🚀 support SMPL+H/SMPL-X

This commit is contained in:
shuaiqing 2021-01-24 22:33:08 +08:00
parent 43e15512e3
commit f19058750f
25 changed files with 1460 additions and 293 deletions

View File

@ -2,43 +2,56 @@
* @Date: 2021-01-13 20:32:12
* @Author: Qing Shuai
* @LastEditors: Qing Shuai
* @LastEditTime: 2021-01-17 21:07:07
* @LastEditTime: 2021-01-24 22:11:37
* @FilePath: /EasyMocapRelease/Readme.md
-->
# EasyMocap
**EasyMocap** is an open-source toolbox for **markerless human motion capture** from RGB videos.
## Features
- [x] multi-view, single person => 3d body keypoints
- [x] multi-view, single person => SMPL parameters
In this project, we provide the basic code for fitting SMPL[1]/SMPL+H[2]/SMPLX[3] model to capture body+hand+face poses from multiple views.
|:heavy_check_mark: Skeleton|:heavy_check_mark: SMPL|
|----|----|
|![repro](doc/feng/repro_512.gif)|![smpl](doc/feng/smpl_512.gif)|
|Input|:heavy_check_mark: Skeleton|:heavy_check_mark: SMPL|
|----|----|----|
|![input](doc/feng/000400.jpg)|![repro](doc/feng/skel.gif)|![smpl](doc/feng/smplx.gif)|
> The following features are not released yet. We are now working hard on them. Please stay tuned!
> We plan to intergrate more interesting algorithms, please stay tuned!
|Input|Output|
|----|----|
|multi-view, single person | whole body 3d keypoints|
|multi-view, single person | SMPL-H/SMPLX/MANO parameters|
|sparse view, single person | dense reconstruction and view synthesis: [NeuralBody](https://zju3dv.github.io/neuralbody/).|
|:black_square_button: Whole Body|:black_square_button: [Detailed Mesh](https://zju3dv.github.io/neuralbody/)|
|----|----|
|<div align="center"><img src="doc/feng/total_512.gif" height="300" alt="mesh" align=center /></div>|<div align="center"><img src="doc/feng/body_256.gif" height="300" width="300" alt="mesh" align=center /></div>|
1. [Multi-Person from Multiple Views](https://github.com/zju3dv/mvpose)
2. [Mocap from Multiple **Uncalibrated** and **Unsynchronized** Videos](https://arxiv.org/pdf/2008.07931.pdf)
3. [Dense Reconstruction and View Synthesis from **Sparse Views**](https://zju3dv.github.io/neuralbody/)
## Installation
### 1. Download SMPL models
To download the *SMPL* model go to [this](http://smpl.is.tue.mpg.de) (male and female models, version 1.0.0, 10 shape PCs) and [this](http://smplify.is.tue.mpg.de) (gender neutral model) project website and register to get access to the downloads section. Prepare the model as [smplx](https://github.com/vchoutas/smplx#model-loading). **Place them as following:**
This step is the same as [smplx](https://github.com/vchoutas/smplx#model-loading).
To download the *SMPL* model go to [this](http://smpl.is.tue.mpg.de) (male and female models, version 1.0.0, 10 shape PCs) and [this](http://smplify.is.tue.mpg.de) (gender neutral model) project website and register to get access to the downloads section.
To download the *SMPL+H* model go to [this project website](http://mano.is.tue.mpg.de) and register to get access to the downloads section.
To download the *SMPL-X* model go to [this project website](https://smpl-x.is.tue.mpg.de) and register to get access to the downloads section.
**Place them as following:**
```bash
data
└── smplx
├── J_regressor_body25.npy
└── smpl
   ├── SMPL_FEMALE.pkl
   ├── SMPL_MALE.pkl
   └── SMPL_NEUTRAL.pkl
├── J_regressor_body25_smplh.txt
├── J_regressor_body25_smplx.txt
├── smpl
│   ├── SMPL_FEMALE.pkl
│   ├── SMPL_MALE.pkl
│   └── SMPL_NEUTRAL.pkl
├── smplh
│   ├── MANO_LEFT.pkl
│   ├── MANO_RIGHT.pkl
│   ├── SMPLH_female.pkl
│   ├── SMPLH_FEMALE.pkl
│   ├── SMPLH_male.pkl
│   └── SMPLH_MALE.pkl
└── smplx
├── SMPLX_FEMALE.pkl
├── SMPLX_MALE.pkl
└── SMPLX_NEUTRAL.pkl
```
### 2. Requirements
@ -47,15 +60,13 @@ data
- opencv-python
- [pyrender](https://pyrender.readthedocs.io/en/latest/install/index.html#python-installation): for visualization
- chumpy: for loading SMPL model
- OpenPose[4]: for 2D pose
Some of python libraries can be found in `requirements.txt`. You can test different version of PyTorch.
<!-- To download the *SMPL+H* model go to [this project website](http://mano.is.tue.mpg.de) and register to get access to the downloads section.
To download the *SMPL-X* model go to [this project website](https://smpl-x.is.tue.mpg.de) and register to get access to the downloads section. -->
## Quick Start
We provide an example multiview dataset[[dropbox](https://www.dropbox.com/s/24mb7r921b1g9a7/zju-ls-feng.zip?dl=0)][[BaiduDisk](https://pan.baidu.com/s/1lvAopzYGCic3nauoQXjbPw)(vg1z)]. After downloading the dataset, you can run the following example scripts.
We provide an example multiview dataset[[dropbox](https://www.dropbox.com/s/24mb7r921b1g9a7/zju-ls-feng.zip?dl=0)][[BaiduDisk](https://pan.baidu.com/s/1lvAopzYGCic3nauoQXjbPw)(vg1z)], which has 800 frames from 23 synchronized and calibrated cameras. After downloading the dataset, you can run the following example scripts.
```bash
data=path/to/data
out=path/to/output
@ -64,15 +75,17 @@ python3 scripts/preprocess/extract_video.py ${data}
# 1. example for skeleton reconstruction
python3 code/demo_mv1pmf_skel.py ${data} --out ${out} --vis_det --vis_repro --undis --sub_vis 1 7 13 19
# 2. example for SMPL reconstruction
python3 code/demo_mv1pmf_smpl.py ${data} --out ${out} --end 300 --vis_smpl --undis --sub_vis 1 7 13 19
python3 code/demo_mv1pmf_smpl.py ${data} --out ${out} --end 300 --vis_smpl --undis --sub_vis 1 7 13 19 --gender male
# 2. example for SMPL-X reconstruction
python3 code/demo_mv1pmf_smpl.py ${data} --out ${out} --undis --body bodyhandface --sub_vis 1 7 13 19 --start 400 --model smplx --vis_smpl --gender male
```
## Not Quick Start
### 0. Prepare Your Own Dataset
```bash
zju-ls-feng
├── extri.yml
├── intri.yml
├── extri.yml
└── videos
├── 1.mp4
├── 2.mp4
@ -88,8 +101,10 @@ Here `intri.yml` and `extri.yml` store the camera intrinsici and extrinsic param
```bash
data=path/to/data
out=path/to/output
python3 scripts/preprocess/extract_video.py ${data} --openpose <openpose_path>
python3 scripts/preprocess/extract_video.py ${data} --openpose <openpose_path> --handface
```
- `--openpose`: specify the openpose path
- `--handface`: detect hands and face keypoints
### 2. Run the code
```bash
@ -98,12 +113,15 @@ python3 code/demo_mv1pmf_skel.py ${data} --out ${out} --vis_det --vis_repro --un
# 2. example for SMPL reconstruction
python3 code/demo_mv1pmf_smpl.py ${data} --out ${out} --end 300 --vis_smpl --undis --sub_vis 1 7 13 19
```
The input flags:
- `--undis`: use to undistort the images
- `--start, --end`: control the begin and end number of frames.
The output flags:
- `--vis_det`: visualize the detection
- `--vis_repro`: visualize the reprojection
- `--undis`: use to undistort the images
- `--sub_vis`: use to specify the views to visualize. If not set, the code will use all views
- `--vis_smpl`: use to render the SMPL mesh to images.
- `--start, --end`: control the begin and end number of frames.
### 3. Output
The results are saved in `json` format.
@ -131,14 +149,19 @@ The data in `smpl/000000.json` is also a list, each element represents the SMPL
"id": <id>,
"Rh": <(1, 3)>,
"Th": <(1, 3)>,
"poses": <(1, 72)>,
"poses": <(1, 72/78/87)>,
"expression": <(1, 10)>,
"shapes": <(1, 10)>
}
```
We set the first 3 dimensions of `poses` to zero, and add a new parameter `Rh` to represents the global oritentation, the vertices of SMPL model V = RX(theta, beta) + T.
If you use SMPL+H model, the poses contains `22x3+6+6`. We use `6` pca coefficients for each hand. `3(jaw, left eye, right eye)x3` poses of head are added for SMPL-X model.
## Evaluation
In our code, we do not set the best weight parameters, you can adjust these according your data. If you find a set of good weights, feel free to tell me.
