('j_v_template', j_v_template) - self.register_buffer('j_J_regressor', j_J_regressor) - if self.model_type == 'smplh': - # load smplh data - self.num_pca_comps = 6 - from os.path import join - for key in ['LEFT', 'RIGHT']: - left_file = join(os.path.dirname(smpl_path), 'MANO_{}.pkl'.format(key)) - with open(left_file, 'rb') as f: - data = pickle.load(f, encoding='latin1') - val = to_tensor(to_np(data['hands_mean'].reshape(1, -1)), dtype=dtype) - self.register_buffer('mHandsMean'+key[0], val) - val = to_tensor(to_np(data['hands_components'][:self.num_pca_comps, :]), dtype=dtype) - self.register_buffer('mHandsComponents'+key[0], val) - self.use_pca = True - self.use_flat_mean = True - elif self.model_type == 'smplx': - # hand pose - self.num_pca_comps = 6 - from os.path import join - for key in ['Ll', 'Rr']: - val = to_tensor(to_np(data['hands_mean'+key[1]].reshape(1, -1)), dtype=dtype) - self.register_buffer('mHandsMean'+key[0], val) - val = to_tensor(to_np(data['hands_components'+key[1]][:self.num_pca_comps, :]), dtype=dtype) - self.register_buffer('mHandsComponents'+key[0], val) - self.use_pca = True - self.use_flat_mean = True - - def extend_pose(self, poses): - if self.model_type not in ['smplh', 'smplx']: - return poses - elif self.model_type == 'smplh' and poses.shape[-1] == 156: - return poses - elif self.model_type == 'smplx' and poses.shape[-1] == 165: - return poses - - NUM_BODYJOINTS = 22 * 3 - if self.use_pca: - NUM_HANDJOINTS = self.num_pca_comps - else: - NUM_HANDJOINTS = 15 * 3 - NUM_FACEJOINTS = 3 * 3 - poses_lh = poses[:, NUM_BODYJOINTS:NUM_BODYJOINTS + NUM_HANDJOINTS] - poses_rh = poses[:, NUM_BODYJOINTS + NUM_HANDJOINTS:NUM_BODYJOINTS+NUM_HANDJOINTS*2] - if self.use_pca: - poses_lh = poses_lh @ self.mHandsComponentsL - poses_rh = poses_rh @ self.mHandsComponentsR - if self.use_flat_mean: - poses_lh = poses_lh + self.mHandsMeanL - poses_rh = poses_rh + self.mHandsMeanR - if self.model_type == 'smplh': - poses = torch.cat([poses[:, :NUM_BODYJOINTS], poses_lh, poses_rh], dim=1) - elif self.model_type == 'smplx': - # the head part have only three joints - # poses_head: (N, 9), jaw_pose, leye_pose, reye_pose respectively - poses_head = poses[:, NUM_BODYJOINTS+NUM_HANDJOINTS*2:] - # body, head, left hand, right hand - poses = torch.cat([poses[:, :NUM_BODYJOINTS], poses_head, poses_lh, poses_rh], dim=1) - return poses - - def forward(self, poses, shapes, Rh=None, Th=None, expression=None, return_verts=True, return_tensor=True, only_shape=False, **kwargs): - """ Forward pass for SMPL model - - Args: - poses (n, 72) - shapes (n, 10) - Rh (n, 3): global orientation - Th (n, 3): global translation - return_verts (bool, optional): if True return (6890, 3). Defaults to False. - """ - if 'torch' not in str(type(poses)): - dtype, device = self.dtype, self.device - poses = to_tensor(poses, dtype, device) - shapes = to_tensor(shapes, dtype, device) - Rh = to_tensor(Rh, dtype, device) - Th = to_tensor(Th, dtype, device) - if expression is not None: - expression = to_tensor(expression, dtype, device) - - bn = poses.shape[0] - # process Rh, Th - if Rh is None: - Rh = torch.zeros(bn, 3, device=poses.device) - rot = batch_rodrigues(Rh) - transl = Th.unsqueeze(dim=1) - # process shapes - if shapes.shape[0] < bn: - shapes = shapes.expand(bn, -1) - if expression is not None and self.model_type == 'smplx': - shapes = torch.cat([shapes, expression], dim=1) - # process poses - if self.model_type == 'smplh' or self.model_type == 'smplx': - poses = self.extend_pose(poses) - if return_verts: - vertices, joints = lbs(shapes, poses, self.v_template, - self.shapedirs, self.posedirs, - self.J_regressor, self.parents, - self.weights, pose2rot=True, dtype=self.dtype) - else: - vertices, joints = lbs(shapes, poses, self.j_v_template, - self.j_shapedirs, self.j_posedirs, - self.j_J_regressor, self.parents, - self.j_weights, pose2rot=True, dtype=self.dtype, only_shape=only_shape) - vertices = vertices[:, self.J_regressor.shape[0]:, :] - vertices = torch.matmul(vertices, rot.transpose(1, 2)) + transl - if not return_tensor: - vertices = vertices.detach().cpu().numpy() - return vertices \ No newline at end of file diff --git a/code/smplmodel/body_param.py b/code/smplmodel/body_param.py deleted file mode 100644 index 0063e91..0000000 --- a/code/smplmodel/body_param.py +++ /dev/null @@ -1,102 +0,0 @@ -''' - @ Date: 2020-11-20 13:34:54 - @ Author: Qing Shuai - @ LastEditors: Qing Shuai - @ LastEditTime: 2021-01-24 18:39:45 - @ FilePath: /EasyMocapRelease/code/smplmodel/body_param.py -''' -import numpy as np - -def merge_params(param_list, share_shape=True): - output = {} - for key in ['poses', 'shapes', 'Rh', 'Th', 'expression']: - if key in param_list[0].keys(): - output[key] = np.vstack([v[key] for v in param_list]) - if share_shape: - output['shapes'] = output['shapes'].mean(axis=0, keepdims=True) - return output - -def select_nf(params_all, nf): - output = {} - for key in ['poses', 'Rh', 'Th']: - output[key] = params_all[key][nf:nf+1, :] - if 'expression' in params_all.keys(): - output['expression'] = params_all['expression'][nf:nf+1, :] - if params_all['shapes'].shape[0] == 1: - output['shapes'] = params_all['shapes'] - else: - output['shapes'] = params_all['shapes'][nf:nf+1, :] - return output - -NUM_POSES = {'smpl': 72, 'smplh': 78, 'smplx': 66 + 12 + 9} -NUM_EXPR = 10 - -def init_params(nFrames=1, model_type='smpl'): - params = { - 'poses': np.zeros((nFrames, NUM_POSES[model_type])), - 'shapes': np.zeros((1, 10)), - 'Rh': np.zeros((nFrames, 3)), - 'Th': np.zeros((nFrames, 3)), - } - if model_type == 'smplx': - params['expression'] = np.zeros((nFrames, NUM_EXPR)) - return params - -def check_params(body_params, model_type): - nFrames = body_params['poses'].shape[0] - if body_params['poses'].shape[1] != NUM_POSES[model_type]: - body_params['poses'] = np.hstack((body_params['poses'], np.zeros((nFrames, NUM_POSES[model_type] - body_params['poses'].shape[1])))) - if model_type == 'smplx' and 'expression' not in body_params.keys(): - body_params['expression'] = np.zeros((nFrames, NUM_EXPR)) - return body_params - -class Config: - OPT_R = False - OPT_T = False - OPT_POSE = False - OPT_SHAPE = False - OPT_HAND = False - OPT_EXPR = False - VERBOSE = False - MODEL = 'smpl' - -def load_model(gender='neutral', use_cuda=True, model_type='smpl'): - # prepare SMPL model - import torch - if use_cuda: - device = torch.device('cuda') - else: - device = torch.device('cpu') - from .body_model import SMPLlayer - if model_type == 'smpl': - body_model = SMPLlayer('data/smplx/smpl', gender=gender, device=device, - regressor_path='data/smplx/J_regressor_body25.npy') - elif model_type == 'smplh': - body_model = SMPLlayer('data/smplx/smplh/SMPLH_MALE.pkl', model_type='smplh', gender=gender, device=device, - regressor_path='data/smplx/J_regressor_body25_smplh.txt') - elif model_type == 'smplx': - body_model = SMPLlayer('data/smplx/smplx/SMPLX_{}.pkl'.format(gender.upper()), model_type='smplx', gender=gender, device=device, - regressor_path='data/smplx/J_regressor_body25_smplx.txt') - else: - body_model = None - body_model.to(device) - return body_model - -def check_keypoints(keypoints2d, WEIGHT_DEBUFF=1.2): - # keypoints2d: nFrames, nJoints, 3 - # - # wrong feet - # if keypoints2d.shape[-2] > 25 + 42: - # keypoints2d[..., 0, 2] = 0 - # keypoints2d[..., [15, 16, 17, 18], -1] = 0 - # keypoints2d[..., [19, 20, 21, 22, 23, 24], -1] /= 2 - if keypoints2d.shape[-2] > 25: - # set the hand keypoints - keypoints2d[..., 25, :] = keypoints2d[..., 7, :] - keypoints2d[..., 46, :] = keypoints2d[..., 4, :] - keypoints2d[..., 25:, -1] *= WEIGHT_DEBUFF - # reduce the confidence of hand and face - MIN_CONF = 0.3 - conf = keypoints2d[..., -1] - conf[confbli', [lmk_vertices, lmk_bary_coords]) - return landmarks - - -def lbs(betas, pose, v_template, shapedirs, posedirs, J_regressor, parents, - lbs_weights, pose2rot=True, dtype=torch.float32, only_shape=False): - ''' Performs Linear Blend Skinning with the given shape and pose parameters - - Parameters - ---------- - betas : torch.tensor BxNB - The tensor of shape parameters - pose : torch.tensor Bx(J + 1) * 3 - The pose parameters in axis-angle format - v_template torch.tensor BxVx3 - The template mesh that will be deformed - shapedirs : torch.tensor 1xNB - The tensor of PCA shape displacements - posedirs : torch.tensor Px(V * 3) - The pose PCA coefficients - J_regressor : torch.tensor JxV - The regressor array that is used to calculate the joints from - the position of the vertices - parents: torch.tensor J - The array that describes the kinematic tree for the model - lbs_weights: torch.tensor N x V x (J + 1) - The linear blend skinning weights that represent how much the - rotation matrix of each part affects each vertex - pose2rot: bool, optional - Flag on whether to convert