From e9d5f061a520fac50b5439470a654be739ba007c Mon Sep 17 00:00:00 2001 From: shuaiqing Date: Mon, 19 Jun 2023 19:12:56 +0800 Subject: [PATCH] :rocket: add mediapipe --- myeasymocap/backbone/mediapipe/hand.py | 118 +++++++++++++++++++++++++ 1 file changed, 118 insertions(+) create mode 100644 myeasymocap/backbone/mediapipe/hand.py diff --git a/myeasymocap/backbone/mediapipe/hand.py b/myeasymocap/backbone/mediapipe/hand.py new file mode 100644 index 0000000..24585ae --- /dev/null +++ b/myeasymocap/backbone/mediapipe/hand.py @@ -0,0 +1,118 @@ +# 2023.06.15 +# https://colab.research.google.com/github/googlesamples/mediapipe/blob/main/examples/hand_landmarker/python/hand_landmarker.ipynb#scrollTo=OMjuVQiDYJKF&uniqifier=1 +# pip install -q mediapipe==0.10.0 +import os +import numpy as np +import cv2 +# !wget -q https://storage.googleapis.com/mediapipe-models/hand_landmarker/hand_landmarker/float16/1/hand_landmarker.task +try: + import mediapipe as mp + from mediapipe.tasks import python + from mediapipe.tasks.python import vision +except: + print('Please install the mediapipe by\npip install -q mediapipe==0.10.0') + raise ModuleNotFoundError + +VisionRunningMode = mp.tasks.vision.RunningMode + +def bbox_from_keypoints(keypoints, rescale=1.2, detection_thresh=0.05, MIN_PIXEL=5): + """Get center and scale for bounding box from openpose detections.""" + valid = keypoints[:,-1] > detection_thresh + if valid.sum() < 3: + return [0, 0, 100, 100, 0] + valid_keypoints = keypoints[valid][:,:-1] + center = (valid_keypoints.max(axis=0) + valid_keypoints.min(axis=0))/2 + bbox_size = valid_keypoints.max(axis=0) - valid_keypoints.min(axis=0) + # adjust bounding box tightness + if bbox_size[0] < MIN_PIXEL or bbox_size[1] < MIN_PIXEL: + return [0, 0, 100, 100, 0] + bbox_size = bbox_size * rescale + bbox = [ + center[0] - bbox_size[0]/2, + center[1] - bbox_size[1]/2, + center[0] + bbox_size[0]/2, + center[1] + bbox_size[1]/2, + keypoints[valid, 2].mean() + ] + return bbox + +class MediaPipe: + NUM_HAND = 21 + def create_detector(self): + base_options = python.BaseOptions(model_asset_path=self.ckpt) + options = vision.HandLandmarkerOptions(base_options=base_options, + num_hands=2, + running_mode=VisionRunningMode.VIDEO) + detector = vision.HandLandmarker.create_from_options(options) + return detector + + def __init__(self, ckpt) -> None: + if not os.path.exists(ckpt): + cmd = 'wget -q https://storage.googleapis.com/mediapipe-models/hand_landmarker/hand_landmarker/float16/1/hand_landmarker.task' + print('Cannot find {}, try to download it'.format(ckpt)) + print(cmd) + os.system(cmd) + os.makedirs(os.path.dirname(ckpt), exist_ok=True) + cmd = 'mv hand_landmarker.task {}'.format(os.path.dirname(ckpt)) + os.system(cmd) + self.ckpt = ckpt + self.detector = {} + self.timestamp = 0 + + @staticmethod + def to_array(pose, W, H): + N = len(pose) + if N == 0: + return np.zeros((1, 21, 3)) + res = np.zeros((N, 21, 3)) + for nper in range(N): + for i in range(len(pose[nper])): + res[nper, i, 0] = pose[nper][i].x * W + res[nper, i, 1] = pose[nper][i].y * H + res[nper, i, 2] = pose[nper][i].visibility + res[..., 0] = W - res[..., 0] - 1 + return res + + def get_hand(self, pose, W, H): + if pose is None: + bodies = np.zeros((1, self.NUM_HAND, 3)) + return bodies + poses = self.to_array(pose, W, H) + poses[..., 2] = 1. + return poses + + def __call__(self, imgnames, images): + squeeze = False + if not isinstance(imgnames, list): + imgnames = [imgnames] + images = [images] + squeeze = True + # STEP 3: Load the input image. + nViews = len(images) + keypoints = [] + bboxes = [] + for nv in range(nViews): + if isinstance(images[nv], str): + images[nv] = cv2.imread(images[nv]) + sub = os.path.basename(os.path.dirname(imgnames[nv])) + if sub not in self.detector.keys(): + self.detector[sub] = self.create_detector() + image_ = cv2.cvtColor(images[nv], cv2.COLOR_BGR2RGB) + image_height, image_width, _ = image_.shape + image_ = cv2.flip(image_, 1) + mp_image = mp.Image(image_format=mp.ImageFormat.SRGB, data=image_) + detection_result = self.detector[sub].detect_for_video(mp_image, self.timestamp) + handl2d = self.get_hand(detection_result.hand_landmarks, image_width, image_height) + keypoints.append(handl2d[:1]) + bboxes.append(bbox_from_keypoints(handl2d[0])) + + keypoints = np.vstack(keypoints) + bboxes = np.stack(bboxes) + if squeeze: + keypoints = keypoints[0] + bboxes = bboxes[0] + self.timestamp += 33 # 假设30fps + return { + 'keypoints': keypoints, + 'bbox': bboxes, + } \ No newline at end of file