We will add more quantitative reports in [doc/evaluation.md](doc/evaluation.md)
## Acknowledgements
@ -175,3 +198,12 @@ Please consider citing these works if you find this repo is useful for your proj
year={2020}
}
```
## Reference
```bash
[1] Loper, Matthew, et al. "SMPL: A skinned multi-person linear model." ACM transactions on graphics (TOG) 34.6 (2015): 1-16.
[2] Romero, Javier, Dimitrios Tzionas, and Michael J. Black. "Embodied hands: Modeling and capturing hands and bodies together." ACM Transactions on Graphics (ToG) 36.6 (2017): 1-17.
[3] Pavlakos, Georgios, et al. "Expressive body capture: 3d hands, face, and body from a single image." Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition. 2019.
Bogo, Federica, et al. "Keep it SMPL: Automatic estimation of 3D human pose and shape from a single image." European conference on computer vision. Springer, Cham, 2016.
[4] Cao, Z., Hidalgo, G., Simon, T., Wei, S.E., Sheikh, Y.: Openpose: real-time multi-person 2d pose estimation using part affinity fields. arXiv preprint arXiv:1812.08008 (2018)
```

View File

@ -2,7 +2,7 @@
@ Date: 2021-01-13 16:53:55
@ Author: Qing Shuai
@ LastEditors: Qing Shuai
@ LastEditTime: 2021-01-14 19:55:58
@ LastEditTime: 2021-01-24 22:27:01
@ FilePath: /EasyMocapRelease/code/dataset/base.py
'''
import os
@ -15,7 +15,7 @@ import numpy as np
code_path = join(os.path.dirname(__file__), '..')
sys.path.append(code_path)
from mytools.camera_utils import read_camera, undistort, write_camera
from mytools.camera_utils import read_camera, undistort, write_camera, get_fundamental_matrix
from mytools.vis_base import merge, plot_bbox, plot_keypoints
def read_json(path):
@ -30,18 +30,40 @@ def save_json(file, data):
json.dump(data, f, indent=4)
def read_annot(annotname, add_hand_face=False):
data = read_json(annotname)['annots']
def read_annot(annotname, mode='body25'):
data = read_json(annotname)
if not isinstance(data, list):
data = data['annots']
for i in range(len(data)):
if 'id' not in data[i].keys():
data[i]['id'] = data[i].pop('personID')
if 'keypoints2d' in data[i].keys() and 'keypoints' not in data[i].keys():
data[i]['keypoints'] = data[i].pop('keypoints2d')
for key in ['bbox', 'keypoints', 'handl2d', 'handr2d', 'face2d']:
if key not in data[i].keys():continue
data[i][key] = np.array(data[i][key])
if key == 'face2d':
# TODO: Make parameters, 17 is the offset for the eye brows,
# etc. 51 is the total number of FLAME compatible landmarks
data[i][key] = data[i][key][17:17+51, :]
if mode == 'body25':
data[i]['keypoints'] = data[i]['keypoints']
elif mode == 'body15':
data[i]['keypoints'] = data[i]['keypoints'][:15, :]
elif mode == 'total':
data[i]['keypoints'] = np.vstack([data[i][key] for key in ['keypoints', 'handl2d', 'handr2d', 'face2d']])
elif mode == 'bodyhand':
data[i]['keypoints'] = np.vstack([data[i][key] for key in ['keypoints', 'handl2d', 'handr2d']])
elif mode == 'bodyhandface':
data[i]['keypoints'] = np.vstack([data[i][key] for key in ['keypoints', 'handl2d', 'handr2d', 'face2d']])
data.sort(key=lambda x:x['id'])
return data
def get_bbox_from_pose(pose_2d, img, rate = 0.1):
# this function returns bounding box from the 2D pose
validIdx = pose_2d[:, 2] > 0
# here use pose_2d[:, -1] instead of pose_2d[:, 2]
# because when vis reprojection, the result will be (x, y, depth, conf)
validIdx = pose_2d[:, -1] > 0
if validIdx.sum() == 0:
return [0, 0, 100, 100, 0]
y_min = int(min(pose_2d[validIdx, 1]))
@ -65,10 +87,10 @@ def correct_bbox(img, bbox):
class FileWriter:
def __init__(self, output_path, config=None, basenames=[], cfg=None) -> None:
self.out = output_path
keys = ['keypoints3d', 'smpl', 'repro', 'keypoints']
keys = ['keypoints3d', 'match', 'smpl', 'skel', 'repro', 'keypoints']
output_dict = {key:join(self.out, key) for key in keys}
for key, p in output_dict.items():
os.makedirs(p, exist_ok=True)
# for key, p in output_dict.items():
# os.makedirs(p, exist_ok=True)
self.output_dict = output_dict
self.basenames = basenames
@ -78,19 +100,30 @@ class FileWriter:
self.config = config
def write_keypoints3d(self, results, nf):
os.makedirs(self.output_dict['keypoints3d'], exist_ok=True)
savename = join(self.output_dict['keypoints3d'], '{:06d}.json'.format(nf))
save_json(savename, results)
def vis_detections(self, images, lDetections, nf, key='keypoints', to_img=True, vis_id=True):
os.makedirs(self.output_dict[key], exist_ok=True)
images_vis = []
for nv, image in enumerate(images):
img = image.copy()
for det in lDetections[nv]:
if key == 'match':
pid = det['id_match']
else:
pid = det['id']
if key not in det.keys():
keypoints = det['keypoints']
else:
keypoints = det[key]
bbox = det.pop('bbox', get_bbox_from_pose(keypoints, img))
# bbox = det['bbox']
plot_bbox(img, bbox, pid=det['id'], vis_id=vis_id)
plot_keypoints(img, keypoints, pid=det['id'], config=self.config, use_limb_color=False, lw=2)
if 'bbox' not in det.keys():
bbox = get_bbox_from_pose(keypoints, img)
else:
bbox = det['bbox']
plot_bbox(img, bbox, pid=pid, vis_id=vis_id)
plot_keypoints(img, keypoints, pid=pid, config=self.config, use_limb_color=False, lw=2)
images_vis.append(img)
image_vis = merge(images_vis, resize=not self.save_origin)
if to_img:
@ -99,46 +132,229 @@ class FileWriter:
return image_vis
def write_smpl(self, results, nf):
os.makedirs(self.output_dict['smpl'], exist_ok=True)
format_out = {'float_kind':lambda x: "%.3f" % x}
filename = join(self.output_dict['smpl'], '{:06d}.json'.format(nf))
with open(filename, 'w') as f:
f.write('[\n')
for data in results:
for idata, data in enumerate(results):
f.write(' {\n')
output = {}
output['id'] = data['id']
output['Rh'] = np.array2string(data['Rh'], max_line_width=1000, separator=', ', formatter=format_out)
output['Th'] = np.array2string(data['Th'], max_line_width=1000, separator=', ', formatter=format_out)
output['poses'] = np.array2string(data['poses'], max_line_width=1000, separator=', ', formatter=format_out)
output['shapes'] = np.array2string(data['shapes'], max_line_width=1000, separator=', ', formatter=format_out)
for key in ['id', 'Rh', 'Th', 'poses', 'shapes']:
f.write(' \"{}\": {},\n'.format(key, output[key]))
f.write(' },\n')
for key in ['Rh', 'Th', 'poses', 'expression', 'shapes']:
if key not in data.keys():continue
output[key] = np.array2string(data[key], max_line_width=1000, separator=', ', formatter=format_out)
for key in output.keys():
f.write(' \"{}\": {}'.format(key, output[key]))
if key != 'shapes':
f.write(',\n')
else:
f.write('\n')
f.write(' }')
if idata != len(results) - 1:
f.write(',\n')
else:
f.write('\n')
f.write(']\n')
def vis_smpl(self, render_data, nf, images, cameras):
def vis_smpl(self, render_data_, nf, images, cameras, mode='smpl', add_back=False):
out = join(self.out, mode)
os.makedirs(out, exist_ok=True)
from visualize.renderer import Renderer