the input pose tensor to rotation - matrices. The default value is True. If False, then the pose tensor - should already contain rotation matrices and have a size of - Bx(J + 1)x9 - dtype: torch.dtype, optional - - Returns - ------- - verts: torch.tensor BxVx3 - The vertices of the mesh after applying the shape and pose - displacements. - joints: torch.tensor BxJx3 - The joints of the model - ''' - - batch_size = max(betas.shape[0], pose.shape[0]) - device = betas.device - - # Add shape contribution - v_shaped = v_template + blend_shapes(betas, shapedirs) - - # Get the joints - # NxJx3 array - J = vertices2joints(J_regressor, v_shaped) - if only_shape: - return v_shaped, J - # 3. Add pose blend shapes - # N x J x 3 x 3 - ident = torch.eye(3, dtype=dtype, device=device) - if pose2rot: - rot_mats = batch_rodrigues( - pose.view(-1, 3), dtype=dtype).view([batch_size, -1, 3, 3]) - - pose_feature = (rot_mats[:, 1:, :, :] - ident).view([batch_size, -1]) - # (N x P) x (P, V * 3) -> N x V x 3 - pose_offsets = torch.matmul(pose_feature, posedirs) \ - .view(batch_size, -1, 3) - else: - pose_feature = pose[:, 1:].view(batch_size, -1, 3, 3) - ident - rot_mats = pose.view(batch_size, -1, 3, 3) - - pose_offsets = torch.matmul(pose_feature.view(batch_size, -1), - posedirs).view(batch_size, -1, 3) - - v_posed = pose_offsets + v_shaped - # 4. Get the global joint location - J_transformed, A = batch_rigid_transform(rot_mats, J, parents, dtype=dtype) - - # 5. Do skinning: - # W is N x V x (J + 1) - W = lbs_weights.unsqueeze(dim=0).expand([batch_size, -1, -1]) - # (N x V x (J + 1)) x (N x (J + 1) x 16) - num_joints = J_regressor.shape[0] - T = torch.matmul(W, A.view(batch_size, num_joints, 16)) \ - .view(batch_size, -1, 4, 4) - - homogen_coord = torch.ones([batch_size, v_posed.shape[1], 1], - dtype=dtype, device=device) - v_posed_homo = torch.cat([v_posed, homogen_coord], dim=2) - v_homo = torch.matmul(T, torch.unsqueeze(v_posed_homo, dim=-1)) - - verts = v_homo[:, :, :3, 0] - - return verts, J_transformed - - -def vertices2joints(J_regressor, vertices): - ''' Calculates the 3D joint locations from the vertices - - Parameters - ---------- - J_regressor : torch.tensor JxV - The regressor array that is used to calculate the joints from the - position of the vertices - vertices : torch.tensor BxVx3 - The tensor of mesh vertices - - Returns - ------- - torch.tensor BxJx3 - The location of the joints - ''' - - return torch.einsum('bik,ji->bjk', [vertices, J_regressor]) - - -def blend_shapes(betas, shape_disps): - ''' Calculates the per vertex displacement due to the blend shapes - - - Parameters - ---------- - betas : torch.tensor Bx(num_betas) - Blend shape coefficients - shape_disps: torch.tensor Vx3x(num_betas) - Blend shapes - - Returns - ------- - torch.tensor BxVx3 - The per-vertex displacement due to shape deformation - ''' - - # Displacement[b, m, k] = sum_{l} betas[b, l] * shape_disps[m, k, l] - # i.e. Multiply each shape displacement by its corresponding beta and - # then sum them. - blend_shape = torch.einsum('bl,mkl->bmk', [betas, shape_disps]) - return blend_shape - - -def batch_rodrigues(rot_vecs, epsilon=1e-8, dtype=torch.float32): - ''' Calculates the rotation matrices for a batch of rotation vectors - Parameters - ---------- - rot_vecs: torch.tensor Nx3 - array of N axis-angle vectors - Returns - ------- - R: torch.tensor Nx3x3 - The rotation matrices for the given axis-angle parameters - ''' - - batch_size = rot_vecs.shape[0] - device = rot_vecs.device - - angle = torch.norm(rot_vecs + 1e-8, dim=1, keepdim=True) - rot_dir = rot_vecs / angle - - cos = torch.unsqueeze(torch.cos(angle), dim=1) - sin = torch.unsqueeze(torch.sin(angle), dim=1) - - # Bx1 arrays - rx, ry, rz = torch.split(rot_dir, 1, dim=1) - K = torch.zeros((batch_size, 3, 3), dtype=dtype, device=device) - - zeros = torch.zeros((batch_size, 1), dtype=dtype, device=device) - K = torch.cat([zeros, -rz, ry, rz, zeros, -rx, -ry, rx, zeros], dim=1) \ - .view((batch_size, 3, 3)) - - ident = torch.eye(3, dtype=dtype, device=device).unsqueeze(dim=0) - rot_mat = ident + sin * K + (1 - cos) * torch.bmm(K, K) - return rot_mat - - -def transform_mat(R, t): - ''' Creates a batch of transformation matrices - Args: - - R: Bx3x3 array of a batch of rotation matrices - - t: Bx3x1 array of a batch of translation vectors - Returns: - - T: Bx4x4 Transformation matrix - ''' - # No padding left or right, only add an extra row - return torch.cat([F.pad(R, [0, 0, 0, 1]), - F.pad(t, [0, 0, 0, 1], value=1)], dim=2) - - -def batch_rigid_transform(rot_mats, joints, parents, dtype=torch.float32): - """ - Applies a batch of rigid transformations to the joints - - Parameters - ---------- - rot_mats : torch.tensor BxNx3x3 - Tensor of rotation matrices - joints : torch.tensor BxNx3 - Locations of joints - parents : torch.tensor BxN - The kinematic tree of each object - dtype : torch.dtype, optional: - The data type of the created tensors, the default is torch.float32 - - Returns - ------- - posed_joints : torch.tensor BxNx3 - The locations of the joints after applying the pose rotations - rel_transforms : torch.tensor BxNx4x4 - The relative (with respect to the root joint) rigid transformations - for all the joints - """ - - joints = torch.unsqueeze(joints, dim=-1) - - rel_joints = joints.clone() - rel_joints[:, 1:] -= joints[:, parents[1:]] - - transforms_mat = transform_mat( - rot_mats.view(-1, 3, 3), - rel_joints.contiguous().view(-1, 3, 1)).view(-1, joints.shape[1], 4, 4) - - transform_chain = [transforms_mat[:, 0]] - for i in range(1, parents.shape[0]): - # Subtract the joint location at the rest pose - # No need for rotation, since it's identity when at rest - curr_res = torch.matmul(transform_chain[parents[i]], - transforms_mat[:, i]) - transform_chain.append(curr_res) - - transforms = torch.stack(transform_chain, dim=1) - - # The last column of the transformations contains the posed joints - posed_joints = transforms[:, :, :3, 3] - - # The last column of the transformations contains the posed joints - posed_joints = transforms[:, :, :3, 3] - - joints_homogen = F.pad(joints, [0, 0, 0, 1]) - - rel_transforms = transforms - F.pad( - torch.matmul(transforms, joints_homogen), [3, 0, 0, 0, 0, 0, 0, 0]) - - return posed_joints, rel_transforms diff --git a/code/vis_render.py b/code/vis_render.py deleted file mode 100644 index cbf6029..0000000 --- a/code/vis_render.py +++ /dev/null @@ -1,97 +0,0 @@ -''' - @ Date: 2021-01-17 21:14:50 - @ Author: Qing Shuai - @ LastEditors: Qing Shuai - @ LastEditTime: 2021-01-25 19:34:46 - @ FilePath: /EasyMocapRelease/code/vis_render.py -''' -# visualize the results by pyrender -import pyrender # first import the pyrender -from collections import namedtuple -from dataset.base import MVBase -from dataset.config import CONFIG -import numpy as np -from tqdm import tqdm -from visualize.geometry import create_ground - -Person = namedtuple('Person', ['vertices', 'keypoints3d']) - -def inBound(keypoints3d, bound): - if bound is None: - return True - valid = np.where(keypoints3d[:, -1] > 0.01)[0] - kpts = keypoints3d[valid] - crit = (kpts[:, 0] > bound[0][0]) & (kpts[:, 0] < bound[1][0]) &\ - (kpts[:, 1] > bound[0][1]) & (kpts[:, 1] < bound[1][1]) &\ - (kpts[:, 2] > bound[0][2]) & (kpts[:, 2] < bound[1][2]) - if crit.sum()/crit.shape[0] < 0.8: - return False - else: - return True - -def visualize(path, sub, out, mode, rend_type, args): - config = CONFIG[mode] - no_img = False - dataset = MVBase(path, cams=sub, config=config, - undis=args.undis, no_img=no_img, out=out) - dataset.skel_path = args.skel - if rend_type in ['skel']: - from visualize.skelmodel import SkelModel - body_model = SkelModel(config['nJoints'], config['kintree']) - elif rend_type in ['mesh']: - from smplmodel import load_model - body_model = load_model(args.gender, model_type=args.model) - smpl_model = body_model - elif rend_type == 'smplskel': - from smplmodel import load_model - smpl_model = load_model(args.gender, model_type=args.model) - from visualize.skelmodel import SkelModel - body_model = SkelModel(config['nJoints'], config['kintree']) - - dataset.writer.save_origin = args.save_origin - start, end = args.start, min(args.end, len(dataset)) - bound = None - if args.scene == 'none': - ground = create_ground(step=0.5) - elif args.scene == 'hw': - ground = create_ground(step=1, xrange=14, yrange=10, two_sides=False) - bound = [[0, 0, 0], [14, 10, 2.5]] - else: - ground = create_ground(step=1, xrange=28, yrange=15, two_sides=False) - for nf in tqdm(range(start, end), desc='rendering'): - images, annots = dataset[nf] - if rend_type == 'skel': - infos = dataset.read_skel(nf) - else: - infos = dataset.read_smpl(nf) - # body_model: input: keypoints3d/smpl params, output: vertices, (colors) - # The element of peopleDict must have `id`, `vertices` - peopleDict = {} - for info in infos: - if rend_type == 'skel': - joints = info['keypoints3d'] - else: - joints = smpl_model(return_verts=False, return_tensor=False, **info)[0] - if not inBound(joints, bound): - continue - if rend_type == 'smplskel': - joints = smpl_model(return_verts=False, return_tensor=False, **info)[0] - joints = np.hstack([joints, np.ones((joints.shape[0], 1))]) - info_new = {'id': info['id'], 'keypoints3d': joints} - vertices = body_model(return_verts=True, return_tensor=False, **info_new)[0] - else: - vertices = body_model(return_verts=True, return_tensor=False, **info)[0] - peopleDict[info['id']] = Person(vertices=vertices, keypoints3d=None) - dataset.vis_smpl(peopleDict, faces=body_model.faces, images=images, nf=nf, - sub_vis=args.sub_vis, mode=rend_type, extra_data=[ground], add_back=args.add_back) - -if __name__ == "__main__": - from mytools.cmd_loader import load_parser - parser = load_parser() - parser.add_argument('--type', type=str, default='mesh', choices=['skel', 'mesh', 'smplskel']) - parser.add_argument('--scene', type=str, default='none', choices=['none', 'zjub', 'hw']) - parser.add_argument('--skel', type=str, default=None) - parser.add_argument('--add_back', action='store_true') - parser.add_argument('--save_origin', action='store_true') - args = parser.parse_args() - visualize(args.path, args.sub, args.out, args.body, args.type, args) \ No newline at end of file diff --git a/code/visualize/geometry.py b/code/visualize/geometry.py deleted file mode 100644 index 8fd36ee..0000000 --- a/code/visualize/geometry.py +++ /dev/null @@ -1,82 +0,0 @@ -''' - @ Date: 2021-01-17 22:44:34 - @ Author: Qing Shuai - @ LastEditors: Qing Shuai - @ LastEditTime: 2021-01-25 19:14:20 - @ FilePath: /EasyMocapRelease/code/visualize/geometry.py -''' -import numpy as np -import cv2 -import numpy as np - -def create_ground( - center=[0, 0, 0], xdir=[1, 0, 0], ydir=[0, 1, 0], # 位置 - step=1, xrange=10, yrange=10, # 尺寸 - white=[1., 1., 1.], black=[0.,0.,0.], # 颜色 - two_sides=True - ): - if isinstance(center, list): - center = np.array(center) - xdir = np.array(xdir) - ydir = np.array(ydir) - xdir = xdir * step - ydir = ydir * step - vertls, trils, colls = [],[],[] - cnt = 0 - min_x = -xrange if two_sides else 0 - min_y = -yrange if two_sides else 0 - for i in range(min_x, xrange+1): - for j in range(min_y, yrange+1): - point0 = center + i*xdir + j*ydir - point1 = center + (i+1)*xdir + j*ydir - point2 = center + (i+1)*xdir + (j+1)*ydir - point3 = center + (i)*xdir + (j+1)*ydir - if (i%2==0 and j%2==0) or (i%2==1 and j%2==1): - col = white - else: - col = black - vert = np.stack([point0, point1, point2, point3]) - col = np.stack([col for _ in range(vert.shape[0])]) - tri = np.array([[2, 3, 0], [0, 1, 2]]) + vert.shape[0] * cnt - cnt += 1 - vertls.append(vert) - trils.append(tri) - colls.append(col) - vertls = np.vstack(vertls) - trils = np.vstack(trils) - colls = np.vstack(colls) - return {'vertices': vertls, 'faces': trils, 'colors': colls, 'name': 'ground'} - - -def get_rotation_from_two_directions(direc0, direc1): - direc0 = direc0/np.linalg.norm(direc0) - direc1 = direc1/np.linalg.norm(direc1) - rotdir = np.cross(direc0, direc1) - if np.linalg.norm(rotdir) < 1e-2: - return np.eye(3) - rotdir = rotdir/np.linalg.norm(rotdir) - rotdir = rotdir * np.arccos(np.dot(direc0, direc1)) - rotmat, _ = cv2.Rodrigues(rotdir) - return rotmat - -def create_plane(normal, point, width=1, height=1, depth=0.005): - mesh_box = TriangleMesh.create_box(width=2*width, height=2*height, depth=2*depth) - mesh_box.paint_uniform_color([0.8, 0.8, 0.8]) - # 根据normal计算旋转 - rotmat = get_rotation_from_two_directions(np.array([0, 0, 1]), normal[0]) - transform0 = np.eye(4) - transform0[0, 3] = -width - transform0[1, 3] = -height - transform0[2, 3] = -depth - transform = np.eye(4) - transform[:3, :3] = rotmat - transform[0, 3] = point[0, 0] - transform[1, 3] = point[0, 1] - transform[2, 3] = point[0, 2] - mesh_box.transform(transform @ transform0) - return {'vertices': np.asarray(mesh_box.vertices), 'faces': np.asarray(mesh_box.triangles), 'colors': np.asarray(mesh_box.vertex_colors), 'name': 'ground'} - faces = np.loadtxt('./code/visualize/sphere_faces_20.txt', dtype=np.int) - vertices = np.loadtxt('./code/visualize/sphere_vertices_20.txt') - colors = np.ones((vertices.shape[0], 3)) - - return {'vertices': vertices, 'faces': faces, 'colors': colors, 'name': 'ground'} diff --git a/code/visualize/renderer.py b/code/visualize/renderer.py deleted file mode 100644 index b992731..0000000 --- a/code/visualize/renderer.py +++ /dev/null @@ -1,315 +0,0 @@ -import os -import numpy as np -import cv2 -import pyrender -import trimesh -import copy -# 这个顺序是BGR的。虽然render的使用的是RGB的,但是由于和图像拼接了,所以又变成BGR的了 -colors = [ - # (0.5, 0.2, 0.2, 1.), # Defalut BGR - (.5, .5, .7, 1.), # Pink BGR - (.44, .50, .98, 1.), # Red - (.7, .7, .6, 1.), # Neutral - (.5, .5, .7, 1.), # Blue - (.5, .55, .3, 1.), # capsule - (.3, .5, .55, 1.), # Yellow - # (.6, .6, .6, 1.), # gray - (.9, 1., 1., 1.), - (0.95, 0.74, 0.65, 1.), - (.9, .7, .7, 1.) -] - -colors_table = { - # colorblind/print/copy safe: - '_blue': [0.65098039, 0.74117647, 0.85882353], - '_pink': [.9, .7, .7], - '_mint': [ 166/255., 229/255., 204/255.], - '_mint2': [ 202/255., 229/255., 223/255.], - '_green': [ 153/255., 216/255., 201/255.], - '_green2': [ 171/255., 221/255., 164/255.], - '_red': [ 251/255., 128/255., 114/255.], - '_orange': [ 253/255., 174/255., 97/255.], - '_yellow': [ 250/255., 230/255., 154/255.], - 'r':[255/255,0,0], - 'g':[0,255/255,0], - 'b':[0,0,255/255], - 'k':[0,0,0], - 'y':[255/255,255/255,0], - 'purple':[128/255,0,128/255] -} - -def get_colors(pid): - if isinstance(pid, int): - return colors[pid % len(colors)] - elif isinstance(pid, str): - return colors_table[pid] - -from pyrender import RenderFlags -render_flags = { - 'flip_wireframe': False, - 'all_wireframe': False, - 'all_solid': True, - 'shadows': True, - 'vertex_normals': False, - 'face_normals': False, - 'cull_faces': False, # set to False - 'point_size': 1.0, - 'rgba':True -} - -flags = RenderFlags.NONE -if render_flags['flip_wireframe']: - flags |= RenderFlags.FLIP_WIREFRAME -elif render_flags['all_wireframe']: - flags |= RenderFlags.ALL_WIREFRAME -elif render_flags['all_solid']: - flags |= RenderFlags.ALL_SOLID - -if render_flags['shadows']: - flags |= RenderFlags.SHADOWS_DIRECTIONAL | RenderFlags.SHADOWS_SPOT -if render_flags['vertex_normals']: - flags |= RenderFlags.VERTEX_NORMALS -if render_flags['face_normals']: - flags |= RenderFlags.FACE_NORMALS -if not render_flags['cull_faces']: - flags |= RenderFlags.SKIP_CULL_FACES -if render_flags['rgba']: - flags |= RenderFlags.RGBA - - -class Renderer(object): - def __init__(self, focal_length=1000, height=512, width=512, faces=None, - bg_color=[1.0, 1.0, 1.0, 0.0], down_scale=1 # render 配置 - ): - self.renderer = pyrender.OffscreenRenderer(height, width) - self.faces = faces - self.focal_length = focal_length - self.bg_color = bg_color - self.ambient_light = (0.5, 0.5, 0.5) - self.down_scale = down_scale - - def add_light(self, scene): - trans = [0, 0, 0] - # Use 3 directional lights - # Create light source - light = pyrender.DirectionalLight(color=[1.0, 1.0, 1.0], intensity=1) - light_pose = np.eye(4) - light_pose[:3, 3] = np.array([0, -1, 1]) + trans - scene.add(light, pose=light_pose) - light_pose[:3, 3] = np.array([0, 1, 1]) + trans - scene.add(light, pose=light_pose) - light_pose[:3, 3] = np.array([1, 1, 2]) + trans - scene.add(light, pose=light_pose) - - def render(self, render_data, cameras, images, - use_white=False, add_back=True, - ret_depth=False, ret_color=False): - # Need to flip x-axis - rot = trimesh.transformations.rotation_matrix( - np.radians(180), [1, 0, 0]) - output_images, output_colors, output_depths = [], [], [] - for nv, img_ in enumerate(images): - if use_white: - img = np.zeros_like(img_, dtype=np.uint8) + 255 - else: - img = img_.copy() - K, R, T = cameras['K'][nv].copy(), cameras['R'][nv], cameras['T'][nv] - # down scale the image to speed up rendering - img = cv2.resize(img, None, fx=1/self.down_scale, fy=1/self.down_scale) - K[:2, :] /= self.down_scale - - self.renderer.viewport_height = img.shape[0] - self.renderer.viewport_width = img.shape[1] - scene = pyrender.Scene(bg_color=self.bg_color, - ambient_light=self.ambient_light) - for trackId, data in render_data.items(): - vert = data['vertices'].copy() - faces = data['faces'] - vert = vert @ R.T + T.T - if 'colors' not in data.keys(): - # 如果使用了vid这个键,那么可视化的颜色使用vid的颜色 - col = get_colors(data.get('vid', trackId)) - mesh = trimesh.Trimesh(vert, faces) - mesh.apply_transform(rot) - - material = pyrender.MetallicRoughnessMaterial( - metallicFactor=0.0, - alphaMode='OPAQUE', - baseColorFactor=col) - mesh = pyrender.Mesh.from_trimesh( - mesh, - material=material) - scene.add(mesh, data['name']) - else: - mesh = trimesh.Trimesh(vert, faces, vertex_colors=data['colors'], process=False) - # mesh = trimesh.Trimesh(vert, faces, process=False) - mesh.apply_transform(rot) - material = pyrender.MetallicRoughnessMaterial( - metallicFactor=0.0, - alphaMode='OPAQUE', - baseColorFactor=(1., 1., 1.)) - mesh = pyrender.Mesh.from_trimesh(mesh, material=material) - scene.add(mesh, data['name']) - camera_pose = np.eye(4) - camera = pyrender.camera.IntrinsicsCamera(fx=K[0, 0], fy=K[1, 1], cx=K[0, 2], cy=K[1, 2]) - scene.add(camera, pose=camera_pose) - self.add_light(scene) - # Alpha channel was not working previously need to check again - # Until this is fixed use hack with depth image to get the opacity - rend_rgba, rend_depth = self.renderer.render(scene, flags=flags) - if rend_rgba.shape[2] == 3: # fail to generate transparent channel - valid_mask = (rend_depth > 0)[:, :, None] - rend_rgba = np.dstack((rend_rgba, (valid_mask*255).astype(np.uint8))) - if add_back: - rend_cat = cv2.addWeighted( - cv2.bitwise_and(img, 255 - rend_rgba[:, :, 3:4].repeat(3, 2)), 1, - cv2.bitwise_and(rend_rgba[:, :, :3], rend_rgba[:, :, 3:4].repeat(3, 2)), 1, 0) - else: - rend_cat = rend_rgba - - output_colors.append(rend_rgba) - output_depths.append(rend_depth) - output_images.append(rend_cat) - if ret_depth: - return output_images, output_depths - elif ret_color: - return output_colors - else: - return output_images - - def render_multiview(self, vertices, K, R, T, imglist, trackId=0, return_depth=False, return_color=False, - bg_color=[0.0, 0.0, 0.0, 0.0], camera=None): - # List to store rendered scenes - output_images, output_colors, output_depths = [], [], [] - # Need to flip x-axis - rot = trimesh.transformations.rotation_matrix( - np.radians(180), [1, 0, 0]) - nViews = len(imglist) - for nv in range(nViews): - img = imglist[nv] - self.renderer.viewport_height = img.shape[0] - self.renderer.viewport_width = img.shape[1] - # Create a scene for each image and render all meshes - scene = pyrender.Scene(bg_color=bg_color, - ambient_light=(0.3, 0.3, 0.3)) - camera_pose = np.eye(4) - - # for every person in the scene - if isinstance(vertices, dict): - for trackId, data in vertices.items(): - vert = data['vertices'].copy() - faces = data['faces'] - col = data.get('col', trackId) - vert = vert @ R[nv].T + T[nv] - mesh = trimesh.Trimesh(vert, faces) - mesh.apply_transform(rot) - trans = [0, 0, 0] - - material = pyrender.MetallicRoughnessMaterial( - metallicFactor=0.0, - alphaMode='OPAQUE', - baseColorFactor=colors[col % len(colors)]) - mesh = pyrender.Mesh.from_trimesh( - mesh, - material=material) - scene.add(mesh, 'mesh') - else: - verts = vertices @ R[nv].T + T[nv] - mesh = trimesh.Trimesh(verts, self.faces) - mesh.apply_transform(rot) - trans = [0, 0, 0] - - material = pyrender.MetallicRoughnessMaterial( - metallicFactor=0.0, - alphaMode='OPAQUE', - baseColorFactor=colors[trackId % len(colors)]) - mesh = pyrender.Mesh.from_trimesh( - mesh, - material=material) - scene.add(mesh, 'mesh') - - if camera is not None: - light = pyrender.PointLight(color=[1.0, 1.0, 1.0], intensity=70) - light_pose = np.eye(4) - light_pose[:3, 3] = [0, 0, 4.5] - scene.add(light, pose=light_pose) - - light_pose[:3, 3] = [0, 1, 4] - scene.add(light, pose=light_pose) - - light_pose[:3, 3] = [0, -1, 4] - scene.add(light, pose=light_pose) - else: - trans = [0, 0, 0] - # Use 3 directional lights - # Create light source - light = pyrender.DirectionalLight(color=[1.0, 1.0, 1.0], intensity=1) - light_pose = np.eye(4) - light_pose[:3, 3] = np.array([0, -1, 1]) + trans - scene.add(light, pose=light_pose) - light_pose[:3, 3] = np.array([0, 1, 1]) + trans - scene.add(light, pose=light_pose) - light_pose[:3, 3] = np.array([1, 1, 2]) + trans - scene.add(light, pose=light_pose) - if camera is None: - if K is None: - camera_center = np.array([img.shape[1] / 2., img.shape[0] / 2.]) - camera = pyrender.camera.IntrinsicsCamera(fx=self.focal_length, fy=self.focal_length, cx=camera_center[0], cy=camera_center[1]) - else: - camera = pyrender.camera.IntrinsicsCamera(fx=K[nv][0, 0], fy=K[nv][1, 1], cx=K[nv][0, 2], cy=K[nv][1, 2]) - scene.add(camera, pose=camera_pose) - # Alpha channel was not working previously need to check again - # Until this is fixed use hack with depth image to get the opacity - color, rend_depth = self.renderer.render(scene, flags=flags) - # color = color[::-1,::-1] - # rend_depth = rend_depth[::-1,::-1] - output_depths.append(rend_depth) - color = color.astype(np.uint8) - valid_mask = (rend_depth > 0)[:, :, None] - if color.shape[2] == 3: # 在服务器上透明通道失败 - color = np.dstack((color, (valid_mask*255).astype(np.uint8))) - output_colors.append(color) - output_img = (color[:, :, :3] * valid_mask + - (1 - valid_mask) * img) - - output_img = output_img.astype(np.uint8) - output_images.append(output_img) - if return_depth: - return output_images, output_depths - elif return_color: - return output_colors - else: - return output_images - -def render_results(img, render_data, cam_params, outname=None, rotate=False, degree=90, axis=[1.,0.,0], - fix_center=None): - render_data = copy.deepcopy(render_data) - render = Renderer(height=1024, width=1024, faces=None) - Ks, Rs, Ts = [cam_params['K']], [cam_params['Rc']], [cam_params['Tc']] - imgsrender = render.render_multiview(render_data, Ks, Rs, Ts, [img], return_color=True)[0] - render0 = cv2.addWeighted(cv2.bitwise_and(img, 255 - imgsrender[:, :, 3:4].repeat(3, 2)), 1, imgsrender[:, :, :3], 1, 0.0) - if rotate: - # simple rotate the vertices - if fix_center is None: - center = np.mean(np.vstack([v['vertices'] for i, v in render_data.items()]), axis=0, keepdims=True) - new_center = center.copy() - new_center[:, 0:2] = 0 - else: - center = fix_center.copy() - new_center = fix_center.copy() - new_center[:, 2] *= 1.5 - direc = np.array(axis) - rot, _ = cv2.Rodrigues(direc*degree/90*np.pi/2) - for key in render_data.keys(): - vertices = render_data[key]['vertices'] - vert = (vertices - center) @ rot.T + new_center - render_data[key]['vertices'] = vert - blank = np.zeros(()) - blank = np.zeros((img.shape[0], img.shape[1], 3), dtype=img.dtype) + 255 - imgsrender = render.render_multiview(render_data, Ks, Rs, Ts, [blank], return_color=True)[0] - render1 = cv2.addWeighted(cv2.bitwise_and(blank, 255- imgsrender[:, :, 3:4].repeat(3, 2)), 1, imgsrender[:, :, :3], 1, 0.0) - render0 = np.vstack([render0, render1]) - if outname is not None: - os.makedirs(os.path.dirname(outname), exist_ok=True) - cv2.imwrite(outname, render0) - return render0 \ No newline at end of file diff --git a/code/visualize/skelmodel.py b/code/visualize/skelmodel.py deleted file mode 100644 index 58577c6..0000000 --- a/code/visualize/skelmodel.py +++ /dev/null @@ -1,74 +0,0 @@ -''' - @ Date: 2021-01-17 21:38:19 - @ Author: Qing Shuai - @ LastEditors: Qing Shuai - @ LastEditTime: 2021-01-22 23:08:18 - @ FilePath: /EasyMocap/code/visualize/skelmodel.py -''' -import numpy as np -import cv2 - -def calTransformation(v_i, v_j, r, adaptr=False, ratio=10): - """ from to vertices to T - - Arguments: - v_i {} -- [description] - v_j {[type]} -- [description] - """ - xaxis = np.array([1, 0, 0]) - v = (v_i + v_j)/2 - direc = (v_i - v_j) - length = np.linalg.norm(direc) - direc = direc/length - rotdir = np.cross(xaxis, direc) - rotdir = rotdir/np.linalg.norm(rotdir) - rotdir = rotdir * np.arccos(np.dot(direc, xaxis)) - rotmat, _ = cv2.Rodrigues(rotdir) - # set the minimal radius for the finger and face - shrink = max(length/ratio, 0.005) - eigval = np.array([[length/2/r, 0, 0], [0, shrink, 0], [0, 0, shrink]]) - T = np.eye(4) - T[:3,:3] = rotmat @ eigval @ rotmat.T - T[:3, 3] = v - return T, r, length - -class SkelModel: - def __init__(self, nJoints, kintree) -> None: - self.nJoints = nJoints - self.kintree = kintree - faces = np.loadtxt('./code/visualize/sphere_faces_20.txt', dtype=np.int) - self.vertices = np.loadtxt('./code/visualize/sphere_vertices_20.txt') - # compose faces - faces_all = [] - for nj in range(nJoints): - faces_all.append(faces + nj*self.vertices.shape[0]) - for nk in range(len(kintree)): - faces_all.append(faces + nJoints*self.vertices.shape[0] + nk*self.vertices.shape[0]) - self.faces = np.vstack(faces_all) - - def __call__(self, keypoints3d, id=0, return_verts=True, return_tensor=False): - vertices_all = [] - r = 0.02 - # joints - for nj in range(self.nJoints): - if nj > 25: - r_ = r * 0.4 - else: - r_ = r - if keypoints3d[nj, -1] < 0.01: - vertices_all.append(self.vertices*0.001) - continue - vertices_all.append(self.vertices*r_ + keypoints3d[nj:nj+1, :3]) - # limb - for nk, (i, j) in enumerate(self.kintree): - if keypoints3d[i][-1] < 0.1 or keypoints3d[j][-1] < 0.1: - vertices_all.append(self.vertices*0.001) - continue - T, _, length = calTransformation(keypoints3d[i, :3], keypoints3d[j, :3], r=1) - if length > 2: # 超过两米的 - vertices_all.append(self.vertices*0.001) - continue - vertices = self.vertices @ T[:3, :3].T + T[:3, 3:].T - vertices_all.append(vertices) - vertices = np.vstack(vertices_all) - return vertices[None, :, :] \ No newline at end of file diff --git a/code/visualize/sphere_faces_20.txt b/code/visualize/sphere_faces_20.txt deleted file mode 100644 index 8e5c762..0000000 --- a/code/visualize/sphere_faces_20.txt +++ /dev/null @@ -1,1520 +0,0 @@ -0 2 3 -1 723 722 -0 3 4 -1 724 723 -0 4 5 -1 725 724 -0 5 6 -1 726 725 -0 6 7 -1 727 726 -0 7 8 -1 728 727 -0 8 9 -1 729 728 -0 9 10 -1 730 729 -0 10 11 -1 731 730 -0 11 12 -1 732 731 -0 12 13 -1 733 732 -0 13 14 -1 734 733 -0 14 15 -1 735 734 -0 15 16 -1 736 735 -0 16 17 -1 737 736 -0 17 18 -1 738 737 -0 18 19 -1 739 738 -0 19 20 -1 740 739 -0 20 21 -1 741 740 -0 21 22 -1 742 741 -0 22 23 -1 743 742 -0 23 24 -1 744 743 -0 24 25 -1 745 744 -0 25 26 -1 746 745 -0 26 27 -1 747 746 -0 27 28 -1 748 747 -0 28 29 -1 749 748 -0 29 30 -1 750 749 -0 30 31 -1 751 750 -0 31 32 -1 752 751 -0 32 33 -1 753 752 -0 33 34 -1 754 753 -0 34 35 -1 755 754 -0 35 36 -1 756 755 -0 36 37 -1 757 756 -0 37 38 -1 758 757 -0 38 39 -1 759 758 -0 39 40 -1 760 759 -0 40 41 -1 761 760 -0 41 2 -1 722 761 -42 3 2 -42 43 3 -43 4 3 -43 44 4 -44 5 4 -44 45 5 -45 6 5 -45 46 6 -46 7 6 -46 47 7 -47 8 7 -47 48 8 -48 9 8 -48 49 9 -49 10 9 -49 50 10 -50 11 10 -50 51 11 -51 12 11 -51 52 12 -52 13 12 -52 53 13 -53 14 13 -53 54 14 -54 15 14 -54 55 15 -55 16 15 -55 56 16 -56 17 16 -56 57 17 -57 18 17 -57 58 18 -58 19 18 -58 59 19 -59 20 19 -59 60 20 -60 21 20 -60 61 21 -61 22 21 -61 62 22 -62 23 22 -62 63 23 -63 24 23 -63 64 24 -64 25 24 -64 65 25 -65 26 25 -65 66 26 -66 27 26 -66 67 27 -67 28 27 -67 68 28 -68 29 28 -68 69 29 -69 30 29 -69 70 30 -70 31 30 -70 71 31 -71 32 31 -71 72 32 -72 33 32 -72 73 33 -73 34 33 -73 74 34 -74 35 34 -74 75 35 -75 36 35 -75 76 36 -76 37 36 -76 77 37 -77 38 37 -77 78 38 -78 39 38 -78 79 39 -79 40 39 -79 80 40 -80 41 40 -80 81 41 -81 2 41 -81 42 2 -82 43 42 -82 83 43 -83 44 43 -83 84 44 -84 45 44 -84 85 45 -85 46 45 -85 86 46 -86 47 46 -86 87 47 -87 48 47 -87 88 48 -88 49 48 -88 89 49 -89 50 49 -89 90 50 -90 51 50 -90 91 51 -91 52 51 -91 92 52 -92 53 52 -92 93 53 -93 54 53 -93 94 54 -94 55 54 -94 95 55 -95 56 55 -95 96 56 -96 57 56 -96 97 57 -97 58 57 -97 98 58 -98 59 58 -98 99 59 -99 60 59 -99 100 60 -100 61 60 -100 101 61 -101 62 61 -101 102 62 -102 63 62 -102 103 63 -103 64 63 -103 104 64 -104 65 64 -104 105 65 -105 66 65 -105 106 66 -106 67 66 -106 107 67 -107 68 67 -107 108 68 -108 69 68 -108 109 69 -109 70 69 -109 110 70 -110 71 70 -110 111 71 -111 72 71 -111 112 72 -112 73 72 -112 113 73 -113 74 73 -113 114 74 -114 75 74 -114 115 75 -115 76 75 -115 116 76 -116 77 76 -116 117 77 -117 78 77 -117 118 78 -118 79 78 -118 119 79 -119 80 79 -119 120 80 -120 81 80 -120 121 81 -121 42 81 -121 82 42 -122 83 82 -122 123 83 -123 84 83 -123 124 84 -124 85 84 -124 125 85 -125 86 85 -125 126 86 -126 87 86 -126 127 87 -127 88 87 -127 128 88 -128 89 88 -128 129 89 -129 90 89 -129 130 90 -130 91 90 -130 131 91 -131 92 91 -131 132 92 -132 93 92 -132 133 93 -133 94 93 -133 134 94 -134 95 94 -134 135 95 -135 96 95 -135 136 96 -136 97 96 -136 137 97 -137 98 97 -137 138 98 -138 99 98 -138 139 99 -139 100 99 -139 140 100 -140 101 100 -140 141 101 -141 102 101 -141 142 102 -142 103 102 -142 143 103 -143 104 103 -143 144 104 -144 105 104 -144 145 105 -145 106 105 -145 146 106 -146 107 106 -146 147 107 -147 108 107 -147 148 108 -148 109 108 -148 149 109 -149 110 109 -149 150 110 -150 111 110 -150 151 111 -151 112 111 -151 152 112 -152 113 112 -152 153 113 -153 114 113 -153 154 114 -154 115 114 -154 155 115 -155 116 115 -155 156 116 -156 117 116 -156 157 117 -157 118 117 -157 158 118 -158 119 118 -158 159 119 -159 120 119 -159 160 120 -160 121 120 -160 161 121 -161 82 121 -161 122 82 -162 123 122 -162 163 123 -163 124 123 -163 164 124 -164 125 124 -164 165 125 -165 126 125 -165 166 126 -166 127 126 -166 167 127 -167 128 127 -167 168 128 -168 129 128 -168 169 129 -169 130 129 -169 170 130 -170 131 130 -170 171 131 -171 132 131 -171 172 132 -172 133 132 -172 173 133 -173 134 133 -173 174 134 -174 135 134 -174 175 135 -175 136 135 -175 176 136 -176 137 136 -176 177 137 -177 138 137 -177 178 138 -178 139 138 -178 179 139 -179 140 139 -179 180 140 -180 141 140 -180 181 141 -181 142 141 -181 182 142 -182 143 142 -182 183 143 -183 144 143 -183 184 144 -184 145 144 -184 185 145 -185 146 145 -185 186 146 -186 147 146 -186 187 147 -187 148 147 -187 188 148 -188 149 148 -188 189 149 -189 150 149 -189 190 150 -190 151 150 -190 191 151 -191 152 151 -191 192 152 -192 153 152 -192 193 153 -193 154 153 -193 194 154 -194 155 154 -194 195 155 -195 156 155 -195 196 156 -196 157 156 -196 197 157 -197 158 157 -197 198 158 -198 159 158 -198 199 159 -199 160 159 -199 200 160 -200 161 160 -200 201 161 -201 122 161 -201 162 122 -202 163 162 -202 203 163 -203 164 163 -203 204 164 -204 165 164 -204 205 165 -205 166 165 -205 206 166 -206 167 166 -206 207 167 -207 168 167 -207 208 168 -208 169 168 -208 209 169 -209 170 169 -209 210 170 -210 171 170 -210 211 171 -211 172 171 -211 212 172 -212 173 172 -212 213 173 -213 174 173 -213 214 174 -214 175 174 -214 215 175 -215 176 175 -215 216 176 -216 177 176 -216 217 177 -217 178 177 -217 218 178 -218 179 178 -218 219 179 -219 180 179 -219 220 180 -220 181 180 -220 221 181 -221 182 181 -221 222 182 -222 183 182 -222 223 183 -223 184 183 -223 224 184 -224 185 184 -224 225 185 -225 186 185 -225 226 186 -226 187 186 -226 227 187 -227 188 187 -227 228 188 -228 189 188 -228 229 189 -229 190 189 -229 230 190 -230 191 190 -230 231 191 -231 192 191 -231 232 192 -232 193 192 -232 233 193 -233 194 193 -233 234 194 -234 195 194 -234 235 195 -235 196 195 -235 236 196 -236 197 196 -236 237 197 -237 198 197 -237 238 198 -238 199 198 -238 239 199 -239 200 199 -239 240 200 -240 201 200 -240 241 201 -241 162 201 -241 202 162 -242 203 202 -242 243 203 -243 204 203 -243 244 204 -244 205 204 -244 245 205 -245 206 205 -245 246 206 -246 207 206 -246 247 207 -247 208 207 -247 248 208 -248 209 208 -248 249 209 -249 210 209 -249 250 210 -250 211 210 -250 251 211 -251 212 211 -251 252 212 -252 213 212 -252 253 213 -253 214 213 -253 254 214 -254 215 214 -254 255 215 -255 216 215 -255 256 216 -256 217 216 -256 257 217 -257 218 217 -257 258 218 -258 219 218 -258 259 219 -259 220 219 -259 260 220 -260 221 220 -260 261 221 -261 222 221 -261 262 222 -262 223 222 -262 263 223 -263 224 223 -263 264 224 -264 225 224 -264 265 225 -265 226 225 -265 266 226 -266 227 226 -266 267 227 -267 228 227 -267 268 228 -268 229 228 -268 269 229 -269 230 229 -269 270 230 -270 231 230 -270 271 231 -271 232 231 -271 272 232 -272 233 232 -272 273 233 -273 234 233 -273 274 234 -274 235 234 -274 275 235 -275 236 235 -275 276 236 -276 237 236 -276 277 237 -277 238 237 -277 278 238 -278 239 238 -278 279 239 -279 240 239 -279 280 240 -280 241 240 -280 281 241 -281 202 241 -281 242 202 -282 243 242 -282 283 243 -283 244 243 -283 284 244 -284 245 244 -284 285 245 -285 246 245 -285 286 246 -286 247 246 -286 287 247 -287 248 247 -287 288 248 -288 249 248 -288 289 249 -289 250 249 -289 290 250 -290 251 250 -290 291 251 -291 252 251 -291 292 252 -292 253 252 -292 293 253 -293 254 253 -293 294 254 -294 255 254 -294 295 255 -295 256 255 -295 296 256 -296 257 256 -296 297 257 -297 258 257 -297 298 258 -298 259 258 -298 299 259 -299 260 259 -299 300 260 -300 261 260 -300 301 261 -301 262 261 -301 302 262 -302 263 262 -302 303 263 -303 264 263 -303 304 264 -304 265 264 -304 305 265 -305 266 265 -305 306 266 -306 267 266 -306 307 267 -307 268 267 -307 308 268 -308 269 268 -308 309 269 -309 270 269 -309 310 270 -310 271 270 -310 311 271 -311 272 271 -311 312 272 -312 273 272 -312 313 273 -313 274 273 -313 314 274 -314 275 274 -314 315 275 -315 276 275 -315 316 276 -316 277 276 -316 317 277 -317 278 277 -317 318 278 -318 279 278 -318 319 279 -319 280 279 -319 320 280 -320 281 280 -320 321 281 -321 242 281 -321 282 242 -322 283 282 -322 323 283 -323 284 283 -323 324 284 -324 285 284 -324 325 285 -325 286 285 -325 326 286 -326 287 286 -326 327 287 -327 288 287 -327 328 288 -328 289 288 -328 329 289 -329 290 289 -329 330 290 -330 291 290 -330 331 291 -331 292 291 -331 332 292 -332 293 292 -332 333 293 -333 294 293 -333 334 294 -334 295 294 -334 335 295 -335 296 295 -335 336 296 -336 297 296 -336 337 297 -337 298 297 -337 338 298 -338 299 298 -338 339 299 -339 300 299 -339 340 300 -340 301 300 -340 341 301 -341 302 301 -341 342 302 -342 303 302 -342 343 303 -343 304 303 -343 344 304 -344 305 304 -344 345 305 -345 306 305 -345 346 306 -346 307 306 -346 347 307 -347 308 307 -347 348 308 -348 309 308 -348 349 309 -349 310 309 -349 350 310 -350 311 310 -350 351 311 -351 312 311 -351 352 312 -352 313 312 -352 353 313 -353 314 313 -353 354 314 -354 315 314 -354 355 315 -355 316 315 -355 356 316 -356 317 316 -356 357 317 -357 318 317 -357 358 318 -358 319 318 -358 359 319 -359 320 319 -359 360 320 -360 321 320 -360 361 321 -361 282 321 -361 322 282 -362 323 322 -362 363 323 -363 324 323 -363 364 324 -364 325 324 -364 365 325 -365 326 325 -365 366 326 -366 327 326 -366 367 327 -367 328 327 -367 368 328 -368 329 328 -368 369 329 -369 330 329 -369 370 330 -370 331 330 -370 371 331 -371 332 331 -371 372 332 -372 333 332 -372 373 333 -373 334 333 -373 374 334 -374 335 334 -374 375 335 -375 336 335 -375 376 336 -376 337 336 -376 377 337 -377 338 337 -377 378 338 -378 339 338 -378 379 339 -379 340 339 -379 380 340 -380 341 340 -380 381 341 -381 342 341 -381 382 342 -382 343 342 -382 383 343 -383 344 343 -383 384 344 -384 345 344 -384 385 345 -385 346 345 -385 386 346 -386 347 346 -386 387 347 -387 348 347 -387 388 348 -388 349 348 -388 389 349 -389 350 349 -389 390 350 -390 351 350 -390 391 351 -391 352 351 -391 392 352 -392 353 352 -392 393 353 -393 354 353 -393 394 354 -394 355 354 -394 395 355 -395 356 355 -395 396 356 -396 357 356 -396 397 357 -397 358 357 -397 398 358 -398 359 358 -398 399 359 -399 360 359 -399 400 360 -400 361 360 -400 401 361 -401 322 361 -401 362 322 -402 363 362 -402 403 363 -403 364 363 -403 404 364 -404 365 364 -404 405 365 -405 366 365 -405 406 366 -406 367 366 -406 407 367 -407 368 367 -407 408 368 -408 369 368 -408 409 369 -409 370 369 -409 410 370 -410 371 370 -410 411 371 -411 372 371 -411 412 372 -412 373 372 -412 413 373 -413 374 373 -413 414 374 -414 375 374 -414 415 375 -415 376 375 -415 416 376 -416 377 376 -416 417 377 -417 378 377 -417 418 378 -418 379 378 -418 419 379 -419 380 379 -419 420 380 -420 381 380 -420 421 381 -421 382 381 -421 422 382 -422 383 382 -422 423 383 -423 384 383 -423 424 384 -424 385 384 -424 425 385 -425 386 385 -425 426 386 -426 387 386 -426 427 387 -427 388 387 -427 428 388 -428 389 388 -428 429 389 -429 390 389 -429 430 390 -430 391 390 -430 431 391 -431 392 391 -431 432 392 -432 393 392 -432 433 393 -433 394 393 -433 434 394 -434 395 394 -434 435 395 -435 396 395 -435 436 396 -436 397 396 -436 437 397 -437 398 397 -437 438 398 -438 399 398 -438 439 399 -439 400 399 -439 440 400 -440 401 400 -440 441 401 -441 362 401 -441 402 362 -442 403 402 -442 443 403 -443 404 403 -443 444 404 -444 405 404 -444 445 405 -445 406 405 -445 446 406 -446 407 406 -446 447 407 -447 408 407 -447 448 408 -448 409 408 -448 449 409 -449 410 409 -449 450 410 -450 411 410 -450 451 411 -451 412 411 -451 452 412 -452 413 412 -452 453 413 -453 414 413 -453 454 414 -454 415 414 -454 455 415 -455 416 415 -455 456 416 -456 417 416 -456 457 417 -457 418 417 -457 458 418 -458 419 418 -458 459 419 -459 420 419 -459 460 420 -460 421 420 -460 461 421 -461 422 421 -461 462 422 -462 423 422 -462 463 423 -463 424 423 -463 464 424 -464 425 424 -464 465 425 -465 426 425 -465 466 426 -466 427 426 -466 467 427 -467 428 427 -467 468 428 -468 429 428 -468 469 429 -469 430 429 -469 470 430 -470 431 430 -470 471 431 -471 432 431 -471 472 432 -472 433 432 -472 473 433 -473 434 433 -473 474 434 -474 435 434 -474 475 435 -475 436 435 -475 476 436 -476 437 436 -476 477 437 -477 438 437 -477 478 438 -478 439 438 -478 479 439 -479 440 439 -479 480 440 -480 441 440 -480 481 441 -481 402 441 -481 442 402 -482 443 442 -482 483 443 -483 444 443 -483 484 444 -484 445 444 -484 485 445 -485 446 445 -485 486 446 -486 447 446 -486 487 447 -487 448 447 -487 488 448 -488 449 448 -488 489 449 -489 450 449 -489 490 450 -490 451 450 -490 491 451 -491 452 451 -491 492 452 -492 453 452 -492 493 453 -493 454 453 -493 494 454 -494 455 454 -494 495 455 -495 456 455 -495 496 456 -496 457 456 -496 497 457 -497 458 457 -497 498 458 -498 459 458 -498 499 459 -499 460 459 -499 500 460 -500 461 460 -500 501 461 -501 462 461 -501 502 462 -502 463 462 -502 503 463 -503 464 463 -503 504 464 -504 465 464 -504 505 465 -505 466 465 -505 506 466 -506 467 466 -506 507 467 -507 468 467 -507 508 468 -508 469 468 -508 509 469 -509 470 469 -509 510 470 -510 471 470 -510 511 471 -511 472 471 -511 512 472 -512 473 472 -512 513 473 -513 474 473 -513 514 474 -514 475 474 -514 515 475 -515 476 475 -515 516 476 -516 477 476 -516 517 477 -517 478 477 -517 518 478 -518 479 478 -518 519 479 -519 480 479 -519 520 480 -520 481 480 -520 521 481 -521 442 481 -521 482 442 -522 483 482 -522 523 483 -523 484 483 -523 524 484 -524 485 484 -524 525 485 -525 486 485 -525 526 486 -526 487 486 -526 527 487 -527 488 487 -527 528 488 -528 489 488 -528 529 489 -529 490 489 -529 530 490 -530 491 490 -530 531 491 -531 492 491 -531 532 492 -532 493 492 -532 533 493 -533 494 493 -533 534 494 -534 495 494 -534 535 495 -535 496 495 -535 536 496 -536 497 496 -536 537 497 -537 498 497 -537 538 498 -538 499 498 -538 539 499 -539 500 499 -539 540 500 -540 501 500 -540 541 501 -541 502 501 -541 542 502 -542 503 502 -542 543 503 -543 504 503 -543 544 504 -544 505 504 -544 545 505 -545 506 505 -545 546 506 -546 507 506 -546 547 507 -547 508 507 -547 548 508 -548 509 508 -548 549 509 -549 510 509 -549 550 510 -550 511 510 -550 551 511 -551 512 511 -551 552 512 -552 513 512 -552 553 513 -553 514 513 -553 554 514 -554 515 514 -554 555 515 -555 516 515 -555 556 516 -556 517 516 -556 557 517 -557 518 517 -557 558 518 -558 519 518 -558 559 519 -559 520 519 -559 560 520 -560 521 520 -560 561 521 -561 482 521 -561 522 482 -562 523 522 -562 563 523 -563 524 523 -563 564 524 -564 525 524 -564 565 525 -565 526 525 -565 566 526 -566 527 526 -566 567 527 -567 528 527 -567 568 528 -568 529 528 -568 569 529 -569 530 529 -569 570 530 -570 531 530 -570 571 531 -571 532 531 -571 572 532 -572 533 532 -572 573 533 -573 534 533 -573 574 534 -574 535 534 -574 575 535 -575 536 535 -575 576 536 -576 537 536 -576 577 537 -577 538 537 -577 578 538 -578 539 538 -578 579 539 -579 540 539 -579 580 540 -580 541 540 -580 581 541 -581 542 541 -581 582 542 -582 543 542 -582 583 543 -583 544 543 -583 584 544 -584 545 544 -584 585 545 -585 546 545 -585 586 546 -586 547 546 -586 587 547 -587 548 547 -587 588 548 -588 549 548 -588 589 549 -589 550 549 -589 590 550 -590 551 550 -590 591 551 -591 552 551 -591 592 552 -592 553 552 -592 593 553 -593 554 553 -593 594 554 -594 555 554 -594 595 555 -595 556 555 -595 596 556 -596 557 556 -596 597 557 -597 558 557 -597 598 558 -598 559 558 -598 599 559 -599 560 559 -599 600 560 -600 561 560 -600 601 561 -601 522 561 -601 562 522 -602 563 562 -602 603 563 -603 564 563 -603 604 564 -604 565 564 -604 605 565 -605 566 565 -605 606 566 -606 567 566 -606 607 567 -607 568 567 -607 608 568 -608 569 568 -608 609 569 -609 570 569 -609 610 570 -610 571 570 -610 611 571 -611 572 571 -611 612 572 -612 573 572 -612 613 573 -613 574 573 -613 614 574 -614 575 574 -614 615 575 -615 576 575 -615 616 576 -616 577 576 -616 617 577 -617 578 577 -617 618 578 -618 579 578 -618 619 579 -619 580 579 -619 620 580 -620 581 580 -620 621 581 -621 582 581 -621 622 582 -622 583 582 -622 623 583 -623 584 583 -623 624 584 -624 585 584 -624 625 585 -625 586 585 -625 626 586 -626 587 586 -626 627 587 -627 588 587 -627 628 588 -628 589 588 -628 629 589 -629 590 589 -629 630 590 -630 591 590 -630 631 591 -631 592 591 -631 632 592 -632 593 592 -632 633 593 -633 594 593 -633 634 594 -634 595 594 -634 635 595 -635 596 595 -635 636 596 -636 597 596 -636 637 597 -637 598 597 -637 638 598 -638 599 598 -638 639 599 -639 600 599 -639 640 600 -640 601 600 -640 641 601 -641 562 601 -641 602 562 -642 603 602 -642 643 603 -643 604 603 -643 644 604 -644 605 604 -644 645 605 -645 606 605 -645 646 606 -646 607 606 -646 647 607 -647 608 607 -647 648 608 -648 609 608 -648 649 609 -649 610 609 -649 650 610 -650 611 610 -650 651 611 -651 612 611 -651 652 612 -652 613 612 -652 653 613 -653 614 613 -653 654 614 -654 615 614 -654 655 615 -655 616 615 -655 656 616 -656 617 616 -656 657 617 -657 618 617 -657 658 618 -658 619 618 -658 659 619 -659 620 619 -659 660 620 -660 621 620 -660 661 621 -661 622 621 -661 662 622 -662 623 622 -662 663 623 -663 624 623 -663 664 624 -664 625 624 -664 665 625 -665 626 625 -665 666 626 -666 627 626 -666 667 627 -667 628 627 -667 668 628 -668 629 628 -668 669 629 -669 630 629 -669 670 630 -670 631 630 -670 671 631 -671 632 631 -671 672 632 -672 633 632 -672 673 633 -673 634 633 -673 674 634 -674 635 634 -674 675 635 -675 636 635 -675 676 636 -676 637 636 -676 677 637 -677 638 637 -677 678 638 -678 639 638 -678 679 639 -679 640 639 -679 680 640 -680 641 640 -680 681 641 -681 602 641 -681 642 602 -682 643 642 -682 683 643 -683 644 643 -683 684 644 -684 645 644 -684 685 645 -685 646 645 -685 686 646 -686 647 646 -686 687 647 -687 648 647 -687 688 648 -688 649 648 -688 689 649 -689 650 649 -689 690 650 -690 651 650 -690 691 651 -691 652 651 -691 692 652 -692 653 652 -692 693 653 -693 654 653 -693 694 654 -694 655 654 -694 695 655 -695 656 655 -695 696 656 -696 657 656 -696 697 657 -697 658 657 -697 698 658 -698 659 658 -698 699 659 -699 660 659 -699 700 660 -700 661 660 -700 701 661 -701 662 661 -701 702 662 -702 663 662 -702 703 663 -703 664 663 -703 704 664 -704 665 664 -704 705 665 -705 666 665 -705 706 666 -706 667 666 -706 707 667 -707 668 667 -707 708 668 -708 669 668 -708 709 669 -709 670 669 -709 710 670 -710 671 670 -710 711 671 -711 672 671 -711 712 672 -712 673 672 -712 713 673 -713 674 673 -713 714 674 -714 675 674 -714 715 675 -715 676 675 -715 716 676 -716 677 676 -716 717 677 -717 678 677 -717 718 678 -718 679 678 -718 719 679 -719 680 679 -719 720 680 -720 681 680 -720 721 681 -721 642 681 -721 682 642 -722 683 682 -722 723 683 -723 684 683 -723 724 684 -724 685 684 -724 725 685 -725 686 685 -725 726 686 -726 687 686 -726 727 687 -727 688 687 -727 728 688 -728 689 688 -728 729 689 -729 690 689 -729 730 690 -730 691 690 -730 731 691 -731 692 691 -731 732 692 -732 693 692 -732 733 693 -733 694 693 -733 734 694 -734 695 694 -734 735 695 -735 696 695 -735 736 696 -736 697 696 -736 737 697 -737 698 697 -737 738 698 -738 699 698 -738 739 699 -739 700 699 -739 740 700 -740 701 700 -740 741 701 -741 702 701 -741 742 702 -742 703 702 -742 743 703 -743 704 703 -743 744 704 -744 705 704 -744 745 705 -745 706 705 -745 746 706 -746 707 706 -746 747 707 -747 708 707 -747 748 708 -748 709 708 -748 749 709 -749 710 709 -749 750 710 -750 711 710 -750 751 711 -751 712 711 -751 752 712 -752 713 712 -752 753 713 -753 714 713 -753 754 714 -754 715 714 -754 755 715 -755 716 715 -755 756 716 -756 717 716 -756 757 717 -757 718 717 -757 758 718 -758 719 718 -758 759 719 -759 720 719 -759 760 720 -760 721 720 -760 761 721 -761 682 721 -761 722 682 diff --git a/code/visualize/sphere_vertices_20.txt b/code/visualize/sphere_vertices_20.txt deleted file mode 100644 index bfa3b4f..0000000 --- a/code/visualize/sphere_vertices_20.txt +++ /dev/null @@ -1,762 +0,0 @@ -0.000 0.000 1.000 -0.000 0.000 -1.000 -0.156 0.000 0.988 -0.155 0.024 0.988 -0.149 0.048 0.988 -0.139 0.071 0.988 -0.127 0.092 0.988 -0.111 0.111 0.988 -0.092 0.127 0.988 -0.071 0.139 0.988 -0.048 0.149 0.988 -0.024 0.155 0.988 -0.000 0.156 0.988 --0.024 0.155 0.988 --0.048 0.149 0.988 --0.071 0.139 0.988 --0.092 0.127 0.988 --0.111 0.111 0.988 --0.127 0.092 0.988 --0.139 0.071 0.988 --0.149 0.048 0.988 --0.155 0.024 0.988 --0.156 0.000 0.988 --0.155 -0.024 0.988 --0.149 -0.048 0.988 --0.139 -0.071 0.988 --0.127 -0.092 0.988 --0.111 -0.111 0.988 --0.092 -0.127 0.988 --0.071 -0.139 0.988 --0.048 -0.149 0.988 --0.024 -0.155 0.988 --0.000 -0.156 0.988 -0.024 -0.155 0.988 -0.048 -0.149 0.988 -0.071 -0.139 0.988 -0.092 -0.127 0.988 -0.111 -0.111 0.988 -0.127 -0.092 0.988 -0.139 -0.071 0.988 -0.149 -0.048 0.988 -0.155 -0.024 0.988 -0.309 0.000 0.951 -0.305 0.048 0.951 -0.294 0.095 0.951 -0.275 0.140 0.951 -0.250 0.182 0.951 -0.219 0.219 0.951 -0.182 0.250 0.951 -0.140 0.275 0.951 -0.095 0.294 0.951 -0.048 0.305 0.951 -0.000 0.309 0.951 --0.048 0.305 0.951 --0.095 0.294 0.951 --0.140 0.275 0.951 --0.182 0.250 0.951 --0.219 0.219 0.951 --0.250 0.182 0.951 --0.275 0.140 0.951 --0.294 0.095 0.951 --0.305 0.048 0.951 --0.309 0.000 0.951 --0.305 -0.048 0.951 --0.294 -0.095 0.951 --0.275 -0.140 0.951 --0.250 -0.182 0.951 --0.219 -0.219 0.951 --0.182 -0.250 0.951 --0.140 -0.275 0.951 --0.095 -0.294 0.951 --0.048 -0.305 0.951 --0.000 -0.309 0.951 -0.048 -0.305 0.951 -0.095 -0.294 0.951 -0.140 -0.275 0.951 -0.182 -0.250 0.951 -0.219 -0.219 0.951 -0.250 -0.182 0.951 -0.275 -0.140 0.951 -0.294 -0.095 0.951 -0.305 -0.048 0.951 -0.454 0.000 0.891 -0.448 0.071 0.891 -0.432 0.140 0.891 -0.405 0.206 0.891 -0.367 0.267 0.891 -0.321 0.321 0.891 -0.267 0.367 0.891 -0.206 0.405 0.891 -0.140 0.432 0.891 -0.071 0.448 0.891 -0.000 0.454 0.891 --0.071 0.448 0.891 --0.140 0.432 0.891 --0.206 0.405 0.891 --0.267 0.367 0.891 --0.321 0.321 0.891 --0.367 0.267 0.891 --0.405 0.206 0.891 --0.432 0.140 0.891 --0.448 0.071 0.891 --0.454 0.000 0.891 --0.448 -0.071 0.891 --0.432 -0.140 0.891 --0.405 -0.206 0.891 --0.367 -0.267 0.891 --0.321 -0.321 0.891 --0.267 -0.367 0.891 --0.206 -0.405 0.891 --0.140 -0.432 0.891 --0.071 -0.448 0.891 --0.000 -0.454 0.891 -0.071 -0.448 0.891 -0.140 -0.432 0.891 -0.206 -0.405 0.891 -0.267 -0.367 0.891 -0.321 -0.321 0.891 -0.367 -0.267 0.891 -0.405 -0.206 0.891 -0.432 -0.140 0.891 -0.448 -0.071 0.891 -0.588 0.000 0.809 -0.581 0.092 0.809 -0.559 0.182 0.809 -0.524 0.267 0.809 -0.476 0.345 0.809 -0.416 0.416 0.809 -0.345 0.476 0.809 -0.267 0.524 0.809 -0.182 0.559 0.809 -0.092 0.581 0.809 -0.000 0.588 0.809 --0.092 0.581 0.809 --0.182 0.559 0.809 --0.267 0.524 0.809 --0.345 0.476 0.809 --0.416 0.416 0.809 --0.476 0.345 0.809 --0.524 0.267 0.809 --0.559 0.182 0.809 --0.581 0.092 0.809 --0.588 0.000 0.809 --0.581 -0.092 0.809 --0.559 -0.182 0.809 --0.524 -0.267 0.809 --0.476 -0.345 0.809 --0.416 -0.416 0.809 --0.345 -0.476 0.809 --0.267 -0.524 0.809 --0.182 -0.559 0.809 --0.092 -0.581 0.809 --0.000 -0.588 0.809 -0.092 -0.581 0.809 -0.182 -0.559 0.809 -0.267 -0.524 0.809 -0.345 -0.476 0.809 -0.416 -0.416 0.809 -0.476 -0.345 0.809 -0.524 -0.267 0.809 -0.559 -0.182 0.809 -0.581 -0.092 0.809 -0.707 0.000 0.707 -0.698 0.111 0.707 -0.672 0.219 0.707 -0.630 0.321 0.707 -0.572 0.416 0.707 -0.500 0.500 0.707 -0.416 0.572 0.707 -0.321 0.630 0.707 -0.219 0.672 0.707 -0.111 0.698 0.707 -0.000 0.707 0.707 --0.111 0.698 0.707 --0.219 0.672 0.707 --0.321 0.630 0.707 --0.416 0.572 0.707 --0.500 0.500 0.707 --0.572 0.416 0.707 --0.630 0.321 0.707 --0.672 0.219 0.707 --0.698 0.111 0.707 --0.707 0.000 0.707 --0.698 -0.111 0.707 --0.672 -0.219 0.707 --0.630 -0.321 0.707 --0.572 -0.416 0.707 --0.500 -0.500 0.707 --0.416 -0.572 0.707 --0.321 -0.630 0.707 --0.219 -0.672 0.707 --0.111 -0.698 0.707 --0.000 -0.707 0.707 -0.111 -0.698 0.707 -0.219 -0.672 0.707 -0.321 -0.630 0.707 -0.416 -0.572 0.707 -0.500 -0.500 0.707 -0.572 -0.416 0.707 -0.630 -0.321 0.707 -0.672 -0.219 0.707 -0.698 -0.111 0.707 -0.809 0.000 0.588 -0.799 0.127 0.588 -0.769 0.250 0.588 -0.721 0.367 0.588 -0.655 0.476 0.588 -0.572 0.572 0.588 -0.476 0.655 0.588 -0.367 0.721 0.588 -0.250 0.769 0.588 -0.127 0.799 0.588 -0.000 0.809 0.588 --0.127 0.799 0.588 --0.250 0.769 0.588 --0.367 0.721 0.588 --0.476 0.655 0.588 --0.572 0.572 0.588 --0.655 0.476 0.588 --0.721 0.367 0.588 --0.769 0.250 0.588 --0.799 0.127 0.588 --0.809 0.000 0.588 --0.799 -0.127 0.588 --0.769 -0.250 0.588 --0.721 -0.367 0.588 --0.655 -0.476 0.588 --0.572 -0.572 0.588 --0.476 -0.655 0.588 --0.367 -0.721 0.588 --0.250 -0.769 0.588 --0.127 -0.799 0.588 --0.000 -0.809 0.588 -0.127 -0.799 0.588 -0.250 -0.769 0.588 -0.367 -0.721 0.588 -0.476 -0.655 0.588 -0.572 -0.572 0.588 -0.655 -0.476 0.588 -0.721 -0.367 0.588 -0.769 -0.250 0.588 -0.799 -0.127 0.588 -0.891 0.000 0.454 -0.880 0.139 0.454 -0.847 0.275 0.454 -0.794 0.405 0.454 -0.721 0.524 0.454 -0.630 0.630 0.454 -0.524 0.721 0.454 -0.405 0.794 0.454 -0.275 0.847 0.454 -0.139 0.880 0.454 -0.000 0.891 0.454 --0.139 0.880 0.454 --0.275 0.847 0.454 --0.405 0.794 0.454 --0.524 0.721 0.454 --0.630 0.630 0.454 --0.721 0.524 0.454 --0.794 0.405 0.454 --0.847 0.275 0.454 --0.880 0.139 0.454 --0.891 0.000 0.454 --0.880 -0.139 0.454 --0.847 -0.275 0.454 --0.794 -0.405 0.454 --0.721 -0.524 0.454 --0.630 -0.630 0.454 --0.524 -0.721 0.454 --0.405 -0.794 0.454 --0.275 -0.847 0.454 --0.139 -0.880 0.454 --0.000 -0.891 0.454 -0.139 -0.880 0.454 -0.275 -0.847 0.454 -0.405 -0.794 0.454 -0.524 -0.721 0.454 -0.630 -0.630 0.454 -0.721 -0.524 0.454 -0.794 -0.405 0.454 -0.847 -0.275 0.454 -0.880 -0.139 0.454 -0.951 0.000 0.309 -0.939 0.149 0.309 -0.905 0.294 0.309 -0.847 0.432 0.309 -0.769 0.559 0.309 -0.672 0.672 0.309 -0.559 0.769 0.309 -0.432 0.847 0.309 -0.294 0.905 0.309 -0.149 0.939 0.309 -0.000 0.951 0.309 --0.149 0.939 0.309 --0.294 0.905 0.309 --0.432 0.847 0.309 --0.559 0.769 0.309 --0.672 0.672 0.309 --0.769 0.559 0.309 --0.847 0.432 0.309 --0.905 0.294 0.309 --0.939 0.149 0.309 --0.951 0.000 0.309 --0.939 -0.149 0.309 --0.905 -0.294 0.309 --0.847 -0.432 0.309 --0.769 -0.559 0.309 --0.672 -0.672 0.309 --0.559 -0.769 0.309 --0.432 -0.847 0.309 --0.294 -0.905 0.309 --0.149 -0.939 0.309 --0.000 -0.951 0.309 -0.149 -0.939 0.309 -0.294 -0.905 0.309 -0.432 -0.847 0.309 -0.559 -0.769 0.309 -0.672 -0.672 0.309 -0.769 -0.559 0.309 -0.847 -0.432 0.309 -0.905 -0.294 0.309 -0.939 -0.149 0.309 -0.988 0.000 0.156 -0.976 0.155 0.156 -0.939 0.305 0.156 -0.880 0.448 0.156 -0.799 0.581 0.156 -0.698 0.698 0.156 -0.581 0.799 0.156 -0.448 0.880 0.156 -0.305 0.939 0.156 -0.155 0.976 0.156 -0.000 0.988 0.156 --0.155 0.976 0.156 --0.305 0.939 0.156 --0.448 0.880 0.156 --0.581 0.799 0.156 --0.698 0.698 0.156 --0.799 0.581 