render = Renderer(height=1024, width=1024, faces=None)
if isinstance(render_data_, list): # different view have different data
for nv, render_data in enumerate(render_data_):
render_results = render.render(render_data, cameras, images)
image_vis = merge(render_results, resize=not self.save_origin)
savename = join(self.output_dict['smpl'], '{:06d}.jpg'.format(nf))
savename = join(out, '{:06d}_{:02d}.jpg'.format(nf, nv))
cv2.imwrite(savename, image_vis)
else:
render_results = render.render(render_data_, cameras, images, add_back=add_back)
image_vis = merge(render_results, resize=not self.save_origin)
savename = join(out, '{:06d}.jpg'.format(nf))
cv2.imwrite(savename, image_vis)
def readReasultsTxt(outname, isA4d=True):
res_ = []
with open(outname, "r") as file:
lines = file.readlines()
if len(lines) < 2:
return res_
nPerson, nJoints = int(lines[0]), int(lines[1])
# 只包含每个人的结果
lines = lines[1:]
# 每个人的都写了关键点数量
line_per_person = 1 + 1 + nJoints
for i in range(nPerson):
trackId = int(lines[i*line_per_person+1])
content = ''.join(lines[i*line_per_person+2:i*line_per_person+2+nJoints])
pose3d = np.fromstring(content, dtype=float, sep=' ').reshape((nJoints, 4))
if isA4d:
# association4d 的关节顺序和正常的定义不一样
pose3d = pose3d[[4, 1, 5, 9, 13, 6, 10, 14, 0, 2, 7, 11, 3, 8, 12], :]
res_.append({'id':trackId, 'keypoints3d':np.array(pose3d)})
return res_
def readResultsJson(outname):
with open(outname) as f:
data = json.load(f)
res_ = []
for d in data:
pose3d = np.array(d['keypoints3d'])
if pose3d.shape[0] > 25:
# 对于有手的情况把手的根节点赋值成body25上的点
pose3d[25, :] = pose3d[7, :]
pose3d[46, :] = pose3d[4, :]
res_.append({
'id': d['id'] if 'id' in d.keys() else d['personID'],
'keypoints3d': pose3d
})
return res_
class VideoBase(Dataset):
"""Dataset for single sequence data
"""
def __init__(self, image_root, annot_root, out=None, config={}, mode='body15', no_img=False) -> None:
self.image_root = image_root
self.annot_root = annot_root
self.mode = mode
self.no_img = no_img
self.config = config
assert out is not None
self.out = out
self.writer = FileWriter(self.out, config=config)
imgnames = sorted(os.listdir(self.image_root))
self.imagelist = imgnames
self.annotlist = sorted(os.listdir(self.annot_root))
self.nFrames = len(self.imagelist)
self.undis = False
self.read_camera()
def read_camera(self):
# 读入相机参数
annname = join(self.annot_root, self.annotlist[0])
data = read_json(annname)
if 'K' not in data.keys():
height, width = data['height'], data['width']
focal = 1.2*max(height, width)
K = np.array([focal, 0., width/2, 0., focal, height/2, 0. ,0., 1.]).reshape(3, 3)
else:
K = np.array(data['K']).reshape(3, 3)
self.camera = {'K':K ,'R': np.eye(3), 'T': np.zeros((3, 1))}
def __getitem__(self, index: int):
imgname = join(self.image_root, self.imagelist[index])
annname = join(self.annot_root, self.annotlist[index])
assert os.path.exists(imgname), imgname
assert os.path.exists(annname), annname
assert os.path.basename(imgname).split('.')[0] == os.path.basename(annname).split('.')[0], (imgname, annname)
if not self.no_img:
img = cv2.imread(imgname)
else:
img = None
annot = read_annot(annname, self.mode)
return img, annot
def __len__(self) -> int:
return self.nFrames
def write_smpl(self, peopleDict, nf):
results = []
for pid, people in peopleDict.items():
result = {'id': pid}
result.update(people.body_params)
results.append(result)
self.writer.write_smpl(results, nf)
def vis_detections(self, image, detections, nf, to_img=True):
return self.writer.vis_detections([image], [detections], nf,
key='keypoints', to_img=to_img, vis_id=True)
def vis_repro(self, peopleDict, image, annots, nf):
# 可视化重投影的关键点与输入的关键点
detections = []
for pid, data in peopleDict.items():
keypoints3d = (data.keypoints3d @ self.camera['R'].T + self.camera['T'].T) @ self.camera['K'].T
keypoints3d[:, :2] /= keypoints3d[:, 2:]
keypoints3d = np.hstack([keypoints3d, data.keypoints3d[:, -1:]])
det = {
'id': pid,
'repro': keypoints3d
}
detections.append(det)
return self.writer.vis_detections([image], [detections], nf, key='repro',
to_img=True, vis_id=False)
def vis_smpl(self, peopleDict, faces, image, nf, sub_vis=[],
mode='smpl', extra_data=[], add_back=True,
axis=np.array([1., 0., 0.]), degree=0., fix_center=None):
# 为了统一接口,旋转视角的在此处实现,只在单视角的数据中使用
# 通过修改相机参数实现
# 相机参数的修正可以通过计算点的中心来获得
# render the smpl to each view
render_data = {}
for pid, data in peopleDict.items():
render_data[pid] = {
'vertices': data.vertices, 'faces': faces,
'vid': pid, 'name': 'human_{}_{}'.format(nf, pid)}
for iid, extra in enumerate(extra_data):
render_data[10000+iid] = {
'vertices': extra['vertices'],
'faces': extra['faces'],
'colors': extra['colors'],
'name': extra['name']
}
camera = {}
for key in self.camera.keys():
camera[key] = self.camera[key][None, :, :]
# render another view point
if np.abs(degree) > 1e-3:
vertices_all = np.vstack([data.vertices for data in peopleDict.values()])
if fix_center is None:
center = np.mean(vertices_all, axis=0, keepdims=True)
new_center = center.copy()
new_center[:, 0:2] = 0
else:
center = fix_center.copy()
new_center = fix_center.copy()
new_center[:, 2] *= 1.5
direc = np.array(axis)
rot, _ = cv2.Rodrigues(direc*degree/90*np.pi/2)
# If we rorate the data, it is like:
# V = Rnew @ (V0 - center) + new_center
# = Rnew @ V0 - Rnew @ center + new_center
# combine with the camera
# VV = Rc(Rnew @ V0 - Rnew @ center + new_center) + Tc
# = Rc@Rnew @ V0 + Rc @ (new_center - Rnew@center) + Tc
blank = np.zeros_like(image, dtype=np.uint8) + 255
images = [image, blank]
Rnew = camera['R'][0] @ rot
Tnew = camera['R'][0] @ (new_center.T - rot @ center.T) + camera['T'][0]
camera['K'] = np.vstack([camera['K'], camera['K']])
camera['R'] = np.vstack([camera['R'], Rnew[None, :, :]])
camera['T'] = np.vstack([camera['T'], Tnew[None, :, :]])
else:
images = [image]
self.writer.vis_smpl(render_data, nf, images, camera, mode, add_back=add_back)
class MVBase(Dataset):
""" Dataset for multiview data
"""
def __init__(self, root, cams=[], out=None, config={},
image_root='images', annot_root='annots',
add_hand_face=True,
mode='body25',
undis=True, no_img=False) -> None:
self.root = root
self.image_root = join(root, image_root)
self.annot_root = join(root, annot_root)
self.add_hand_face = add_hand_face
self.mode = mode
self.undis = undis
self.no_img = no_img
self.config = config
# results path
# the results store keypoints3d
self.skel_path = None
if out is None:
out = join(root, 'output')
self.out = out
@ -146,6 +362,8 @@ class MVBase(Dataset):
if len(cams) == 0:
cams = sorted([i for i in os.listdir(self.image_root) if os.path.isdir(join(self.image_root, i))])
if cams[0].isdigit(): # 对于使用数字命名的文件夹
cams.sort(key=lambda x:int(x))
self.cams = cams
self.imagelist = {}
self.annotlist = {}
@ -168,6 +386,7 @@ class MVBase(Dataset):
self.cameras.pop('basenames')
self.cameras_for_affinity = [[cam['invK'], cam['R'], cam['T']] for cam in [self.cameras[name] for name in self.cams]]
self.Pall = [self.cameras[cam]['P'] for cam in self.cams]
self.Fall = get_fundamental_matrix(self.cameras, self.cams)
else:
print('!!!there is no camera parameters, maybe bug', intri_name, extri_name)
self.cameras = None
@ -205,7 +424,7 @@ class MVBase(Dataset):
img = cv2.imread(imgname)
images.append(img)
# TODO:这里直接取了0
annot = read_annot(annname, self.add_hand_face)
annot = read_annot(annname, self.mode)
annots.append(annot)
if self.undis:
images = self.undistort(images)
@ -214,3 +433,58 @@ class MVBase(Dataset):
def __len__(self) -> int:
return self.nFrames
def vis_detections(self, images, lDetections, nf, to_img=True, sub_vis=[]):
if len(sub_vis) != 0:
valid_idx = [self.cams.index(i) for i in sub_vis]
images = [images[i] for i in valid_idx]
lDetections = [lDetections[i] for i in valid_idx]
return self.writer.vis_detections(images, lDetections, nf,
key='keypoints', to_img=to_img, vis_id=True)
def vis_match(self, images, lDetections, nf, to_img=True, sub_vis=[]):
if len(sub_vis) != 0:
valid_idx = [self.cams.index(i) for i in sub_vis]
images = [images[i] for i in valid_idx]
lDetections = [lDetections[i] for i in valid_idx]
return self.writer.vis_detections(images, lDetections, nf,
key='match', to_img=to_img, vis_id=True)
def write_keypoints3d(self, peopleDict, nf):
results = []
for pid, people in peopleDict.items():
result = {'id': pid, 'keypoints3d': people.keypoints3d.tolist()}
results.append(result)
self.writer.write_keypoints3d(results, nf)
def write_smpl(self, peopleDict, nf):
results = []
for pid, people in peopleDict.items():
result = {'id': pid}
result.update(people.body_params)
results.append(result)
self.writer.write_smpl(results, nf)
def read_skel(self, nf, mode='none'):
if mode == 'a4d':
outname = join(self.skel_path, '{}.txt'.format(nf))
assert os.path.exists(outname), outname
skels = readReasultsTxt(outname)
elif mode == 'none':
outname = join(self.skel_path, '{:06d}.json'.format(nf))
assert os.path.exists(outname), outname
skels = readResultsJson(outname)
else:
import ipdb; ipdb.set_trace()
return skels
def read_smpl(self, nf):
outname = join(self.skel_path, '{:06d}.json'.format(nf))
assert os.path.exists(outname), outname
datas = read_json(outname)
outputs = []
for data in datas:
for key in ['Rh', 'Th', 'poses', 'shapes']:
data[key] = np.array(data[key])
outputs.append(data)
return outputs

View File

@ -2,14 +2,14 @@
* @ Date: 2020-09-26 16:52:55
* @ Author: Qing Shuai
@ LastEditors: Qing Shuai
@ LastEditTime: 2021-01-13 14:04:46
@ FilePath: /EasyMocap/code/dataset/config.py
@ LastEditTime: 2021-01-24 20:21:50
@ FilePath: /EasyMocapRelease/code/dataset/config.py
'''
import numpy as np
CONFIG = {}
CONFIG['body25'] = {'kintree':
CONFIG['body25'] = {'nJoints': 25, 'kintree':
[[ 1, 0],
[ 2, 1],
[ 3, 2],
@ -33,9 +33,38 @@ CONFIG['body25'] = {'kintree':
[21, 14],
[22, 11],
[23, 22],
[24, 11]]}
[24, 11]],
'joint_names': ["Nose", "Neck", "RShoulder", "RElbow", "RWrist", "LShoulder", "LElbow", "LWrist", "MidHip", "RHip","RKnee","RAnkle","LHip","LKnee","LAnkle","REye","LEye","REar","LEar","LBigToe","LSmallToe","LHeel","RBigToe","RSmallToe","RHeel"]}
CONFIG['body15'] = {'kintree':
CONFIG['body25']['skeleton'] = \
{
( 0, 1): {'mean': 0.228, 'std': 0.046}, # Nose ->Neck
( 1, 2): {'mean': 0.144, 'std': 0.029}, # Neck ->RShoulder
( 2, 3): {'mean': 0.283, 'std': 0.057}, # RShoulder->RElbow
( 3, 4): {'mean': 0.258, 'std': 0.052}, # RElbow ->RWrist
( 1, 5): {'mean': 0.145, 'std': 0.029}, # Neck ->LShoulder
( 5, 6): {'mean': 0.281, 'std': 0.056}, # LShoulder->LElbow
( 6, 7): {'mean': 0.258, 'std': 0.052}, # LElbow ->LWrist
( 1, 8): {'mean': 0.483, 'std': 0.097}, # Neck ->MidHip
( 8, 9): {'mean': 0.106, 'std': 0.021}, # MidHip ->RHip
( 9, 10): {'mean': 0.438, 'std': 0.088}, # RHip ->RKnee
(10, 11): {'mean': 0.406, 'std': 0.081}, # RKnee ->RAnkle
( 8, 12): {'mean': 0.106, 'std': 0.021}, # MidHip ->LHip
(12, 13): {'mean': 0.438, 'std': 0.088}, # LHip ->LKnee
(13, 14): {'mean': 0.408, 'std': 0.082}, # LKnee ->LAnkle
( 0, 15): {'mean': 0.043, 'std': 0.009}, # Nose ->REye
( 0, 16): {'mean': 0.043, 'std': 0.009}, # Nose ->LEye
(15, 17): {'mean': 0.105, 'std': 0.021}, # REye ->REar
(16, 18): {'mean': 0.104, 'std': 0.021}, # LEye ->LEar
(14, 19): {'mean': 0.180, 'std': 0.036}, # LAnkle ->LBigToe
(19, 20): {'mean': 0.038, 'std': 0.008}, # LBigToe ->LSmallToe
(14, 21): {'mean': 0.044, 'std': 0.009}, # LAnkle ->LHeel
(11, 22): {'mean': 0.182, 'std': 0.036}, # RAnkle ->RBigToe
(22, 23): {'mean': 0.038, 'std': 0.008}, # RBigToe ->RSmallToe
(11, 24): {'mean': 0.044, 'std': 0.009}, # RAnkle ->RHeel
}
CONFIG['body15'] = {'nJoints': 15, 'kintree':
[[ 1, 0],
[ 2, 1],
[ 3, 2],
@ -50,6 +79,8 @@ CONFIG['body15'] = {'kintree':
[12, 8],
[13, 12],
[14, 13],]}
CONFIG['body15']['joint_names'] = CONFIG['body25']['joint_names'][:15]
CONFIG['body15']['skeleton'] = CONFIG['body25']['skeleton']
CONFIG['hand'] = {'kintree':
[[ 1, 0],
@ -99,48 +130,392 @@ CONFIG['bodyhand'] = {'kintree':
[22, 11],
[23, 22],
[24, 11],
[26, 25], # handl
[26, 7], # handl
[27, 26],
[28, 27],
[29, 28],
[30, 25],
[30, 7],
[31, 30],
[32, 31],
[33, 32],
[34, 25],
[34, 7],
[35, 34],
[36, 35],
[37, 36],
[38, 25],
[38, 7],
[39, 38],
[40, 39],
[41, 40],
[42, 25],
[42, 7],
[43, 42],
[44, 43],
[45, 44],
[47, 46], # handr
[47, 4], # handr
[48, 47],
[49, 48],
[50, 49],
[51, 46],
[51, 4],
[52, 51],
[53, 52],
[54, 53],
[55, 46],
[55, 4],
[56, 55],
[57, 56],
[58, 57],
[59, 46],
[59, 4],
[60, 59],
[61, 60],
[62, 61],
[63, 46],
[63, 4],
[64, 63],
[65, 64],
[66, 65]
]
],
'nJoints': 67,
'skeleton':{
( 0, 1): {'mean': 0.251, 'std': 0.050},
( 1, 2): {'mean': 0.169, 'std': 0.034},
( 2, 3): {'mean': 0.292, 'std': 0.058},
( 3, 4): {'mean': 0.275, 'std': 0.055},
( 1, 5): {'mean': 0.169, 'std': 0.034},
( 5, 6): {'mean': 0.295, 'std': 0.059},
( 6, 7): {'mean': 0.278, 'std': 0.056},
( 1, 8): {'mean': 0.566, 'std': 0.113},
( 8, 9): {'mean': 0.110, 'std': 0.022},
( 9, 10): {'mean': 0.398, 'std': 0.080},
(10, 11): {'mean': 0.402, 'std': 0.080},
( 8, 12): {'mean': 0.111, 'std': 0.022},
(12, 13): {'mean': 0.395, 'std': 0.079},
(13, 14): {'mean': 0.403, 'std': 0.081},
( 0, 15): {'mean': 0.053, 'std': 0.011},
( 0, 16): {'mean': 0.056, 'std': 0.011},
(15, 17): {'mean': 0.107, 'std': 0.021},
(16, 18): {'mean': 0.107, 'std': 0.021},
(14, 19): {'mean': 0.180, 'std': 0.036},
(19, 20): {'mean': 0.055, 'std': 0.011},
(14, 21): {'mean': 0.065, 'std': 0.013},
(11, 22): {'mean': 0.169, 'std': 0.034},
(22, 23): {'mean': 0.052, 'std': 0.010},
(11, 24): {'mean': 0.061, 'std': 0.012},
( 7, 26): {'mean': 0.045, 'std': 0.009},
(26, 27): {'mean': 0.042, 'std': 0.008},
(27, 28): {'mean': 0.035, 'std': 0.007},
(28, 29): {'mean': 0.029, 'std': 0.006},
( 7, 30): {'mean': 0.102, 'std': 0.020},
(30, 31): {'mean': 0.040, 'std': 0.008},