0.156 --0.880 0.448 0.156 --0.939 0.305 0.156 --0.976 0.155 0.156 --0.988 0.000 0.156 --0.976 -0.155 0.156 --0.939 -0.305 0.156 --0.880 -0.448 0.156 --0.799 -0.581 0.156 --0.698 -0.698 0.156 --0.581 -0.799 0.156 --0.448 -0.880 0.156 --0.305 -0.939 0.156 --0.155 -0.976 0.156 --0.000 -0.988 0.156 -0.155 -0.976 0.156 -0.305 -0.939 0.156 -0.448 -0.880 0.156 -0.581 -0.799 0.156 -0.698 -0.698 0.156 -0.799 -0.581 0.156 -0.880 -0.448 0.156 -0.939 -0.305 0.156 -0.976 -0.155 0.156 -1.000 0.000 0.000 -0.988 0.156 0.000 -0.951 0.309 0.000 -0.891 0.454 0.000 -0.809 0.588 0.000 -0.707 0.707 0.000 -0.588 0.809 0.000 -0.454 0.891 0.000 -0.309 0.951 0.000 -0.156 0.988 0.000 -0.000 1.000 0.000 --0.156 0.988 0.000 --0.309 0.951 0.000 --0.454 0.891 0.000 --0.588 0.809 0.000 --0.707 0.707 0.000 --0.809 0.588 0.000 --0.891 0.454 0.000 --0.951 0.309 0.000 --0.988 0.156 0.000 --1.000 0.000 0.000 --0.988 -0.156 0.000 --0.951 -0.309 0.000 --0.891 -0.454 0.000 --0.809 -0.588 0.000 --0.707 -0.707 0.000 --0.588 -0.809 0.000 --0.454 -0.891 0.000 --0.309 -0.951 0.000 --0.156 -0.988 0.000 --0.000 -1.000 0.000 -0.156 -0.988 0.000 -0.309 -0.951 0.000 -0.454 -0.891 0.000 -0.588 -0.809 0.000 -0.707 -0.707 0.000 -0.809 -0.588 0.000 -0.891 -0.454 0.000 -0.951 -0.309 0.000 -0.988 -0.156 0.000 -0.988 0.000 -0.156 -0.976 0.155 -0.156 -0.939 0.305 -0.156 -0.880 0.448 -0.156 -0.799 0.581 -0.156 -0.698 0.698 -0.156 -0.581 0.799 -0.156 -0.448 0.880 -0.156 -0.305 0.939 -0.156 -0.155 0.976 -0.156 -0.000 0.988 -0.156 --0.155 0.976 -0.156 --0.305 0.939 -0.156 --0.448 0.880 -0.156 --0.581 0.799 -0.156 --0.698 0.698 -0.156 --0.799 0.581 -0.156 --0.880 0.448 -0.156 --0.939 0.305 -0.156 --0.976 0.155 -0.156 --0.988 0.000 -0.156 --0.976 -0.155 -0.156 --0.939 -0.305 -0.156 --0.880 -0.448 -0.156 --0.799 -0.581 -0.156 --0.698 -0.698 -0.156 --0.581 -0.799 -0.156 --0.448 -0.880 -0.156 --0.305 -0.939 -0.156 --0.155 -0.976 -0.156 --0.000 -0.988 -0.156 -0.155 -0.976 -0.156 -0.305 -0.939 -0.156 -0.448 -0.880 -0.156 -0.581 -0.799 -0.156 -0.698 -0.698 -0.156 -0.799 -0.581 -0.156 -0.880 -0.448 -0.156 -0.939 -0.305 -0.156 -0.976 -0.155 -0.156 -0.951 0.000 -0.309 -0.939 0.149 -0.309 -0.905 0.294 -0.309 -0.847 0.432 -0.309 -0.769 0.559 -0.309 -0.672 0.672 -0.309 -0.559 0.769 -0.309 -0.432 0.847 -0.309 -0.294 0.905 -0.309 -0.149 0.939 -0.309 -0.000 0.951 -0.309 --0.149 0.939 -0.309 --0.294 0.905 -0.309 --0.432 0.847 -0.309 --0.559 0.769 -0.309 --0.672 0.672 -0.309 --0.769 0.559 -0.309 --0.847 0.432 -0.309 --0.905 0.294 -0.309 --0.939 0.149 -0.309 --0.951 0.000 -0.309 --0.939 -0.149 -0.309 --0.905 -0.294 -0.309 --0.847 -0.432 -0.309 --0.769 -0.559 -0.309 --0.672 -0.672 -0.309 --0.559 -0.769 -0.309 --0.432 -0.847 -0.309 --0.294 -0.905 -0.309 --0.149 -0.939 -0.309 --0.000 -0.951 -0.309 -0.149 -0.939 -0.309 -0.294 -0.905 -0.309 -0.432 -0.847 -0.309 -0.559 -0.769 -0.309 -0.672 -0.672 -0.309 -0.769 -0.559 -0.309 -0.847 -0.432 -0.309 -0.905 -0.294 -0.309 -0.939 -0.149 -0.309 -0.891 0.000 -0.454 -0.880 0.139 -0.454 -0.847 0.275 -0.454 -0.794 0.405 -0.454 -0.721 0.524 -0.454 -0.630 0.630 -0.454 -0.524 0.721 -0.454 -0.405 0.794 -0.454 -0.275 0.847 -0.454 -0.139 0.880 -0.454 -0.000 0.891 -0.454 --0.139 0.880 -0.454 --0.275 0.847 -0.454 --0.405 0.794 -0.454 --0.524 0.721 -0.454 --0.630 0.630 -0.454 --0.721 0.524 -0.454 --0.794 0.405 -0.454 --0.847 0.275 -0.454 --0.880 0.139 -0.454 --0.891 0.000 -0.454 --0.880 -0.139 -0.454 --0.847 -0.275 -0.454 --0.794 -0.405 -0.454 --0.721 -0.524 -0.454 --0.630 -0.630 -0.454 --0.524 -0.721 -0.454 --0.405 -0.794 -0.454 --0.275 -0.847 -0.454 --0.139 -0.880 -0.454 --0.000 -0.891 -0.454 -0.139 -0.880 -0.454 -0.275 -0.847 -0.454 -0.405 -0.794 -0.454 -0.524 -0.721 -0.454 -0.630 -0.630 -0.454 -0.721 -0.524 -0.454 -0.794 -0.405 -0.454 -0.847 -0.275 -0.454 -0.880 -0.139 -0.454 -0.809 0.000 -0.588 -0.799 0.127 -0.588 -0.769 0.250 -0.588 -0.721 0.367 -0.588 -0.655 0.476 -0.588 -0.572 0.572 -0.588 -0.476 0.655 -0.588 -0.367 0.721 -0.588 -0.250 0.769 -0.588 -0.127 0.799 -0.588 -0.000 0.809 -0.588 --0.127 0.799 -0.588 --0.250 0.769 -0.588 --0.367 0.721 -0.588 --0.476 0.655 -0.588 --0.572 0.572 -0.588 --0.655 0.476 -0.588 --0.721 0.367 -0.588 --0.769 0.250 -0.588 --0.799 0.127 -0.588 --0.809 0.000 -0.588 --0.799 -0.127 -0.588 --0.769 -0.250 -0.588 --0.721 -0.367 -0.588 --0.655 -0.476 -0.588 --0.572 -0.572 -0.588 --0.476 -0.655 -0.588 --0.367 -0.721 -0.588 --0.250 -0.769 -0.588 --0.127 -0.799 -0.588 --0.000 -0.809 -0.588 -0.127 -0.799 -0.588 -0.250 -0.769 -0.588 -0.367 -0.721 -0.588 -0.476 -0.655 -0.588 -0.572 -0.572 -0.588 -0.655 -0.476 -0.588 -0.721 -0.367 -0.588 -0.769 -0.250 -0.588 -0.799 -0.127 -0.588 -0.707 0.000 -0.707 -0.698 0.111 -0.707 -0.672 0.219 -0.707 -0.630 0.321 -0.707 -0.572 0.416 -0.707 -0.500 0.500 -0.707 -0.416 0.572 -0.707 -0.321 0.630 -0.707 -0.219 0.672 -0.707 -0.111 0.698 -0.707 -0.000 0.707 -0.707 --0.111 0.698 -0.707 --0.219 0.672 -0.707 --0.321 0.630 -0.707 --0.416 0.572 -0.707 --0.500 0.500 -0.707 --0.572 0.416 -0.707 --0.630 0.321 -0.707 --0.672 0.219 -0.707 --0.698 0.111 -0.707 --0.707 0.000 -0.707 --0.698 -0.111 -0.707 --0.672 -0.219 -0.707 --0.630 -0.321 -0.707 --0.572 -0.416 -0.707 --0.500 -0.500 -0.707 --0.416 -0.572 -0.707 --0.321 -0.630 -0.707 --0.219 -0.672 -0.707 --0.111 -0.698 -0.707 --0.000 -0.707 -0.707 -0.111 -0.698 -0.707 -0.219 -0.672 -0.707 -0.321 -0.630 -0.707 -0.416 -0.572 -0.707 -0.500 -0.500 -0.707 -0.572 -0.416 -0.707 -0.630 -0.321 -0.707 -0.672 -0.219 -0.707 -0.698 -0.111 -0.707 -0.588 0.000 -0.809 -0.581 0.092 -0.809 -0.559 0.182 -0.809 -0.524 0.267 -0.809 -0.476 0.345 -0.809 -0.416 0.416 -0.809 -0.345 0.476 -0.809 -0.267 0.524 -0.809 -0.182 0.559 -0.809 -0.092 0.581 -0.809 -0.000 0.588 -0.809 --0.092 0.581 -0.809 --0.182 0.559 -0.809 --0.267 0.524 -0.809 --0.345 0.476 -0.809 --0.416 0.416 -0.809 --0.476 0.345 -0.809 --0.524 0.267 -0.809 --0.559 0.182 -0.809 --0.581 0.092 -0.809 --0.588 0.000 -0.809 --0.581 -0.092 -0.809 --0.559 -0.182 -0.809 --0.524 -0.267 -0.809 --0.476 -0.345 -0.809 --0.416 -0.416 -0.809 --0.345 -0.476 -0.809 --0.267 -0.524 -0.809 --0.182 -0.559 -0.809 --0.092 -0.581 -0.809 --0.000 -0.588 -0.809 -0.092 -0.581 -0.809 -0.182 -0.559 -0.809 -0.267 -0.524 -0.809 -0.345 -0.476 -0.809 -0.416 -0.416 -0.809 -0.476 -0.345 -0.809 -0.524 -0.267 -0.809 -0.559 -0.182 -0.809 -0.581 -0.092 -0.809 -0.454 0.000 -0.891 -0.448 0.071 -0.891 -0.432 0.140 -0.891 -0.405 0.206 -0.891 -0.367 0.267 -0.891 -0.321 0.321 -0.891 -0.267 0.367 -0.891 -0.206 0.405 -0.891 -0.140 0.432 -0.891 -0.071 0.448 -0.891 -0.000 0.454 -0.891 --0.071 0.448 -0.891 --0.140 0.432 -0.891 --0.206 0.405 -0.891 --0.267 0.367 -0.891 --0.321 0.321 -0.891 --0.367 0.267 -0.891 --0.405 0.206 -0.891 --0.432 0.140 -0.891 --0.448 0.071 -0.891 --0.454 0.000 -0.891 --0.448 -0.071 -0.891 --0.432 -0.140 -0.891 --0.405 -0.206 -0.891 --0.367 -0.267 -0.891 --0.321 -0.321 -0.891 --0.267 -0.367 -0.891 --0.206 -0.405 -0.891 --0.140 -0.432 -0.891 --0.071 -0.448 -0.891 --0.000 -0.454 -0.891 -0.071 -0.448 -0.891 -0.140 -0.432 -0.891 -0.206 -0.405 -0.891 -0.267 -0.367 -0.891 -0.321 -0.321 -0.891 -0.367 -0.267 -0.891 -0.405 -0.206 -0.891 -0.432 -0.140 -0.891 -0.448 -0.071 -0.891 -0.309 0.000 -0.951 -0.305 0.048 -0.951 -0.294 0.095 -0.951 -0.275 0.140 -0.951 -0.250 0.182 -0.951 -0.219 0.219 -0.951 -0.182 0.250 -0.951 -0.140 0.275 -0.951 -0.095 0.294 -0.951 -0.048 0.305 -0.951 -0.000 0.309 -0.951 --0.048 0.305 -0.951 --0.095 0.294 -0.951 --0.140 0.275 -0.951 --0.182 0.250 -0.951 --0.219 0.219 -0.951 --0.250 0.182 -0.951 --0.275 0.140 -0.951 --0.294 0.095 -0.951 --0.305 0.048 -0.951 --0.309 0.000 -0.951 --0.305 -0.048 -0.951 --0.294 -0.095 -0.951 --0.275 -0.140 -0.951 --0.250 -0.182 -0.951 --0.219 -0.219 -0.951 --0.182 -0.250 -0.951 --0.140 -0.275 -0.951 --0.095 -0.294 -0.951 --0.048 -0.305 -0.951 --0.000 -0.309 -0.951 -0.048 -0.305 -0.951 -0.095 -0.294 -0.951 -0.140 -0.275 -0.951 -0.182 -0.250 -0.951 -0.219 -0.219 -0.951 -0.250 -0.182 -0.951 -0.275 -0.140 -0.951 -0.294 -0.095 -0.951 -0.305 -0.048 -0.951 -0.156 0.000 -0.988 -0.155 0.024 -0.988 -0.149 0.048 -0.988 -0.139 0.071 -0.988 -0.127 0.092 -0.988 -0.111 0.111 -0.988 -0.092 0.127 -0.988 -0.071 0.139 -0.988 -0.048 0.149 -0.988 -0.024 0.155 -0.988 -0.000 0.156 -0.988 --0.024 0.155 -0.988 --0.048 0.149 -0.988 --0.071 0.139 -0.988 --0.092 0.127 -0.988 --0.111 0.111 -0.988 --0.127 0.092 -0.988 --0.139 0.071 -0.988 --0.149 0.048 -0.988 --0.155 0.024 -0.988 --0.156 0.000 -0.988 --0.155 -0.024 -0.988 --0.149 -0.048 -0.988 --0.139 -0.071 -0.988 --0.127 -0.092 -0.988 --0.111 -0.111 -0.988 --0.092 -0.127 -0.988 --0.071 -0.139 -0.988 --0.048 -0.149 -0.988 --0.024 -0.155 -0.988 --0.000 -0.156 -0.988 -0.024 -0.155 -0.988 -0.048 -0.149 -0.988 -0.071 -0.139 -0.988 -0.092 -0.127 -0.988 -0.111 -0.111 -0.988 -0.127 -0.092 -0.988 -0.139 -0.071 -0.988 -0.149 -0.048 -0.988 -0.155 -0.024 -0.988