(31, 32): {'mean': 0.026, 'std': 0.005},
(32, 33): {'mean': 0.023, 'std': 0.005},
( 7, 34): {'mean': 0.101, 'std': 0.020},
(34, 35): {'mean': 0.043, 'std': 0.009},
(35, 36): {'mean': 0.029, 'std': 0.006},
(36, 37): {'mean': 0.024, 'std': 0.005},
( 7, 38): {'mean': 0.097, 'std': 0.019},
(38, 39): {'mean': 0.041, 'std': 0.008},
(39, 40): {'mean': 0.027, 'std': 0.005},
(40, 41): {'mean': 0.024, 'std': 0.005},
( 7, 42): {'mean': 0.095, 'std': 0.019},
(42, 43): {'mean': 0.033, 'std': 0.007},
(43, 44): {'mean': 0.020, 'std': 0.004},
(44, 45): {'mean': 0.018, 'std': 0.004},
( 4, 47): {'mean': 0.043, 'std': 0.009},
(47, 48): {'mean': 0.041, 'std': 0.008},
(48, 49): {'mean': 0.034, 'std': 0.007},
(49, 50): {'mean': 0.028, 'std': 0.006},
( 4, 51): {'mean': 0.101, 'std': 0.020},
(51, 52): {'mean': 0.041, 'std': 0.008},
(52, 53): {'mean': 0.026, 'std': 0.005},
(53, 54): {'mean': 0.024, 'std': 0.005},
( 4, 55): {'mean': 0.100, 'std': 0.020},
(55, 56): {'mean': 0.044, 'std': 0.009},
(56, 57): {'mean': 0.029, 'std': 0.006},
(57, 58): {'mean': 0.023, 'std': 0.005},
( 4, 59): {'mean': 0.096, 'std': 0.019},
(59, 60): {'mean': 0.040, 'std': 0.008},
(60, 61): {'mean': 0.028, 'std': 0.006},
(61, 62): {'mean': 0.023, 'std': 0.005},
( 4, 63): {'mean': 0.094, 'std': 0.019},
(63, 64): {'mean': 0.032, 'std': 0.006},
(64, 65): {'mean': 0.020, 'std': 0.004},
(65, 66): {'mean': 0.018, 'std': 0.004},
}
}
CONFIG['bodyhandface'] = {'kintree':
[[ 1, 0],
[ 2, 1],
[ 3, 2],
[ 4, 3],
[ 5, 1],
[ 6, 5],
[ 7, 6],
[ 8, 1],
[ 9, 8],
[10, 9],
[11, 10],
[12, 8],
[13, 12],
[14, 13],
[15, 0],
[16, 0],
[17, 15],
[18, 16],
[19, 14],
[20, 19],
[21, 14],
[22, 11],
[23, 22],
[24, 11],
[26, 7], # handl
[27, 26],
[28, 27],
[29, 28],
[30, 7],
[31, 30],
[32, 31],
[33, 32],
[34, 7],
[35, 34],
[36, 35],
[37, 36],
[38, 7],
[39, 38],
[40, 39],
[41, 40],
[42, 7],
[43, 42],
[44, 43],
[45, 44],
[47, 4], # handr
[48, 47],
[49, 48],
[50, 49],
[51, 4],
[52, 51],
[53, 52],
[54, 53],
[55, 4],
[56, 55],
[57, 56],
[58, 57],
[59, 4],
[60, 59],
[61, 60],
[62, 61],
[63, 4],
[64, 63],
[65, 64],
[66, 65],
[ 67, 68],
[ 68, 69],
[ 69, 70],
[ 70, 71],
[ 72, 73],
[ 73, 74],
[ 74, 75],
[ 75, 76],
[ 77, 78],
[ 78, 79],
[ 79, 80],
[ 81, 82],
[ 82, 83],
[ 83, 84],
[ 84, 85],
[ 86, 87],
[ 87, 88],
[ 88, 89],
[ 89, 90],
[ 90, 91],
[ 91, 86],
[ 92, 93],
[ 93, 94],
[ 94, 95],
[ 95, 96],
[ 96, 97],
[ 97, 92],
[ 98, 99],
[ 99, 100],
[100, 101],
[101, 102],
[102, 103],
[103, 104],
[104, 105],
[105, 106],
[106, 107],
[107, 108],
[108, 109],
[109, 98],
[110, 111],
[111, 112],
[112, 113],
[113, 114],
[114, 115],
[115, 116],
[116, 117],
[117, 110]
],
'nJoints': 118,
'skeleton':{
( 0, 1): {'mean': 0.251, 'std': 0.050},
( 1, 2): {'mean': 0.169, 'std': 0.034},
( 2, 3): {'mean': 0.292, 'std': 0.058},
( 3, 4): {'mean': 0.275, 'std': 0.055},
( 1, 5): {'mean': 0.169, 'std': 0.034},
( 5, 6): {'mean': 0.295, 'std': 0.059},
( 6, 7): {'mean': 0.278, 'std': 0.056},
( 1, 8): {'mean': 0.566, 'std': 0.113},
( 8, 9): {'mean': 0.110, 'std': 0.022},
( 9, 10): {'mean': 0.398, 'std': 0.080},
(10, 11): {'mean': 0.402, 'std': 0.080},
( 8, 12): {'mean': 0.111, 'std': 0.022},
(12, 13): {'mean': 0.395, 'std': 0.079},
(13, 14): {'mean': 0.403, 'std': 0.081},
( 0, 15): {'mean': 0.053, 'std': 0.011},
( 0, 16): {'mean': 0.056, 'std': 0.011},
(15, 17): {'mean': 0.107, 'std': 0.021},
(16, 18): {'mean': 0.107, 'std': 0.021},
(14, 19): {'mean': 0.180, 'std': 0.036},
(19, 20): {'mean': 0.055, 'std': 0.011},
(14, 21): {'mean': 0.065, 'std': 0.013},
(11, 22): {'mean': 0.169, 'std': 0.034},
(22, 23): {'mean': 0.052, 'std': 0.010},
(11, 24): {'mean': 0.061, 'std': 0.012},
( 7, 26): {'mean': 0.045, 'std': 0.009},
(26, 27): {'mean': 0.042, 'std': 0.008},
(27, 28): {'mean': 0.035, 'std': 0.007},
(28, 29): {'mean': 0.029, 'std': 0.006},
( 7, 30): {'mean': 0.102, 'std': 0.020},
(30, 31): {'mean': 0.040, 'std': 0.008},
(31, 32): {'mean': 0.026, 'std': 0.005},
(32, 33): {'mean': 0.023, 'std': 0.005},
( 7, 34): {'mean': 0.101, 'std': 0.020},
(34, 35): {'mean': 0.043, 'std': 0.009},
(35, 36): {'mean': 0.029, 'std': 0.006},
(36, 37): {'mean': 0.024, 'std': 0.005},
( 7, 38): {'mean': 0.097, 'std': 0.019},
(38, 39): {'mean': 0.041, 'std': 0.008},
(39, 40): {'mean': 0.027, 'std': 0.005},
(40, 41): {'mean': 0.024, 'std': 0.005},
( 7, 42): {'mean': 0.095, 'std': 0.019},
(42, 43): {'mean': 0.033, 'std': 0.007},
(43, 44): {'mean': 0.020, 'std': 0.004},
(44, 45): {'mean': 0.018, 'std': 0.004},
( 4, 47): {'mean': 0.043, 'std': 0.009},
(47, 48): {'mean': 0.041, 'std': 0.008},
(48, 49): {'mean': 0.034, 'std': 0.007},
(49, 50): {'mean': 0.028, 'std': 0.006},
( 4, 51): {'mean': 0.101, 'std': 0.020},
(51, 52): {'mean': 0.041, 'std': 0.008},
(52, 53): {'mean': 0.026, 'std': 0.005},
(53, 54): {'mean': 0.024, 'std': 0.005},
( 4, 55): {'mean': 0.100, 'std': 0.020},
(55, 56): {'mean': 0.044, 'std': 0.009},
(56, 57): {'mean': 0.029, 'std': 0.006},
(57, 58): {'mean': 0.023, 'std': 0.005},
( 4, 59): {'mean': 0.096, 'std': 0.019},
(59, 60): {'mean': 0.040, 'std': 0.008},
(60, 61): {'mean': 0.028, 'std': 0.006},
(61, 62): {'mean': 0.023, 'std': 0.005},
( 4, 63): {'mean': 0.094, 'std': 0.019},
(63, 64): {'mean': 0.032, 'std': 0.006},
(64, 65): {'mean': 0.020, 'std': 0.004},
(65, 66): {'mean': 0.018, 'std': 0.004},
(67, 68): {'mean': 0.012, 'std': 0.002},
(68, 69): {'mean': 0.013, 'std': 0.003},
(69, 70): {'mean': 0.014, 'std': 0.003},
(70, 71): {'mean': 0.012, 'std': 0.002},
(72, 73): {'mean': 0.014, 'std': 0.003},
(73, 74): {'mean': 0.014, 'std': 0.003},
(74, 75): {'mean': 0.015, 'std': 0.003},
(75, 76): {'mean': 0.013, 'std': 0.003},
(77, 78): {'mean': 0.014, 'std': 0.003},
(78, 79): {'mean': 0.014, 'std': 0.003},
(79, 80): {'mean': 0.015, 'std': 0.003},
(81, 82): {'mean': 0.009, 'std': 0.002},
(82, 83): {'mean': 0.010, 'std': 0.002},
(83, 84): {'mean': 0.010, 'std': 0.002},
(84, 85): {'mean': 0.010, 'std': 0.002},
(86, 87): {'mean': 0.009, 'std': 0.002},
(87, 88): {'mean': 0.009, 'std': 0.002},
(88, 89): {'mean': 0.008, 'std': 0.002},
(89, 90): {'mean': 0.008, 'std': 0.002},
(90, 91): {'mean': 0.009, 'std': 0.002},
(86, 91): {'mean': 0.008, 'std': 0.002},
(92, 93): {'mean': 0.009, 'std': 0.002},
(93, 94): {'mean': 0.009, 'std': 0.002},
(94, 95): {'mean': 0.009, 'std': 0.002},
(95, 96): {'mean': 0.009, 'std': 0.002},
(96, 97): {'mean': 0.009, 'std': 0.002},
(92, 97): {'mean': 0.009, 'std': 0.002},
(98, 99): {'mean': 0.016, 'std': 0.003},
(99, 100): {'mean': 0.013, 'std': 0.003},
(100, 101): {'mean': 0.008, 'std': 0.002},
(101, 102): {'mean': 0.008, 'std': 0.002},
(102, 103): {'mean': 0.012, 'std': 0.002},
(103, 104): {'mean': 0.014, 'std': 0.003},
(104, 105): {'mean': 0.015, 'std': 0.003},
(105, 106): {'mean': 0.012, 'std': 0.002},
(106, 107): {'mean': 0.009, 'std': 0.002},
(107, 108): {'mean': 0.009, 'std': 0.002},
(108, 109): {'mean': 0.013, 'std': 0.003},
(98, 109): {'mean': 0.016, 'std': 0.003},
(110, 111): {'mean': 0.021, 'std': 0.004},
(111, 112): {'mean': 0.009, 'std': 0.002},
(112, 113): {'mean': 0.008, 'std': 0.002},
(113, 114): {'mean': 0.019, 'std': 0.004},
(114, 115): {'mean': 0.018, 'std': 0.004},
(115, 116): {'mean': 0.008, 'std': 0.002},
(116, 117): {'mean': 0.009, 'std': 0.002},
(110, 117): {'mean': 0.020, 'std': 0.004},
}
}
face_kintree_without_contour = [[ 0, 1],
[ 1, 2],
[ 2, 3],
[ 3, 4],
[ 5, 6],
[ 6, 7],
[ 7, 8],
[ 8, 9],
[10, 11],
[11, 12],
[12, 13],
[14, 15],
[15, 16],
[16, 17],
[17, 18],
[19, 20],
[20, 21],
[21, 22],
[22, 23],
[23, 24],
[24, 19],
[25, 26],
[26, 27],
[27, 28],
[28, 29],
[29, 30],
[30, 25],
[31, 32],
[32, 33],
[33, 34],
[34, 35],
[35, 36],
[36, 37],
[37, 38],
[38, 39],
[39, 40],
[40, 41],
[41, 42],
[42, 31],
[43, 44],
[44, 45],
[45, 46],
[46, 47],
[47, 48],
[48, 49],
[49, 50],
[50, 43]]
CONFIG['face'] = {'kintree':[ [0,1],[1,2],[2,3],[3,4],[4,5],[5,6],[6,7],[7,8],[8,9],[9,10],[10,11],[11,12],[12,13],[13,14],[14,15],[15,16], #outline (ignored)
[17,18],[18,19],[19,20],[20,21], #right eyebrow
@ -176,6 +551,7 @@ def getKintree(name='total'):
return kintree
CONFIG['total'] = {}
CONFIG['total']['kintree'] = getKintree('total')
CONFIG['total']['nJoints'] = 137
COCO17_IN_BODY25 = [0,16,15,18,17,5,2,6,3,7,4,12,9,13,10,14,11]

View File

@ -2,7 +2,7 @@
@ Date: 2021-01-12 17:12:50
@ Author: Qing Shuai
@ LastEditors: Qing Shuai
@ LastEditTime: 2021-01-14 17:14:34
@ LastEditTime: 2021-01-21 14:51:45
@ FilePath: /EasyMocap/code/dataset/mv1pmf.py
'''
import os
@ -15,10 +15,10 @@ from .base import MVBase
class MV1PMF(MVBase):
def __init__(self, root, cams=[], pid=0, out=None, config={},
image_root='images', annot_root='annots', add_hand_face=True,
image_root='images', annot_root='annots', mode='body15',
undis=True, no_img=False) -> None:
super().__init__(root, cams, out, config, image_root, annot_root,
add_hand_face, undis, no_img)
mode, undis, no_img)
self.pid = pid
def write_keypoints3d(self, keypoints3d, nf):
@ -30,20 +30,21 @@ class MV1PMF(MVBase):
result.update(params)
self.writer.write_smpl([result], nf)
def vis_smpl(self, vertices, faces, images, nf, sub_vis):
def vis_smpl(self, vertices, faces, images, nf, sub_vis=[],
mode='smpl', extra_data=[], add_back=True):
render_data = {}
if len(vertices.shape) == 3:
vertices = vertices[0]
pid = self.pid
render_data[pid] = {'vertices': vertices, 'faces': faces,
'vid': pid, 'name': '{}_{}'.format(nf, pid)}
'vid': pid, 'name': 'human_{}_{}'.format(nf, pid)}
cameras = {'K': [], 'R':[], 'T':[]}
if len(sub_vis) == 0:
sub_vis = self.cams
for key in cameras.keys():
cameras[key] = [self.cameras[cam][key] for cam in sub_vis]
images = [images[self.cams.index(cam)] for cam in sub_vis]
self.writer.vis_smpl(render_data, nf, images, cameras)
self.writer.vis_smpl(render_data, nf, images, cameras, mode, add_back=add_back)
def vis_detections(self, images, annots, nf, to_img=True, sub_vis=[]):
lDetections = []
@ -87,6 +88,9 @@ class MV1PMF(MVBase):
keypoints = data['keypoints']
else:
print('not found pid {} in {}, {}'.format(self.pid, index, nv))
if self.add_hand_face:
keypoints = np.zeros((137, 3))
else:
keypoints = np.zeros((25, 3))
bbox = np.array([0, 0, 100., 100., 0.])
annots['bbox'].append(bbox)

View File

@ -2,15 +2,17 @@
@ Date: 2021-01-12 17:08:25
@ Author: Qing Shuai
@ LastEditors: Qing Shuai
@ LastEditTime: 2021-01-14 17:08:05
@ FilePath: /EasyMocap/code/demo_mv1pmf_skel.py
@ LastEditTime: 2021-01-24 20:57:35
@ FilePath: /EasyMocapRelease/code/demo_mv1pmf_skel.py
'''
# show skeleton and reprojection
from dataset.mv1pmf import MV1PMF
from dataset.config import CONFIG
from mytools.reconstruction import simple_recon_person, projectN3
# from mytools.robust_triangulate import robust_triangulate
from tqdm import tqdm
import numpy as np
from smplmodel import check_keypoints
def smooth_skeleton(skeleton):
# nFrames, nJoints, 4: [[(x, y, z, c)]]
@ -32,10 +34,37 @@ def smooth_skeleton(skeleton):
skeleton[span:nFrames-span, :, :3] = skel
return skeleton
def get_limb_length(config, keypoints):
skeleton = {}
for i, j_ in config['kintree']:
if j_ == 25:
j = 7
elif j_ == 46:
j = 4
else:
j = j_
key = tuple(sorted([i, j]))
length, confs = 0, 0
for nf in range(keypoints.shape[0]):
limb_length = np.linalg.norm(keypoints[nf, i, :3] - keypoints[nf, j, :3])
conf = keypoints[nf, [i, j], -1].min()
length += limb_length * conf
confs += conf
limb_length = length/confs
skeleton[key] = {'mean': limb_length, 'std': limb_length*0.2}
print('{')
for key, val in skeleton.items():
res = ' ({:2d}, {:2d}): {{\'mean\': {:.3f}, \'std\': {:.3f}}}, '.format(*key, val['mean'], val['std'])
if 'joint_names' in config.keys():
res += '# {:9s}->{:9s}'.format(config['joint_names'][key[0]], config['joint_names'][key[1]])
print(res)
print('}')
def mv1pmf_skel(path, sub, out, mode, args):
MIN_CONF_THRES = 0.5
MIN_CONF_THRES = 0.3
no_img = not (args.vis_det or args.vis_repro)
dataset = MV1PMF(path, cams=sub, config=CONFIG[mode], add_hand_face=args.add_hand_face,
config = CONFIG[mode]
dataset = MV1PMF(path, cams=sub, config=config, mode=mode,
undis=args.undis, no_img=no_img, out=out)
kp3ds = []
start, end = args.start, min(args.end, len(dataset))
@ -43,7 +72,9 @@ def mv1pmf_skel(path, sub, out, mode, args):
images, annots = dataset[nf]
conf = annots['keypoints'][..., -1]
conf[conf < MIN_CONF_THRES] = 0
keypoints3d, _, kpts_repro = simple_recon_person(annots['keypoints'], dataset.Pall, ret_repro=True)
annots['keypoints'] = check_keypoints(annots['keypoints'], WEIGHT_DEBUFF=1)
keypoints3d, _, kpts_repro = simple_recon_person(annots['keypoints'], dataset.Pall, config=config, ret_repro=True)
# keypoints3d, _, kpts_repro = robust_triangulate(annots['keypoints'], dataset.Pall, config=config, ret_repro=True)
kp3ds.append(keypoints3d)
if args.vis_det:
dataset.vis_detections(images, annots, nf, sub_vis=args.sub_vis)
@ -51,32 +82,16 @@ def mv1pmf_skel(path, sub, out, mode, args):
dataset.vis_repro(images, annots, kpts_repro, nf, sub_vis=args.sub_vis)
# smooth the skeleton
kp3ds = np.stack(kp3ds)
if args.smooth:
kp3ds = smooth_skeleton(kp3ds)
# 计算一下骨长
# get_limb_length(config, kp3ds)
# if args.smooth:
# kp3ds = smooth_skeleton(kp3ds)
for nf in tqdm(range(kp3ds.shape[0]), desc='dump'):
dataset.write_keypoints3d(kp3ds[nf], nf + start)
if __name__ == "__main__":
import argparse
parser = argparse.ArgumentParser('multi_view one_person multi_frame skel')
parser.add_argument('path', type=str)
parser.add_argument('--out', type=str, default=None)
parser.add_argument('--sub', type=str, nargs='+', default=[],
help='the sub folder lists when in video mode')
parser.add_argument('--start', type=int, default=0,
help='frame start')
parser.add_argument('--end', type=int, default=10000,
help='frame end')
parser.add_argument('--step', type=int, default=1,
help='frame step')
parser.add_argument('--body', type=str, default='body25', choices=['body15', 'body25', 'total'])
parser.add_argument('--undis', action='store_true')
parser.add_argument('--add_hand_face', action='store_true')
parser.add_argument('--smooth', action='store_true')
parser.add_argument('--vis_det', action='store_true')
parser.add_argument('--vis_repro', action='store_true')
parser.add_argument('--sub_vis', type=str, nargs='+', default=[],
help='the sub folder lists for visualization')
from mytools.cmd_loader import load_parser
parser = load_parser()
args = parser.parse_args()
mv1pmf_skel(args.path, args.sub, args.out, args.body, args)

View File

@ -2,106 +2,141 @@
@ Date: 2021-01-12 17:08:25
@ Author: Qing Shuai
@ LastEditors: Qing Shuai
@ LastEditTime: 2021-01-14 20:49:25
@ FilePath: /EasyMocap/code/demo_mv1pmf_smpl.py
@ LastEditTime: 2021-01-24 22:26:09
@ FilePath: /EasyMocapRelease/code/demo_mv1pmf_smpl.py
'''
# show skeleton and reprojection
import pyrender # first import the pyrender
from pyfitting.optimize_simple import optimizeShape, optimizePose
from dataset.mv1pmf import MV1PMF
from dataset.config import CONFIG
from mytools.reconstruction import simple_recon_person, projectN3
from smplmodel import select_nf, init_params, Config
from mytools.utils import Timer
from smplmodel import select_nf, init_params, Config, load_model, check_keypoints
from os.path import join
from tqdm import tqdm
import numpy as np
def load_model(use_cuda=True):
# prepare SMPL model
import torch
if use_cuda:
device = torch.device('cuda')
else:
device = torch.device('cpu')
from smplmodel import SMPLlayer
body_model = SMPLlayer('data/smplx/smpl', gender='neutral', device=device,
regressor_path='data/smplx/J_regressor_body25.npy')
body_model.to(device)
return body_model
def load_weight_shape():
weight = {'s3d': 1., 'reg_shape': 5e-3}
weight = {'s3d': 1., 'reg_shapes': 5e-3}
return weight
def load_weight_pose():
def load_weight_pose(model):
if model == 'smpl':
weight = {
'k3d': 1., 'reg_poses_zero': 1e-2,
'smooth_Rh': 1e-2, 'smooth_Th': 1e-2, 'smooth_poses': 1e-2
'reg_expression': 1e-1,
'smooth_joints': 1e-5
# 'smooth_Rh': 1e-1, 'smooth_Th': 1e-1, 'smooth_poses': 1e-1, 'smooth_hands': 1e-2
}
elif model == 'smplh':
weight = {
'k3d': 1., 'reg_poses_zero': 1e-3,
'smooth_body': 1e-2, 'smooth_hand': 1e-2
}
elif model == 'smplx':
weight = {
'k3d': 1., 'reg_poses_zero': 1e-3,
'reg_expression': 1e-2,
'smooth_body': 1e-2, 'smooth_hand': 1e-2
# 'smooth_Rh': 1e-1, 'smooth_Th': 1e-1, 'smooth_poses': 1e-1, 'smooth_hands': 1e-2
}
else:
raise NotImplementedError
return weight
def print_mean_skel(mode):
with Timer('Loading {}, {}'.format(args.model, args.gender)):
body_model = load_model(args.gender, model_type=args.model)
params_init = init_params(nFrames=1, model_type=args.model)
skel = body_model(return_verts=False, return_tensor=False, **params_init)[0]
# skel: nJoints, 3
config = CONFIG[mode]
skeleton = {}
for i, j_ in config['kintree']:
if j_ == 25:
j = 7
elif j_ == 46:
j = 4
else:
j = j_
key = tuple(sorted([i, j]))
limb_length = np.linalg.norm(skel[i] - skel[j])
skeleton[key] = {'mean': limb_length, 'std': limb_length*0.2}
print('{')
for key, val in skeleton.items():
res = ' ({:2d}, {:2d}): {{\'mean\': {:.3f}, \'std\': {:.3f}}}, '.format(*key, val['mean'], val['std'])
if 'joint_names' in config.keys():
res += '# {:9s}->{:9s}'.format(config['joint_names'][key[0]], config['joint_names'][key[1]])
print(res)
print('}')
def mv1pmf_smpl(path, sub, out, mode, args):
config = CONFIG[mode]
MIN_CONF_THRES = 0.5
no_img = False
dataset = MV1PMF(path, cams=sub, config=CONFIG[mode], add_hand_face=False,
no_img = True
dataset = MV1PMF(path, cams=sub, config=CONFIG[mode], mode=args.body,
undis=args.undis, no_img=no_img, out=out)
if args.skel is None:
from demo_mv1pmf_skel import mv1pmf_skel
mv1pmf_skel(path, sub, out, mode, args)
args.skel = join(out, 'keypoints3d')
dataset.skel_path = args.skel
kp3ds = []
start, end = args.start, min(args.end, len(dataset))
dataset.no_img = True
annots_all = []
for nf in tqdm(range(start, end), desc='triangulation'):
for nf in tqdm(range(start, end), desc='loading'):
images, annots = dataset[nf]
conf = annots['keypoints'][..., -1]
conf[conf < MIN_CONF_THRES] = 0
keypoints3d, _, kpts_repro = simple_recon_person(annots['keypoints'], dataset.Pall, ret_repro=True)
kp3ds.append(keypoints3d)
infos = dataset.read_skel(nf)
kp3ds.append(infos[0]['keypoints3d'])
annots_all.append(annots)
# smooth the skeleton
kp3ds = np.stack(kp3ds)
kp3ds = check_keypoints(kp3ds, 1)
# optimize the human shape
body_model = load_model()
params_init = init_params(nFrames=1)
with Timer('Loading {}, {}'.format(args.model, args.gender)):
body_model = load_model(args.gender, model_type=args.model)
params_init = init_params(nFrames=1, model_type=args.model)
weight = load_weight_shape()
if args.model in ['smpl', 'smplh', 'smplx']:
# when use SMPL model, optimize the shape only with first 14 limbs
params_shape = optimizeShape(body_model, params_init, kp3ds, weight_loss=weight, kintree=CONFIG['body15']['kintree'])
else:
params_shape = optimizeShape(body_model, params_init, kp3ds, weight_loss=weight, kintree=config['kintree'])
# optimize 3D pose
cfg = Config()
params = init_params(nFrames=kp3ds.shape[0])
cfg.VERBOSE = args.verbose
cfg.MODEL = args.model
params = init_params(nFrames=kp3ds.shape[0], model_type=args.model)
params['shapes'] = params_shape['shapes'].copy()
weight = load_weight_pose()
weight = load_weight_pose(args.model)
with Timer('Optimize global RT'):
cfg.OPT_R = True
cfg.OPT_T = True
params = optimizePose(body_model, params, kp3ds, weight_loss=weight, kintree=config['kintree'], cfg=cfg)
with Timer('Optimize Pose/{} frames'.format(end-start)):
cfg.OPT_POSE = True
params = optimizePose(body_model, params, kp3ds, weight_loss=weight, kintree=config['kintree'], cfg=cfg)
# optimize 2D pose
# render the mesh
if args.model in ['smplh', 'smplx']:
cfg.OPT_HAND = True
params = optimizePose(body_model, params, kp3ds, weight_loss=weight, kintree=config['kintree'], cfg=cfg)
if args.model == 'smplx':
cfg.OPT_EXPR = True
params = optimizePose(body_model, params, kp3ds, weight_loss=weight, kintree=config['kintree'], cfg=cfg)
# TODO:optimize 2D pose
# write out the results
dataset.no_img = not args.vis_smpl
for nf in tqdm(range(start, end), desc='render'):
images, annots = dataset[nf]
dataset.write_smpl(select_nf(params, nf-start), nf)
if args.vis_smpl:
vertices = body_model(return_verts=True, return_tensor=False, **select_nf(params, nf-start))
dataset.vis_smpl(vertices=vertices, faces=body_model.faces, images=images, nf=nf, sub_vis=args.sub_vis)
dataset.vis_smpl(vertices=vertices, faces=body_model.faces, images=images, nf=nf, sub_vis=args.sub_vis, add_back=True)
if __name__ == "__main__":
import argparse
parser = argparse.ArgumentParser('multi_view one_person multi_frame skel')
parser.add_argument('path', type=str)
parser.add_argument('--out', type=str, default=None)
parser.add_argument('--sub', type=str, nargs='+', default=[],
help='the sub folder lists when in video mode')
parser.add_argument('--start', type=int, default=0,
help='frame start')
parser.add_argument('--end', type=int, default=10000,
help='frame end')
parser.add_argument('--step', type=int, default=1,
help='frame step')
parser.add_argument('--body', type=str, default='body15', choices=['body15', 'body25', 'total'])
parser.add_argument('--undis', action='store_true')
parser.add_argument('--add_hand_face', action='store_true')
from mytools.cmd_loader import load_parser
parser = load_parser()
parser.add_argument('--skel', type=str, default=None,
help='path to keypoints3d')
parser.add_argument('--vis_smpl', action='store_true')
parser.add_argument('--sub_vis', type=str, nargs='+', default=[],
help='the sub folder lists for visualization')
args = parser.parse_args()
# print_mean_skel(args.body)
mv1pmf_smpl(args.path, args.sub, args.out, args.body, args)

View File

@ -228,3 +228,19 @@ def filterKeypoints(keypoints, thres = 0.1, min_width=40, \
add_list.append(ik)
keypoints = keypoints[add_list, :, :]
return keypoints, add_list
def get_fundamental_matrix(cameras, basenames):
skew_op = lambda x: np.array([[0, -x[2], x[1]], [x[2], 0, -x[0]], [-x[1], x[0], 0]])
fundamental_op = lambda K_0, R_0, T_0, K_1, R_1, T_1: np.linalg.inv(K_0).T @ (
R_0 @ R_1.T) @ K_1.T @ skew_op(K_1 @ R_1 @ R_0.T @ (T_0 - R_0 @ R_1.T @ T_1))
fundamental_RT_op = lambda K_0, RT_0, K_1, RT_1: fundamental_op (K_0, RT_0[:, :3], RT_0[:, 3], K_1,
RT_1[:, :3], RT_1[:, 3] )
F = np.zeros((len(basenames), len(basenames), 3, 3)) # N x N x 3 x 3 matrix
F = {(icam, jcam): np.zeros((3, 3)) for jcam in basenames for icam in basenames}
for icam in basenames:
for jcam in basenames:
F[(icam, jcam)] += fundamental_RT_op(cameras[icam]['K'], cameras[icam]['RT'], cameras[jcam]['K'], cameras[jcam]['RT'])
if F[(icam, jcam)].sum() == 0:
F[(icam, jcam)] += 1e-12 # to avoid nan
return F

View File

@ -0,0 +1,44 @@
'''
@ Date: 2021-01-15 12:09:27
@ Author: Qing Shuai
@ LastEditors: Qing Shuai
@ LastEditTime: 2021-01-24 20:57:22
@ FilePath: /EasyMocapRelease/code/mytools/cmd_loader.py
'''
import argparse
def load_parser():
parser = argparse.ArgumentParser('EasyMocap commond line tools')
parser.add_argument('path', type=str)
parser.add_argument('--out', type=str, default=None)
parser.add_argument('--annot', type=str, default=None)
parser.add_argument('--sub', type=str, nargs='+', default=[],
help='the sub folder lists when in video mode')
parser.add_argument('--start', type=int, default=0,
help='frame start')
parser.add_argument('--end', type=int, default=10000,
help='frame end')
parser.add_argument('--step', type=int, default=1,
help='frame step')
#
# keypoints and body model
#
parser.add_argument('--body', type=str, default='body25', choices=['body15', 'body25', 'bodyhand', 'bodyhandface', 'total'])
parser.add_argument('--model', type=str, default='smpl', choices=['smpl', 'smplh', 'smplx', 'mano'])
parser.add_argument('--gender', type=str, default='neutral',
choices=['neutral', 'male', 'female'])
#
# visualization part
#
parser.add_argument('--vis_det', action='store_true')
parser.add_argument('--vis_repro', action='store_true')
parser.add_argument('--undis', action='store_true')
parser.add_argument('--sub_vis', type=str, nargs='+', default=[],
help='the sub folder lists for visualization')
#
# debug
#
parser.add_argument('--verbose', action='store_true')
parser.add_argument('--debug', action='store_true')
return parser

View File

@ -2,8 +2,8 @@
* @ Date: 2020-09-14 11:01:52
* @ Author: Qing Shuai
@ LastEditors: Qing Shuai
@ LastEditTime: 2021-01-13 11:30:38
@ FilePath: /EasyMocap/code/mytools/reconstruction.py
@ LastEditTime: 2021-01-24 22:28:09
@ FilePath: /EasyMocapRelease/code/mytools/reconstruction.py
'''
import numpy as np
@ -45,13 +45,9 @@ def simple_triangulate(kpts, Pall):
A[i*2 + 1, :] = kpts[i, 2]*(kpts[i, 1]*P[2:3,:] - P[1:2,:])
result[:3] = solveZ(A)
return result
# kpts_proj = projectN3(result, Pall)
# repro_error = simple_reprojection_error(kpts, kpts_proj)
# return kpts3d, conf/nViews, repro_error/nViews
# else:
# return kpts3d, conf
def simple_recon_person(keypoints_use, Puse, ret_repro=False, max_error=100):
def simple_recon_person(keypoints_use, Puse, config=None, ret_repro=False):
eps = 0.01
nJoints = keypoints_use[0].shape[0]
if isinstance(keypoints_use, list):
keypoints_use = np.stack(keypoints_use)
@ -61,23 +57,33 @@ def simple_recon_person(keypoints_use, Puse, ret_repro=False, max_error=100):
if (keypoints[:, 2] > 0.01).sum() < 2:
continue
out[nj] = simple_triangulate(keypoints, Puse)
if config is not None:
# remove the false limb with the help of limb
for (i, j), mean_std in config['skeleton'].items():
ii, jj = min(i, j), max(i, j)
if out[ii, -1] < eps:
out[jj, -1] = 0
if out[jj, -1] < eps:
continue
length = np.linalg.norm(out[ii, :3] - out[jj, :3])
if abs(length - mean_std['mean'])/(3*mean_std['std']) > 1:
# print((i, j), length, mean_std)
out[jj, :] = 0
# 计算重投影误差
kpts_repro = projectN3(out, Puse)
square_diff = (keypoints_use[:, :, :2] - kpts_repro[:, :, :2])**2
conf = (out[None, :, -1] > 0.01) * (keypoints_use[:, :, 2] > 0.01)
# conf = (out[None, :, -1] > 0.01) * (keypoints_use[:, :, 2] > 0.01)
conf = np.repeat(out[None, :, -1:], len(Puse), 0)
kpts_repro = np.concatenate((kpts_repro, conf), axis=2)
if conf.sum() < 3: # 至少得有3个有效的关节
repro_error = 1e3
else:
repro_error_joint = np.sqrt(square_diff.sum(axis=2))*conf
num_valid_view = conf.sum(axis=0)
# 对于可见视角少的,强行设置为不可见
repro_error_joint[:, num_valid_view==0] = max_error * 2
num_valid_view[num_valid_view==0] = 1
repro_error_joint_ = repro_error_joint.sum(axis=0)/num_valid_view
# print(repro_error_joint_)
not_valid = np.where(repro_error_joint_>max_error)[0]
out[not_valid, -1] = 0
# (nViews, nJoints): reprojection error for each joint in each view
repro_error_joint = np.sqrt(square_diff.sum(axis=2, keepdims=True))*conf
# remove the not valid joints
# remove the bad views
repro_error = repro_error_joint.sum()/conf.sum()
if ret_repro:
return out, repro_error, kpts_repro
return out, repro_error

21
code/mytools/utils.py Normal file
View File

@ -0,0 +1,21 @@
'''
@ Date: 2021-01-15 11:12:00
@ Author: Qing Shuai
@ LastEditors: Qing Shuai
@ LastEditTime: 2021-01-15 11:19:55
@ FilePath: /EasyMocap/code/mytools/utils.py
'''
import time
class Timer:
def __init__(self, name, silent=False):
self.name = name
self.silent = silent
def __enter__(self):
self.start = time.time()
def __exit__(self, exc_type, exc_value, exc_tb):
end = time.time()
if not self.silent:
print('-> [{}]: {:.2f}s'.format(self.name, end-self.start))

View File

@ -2,7 +2,7 @@
@ Date: 2020-11-28 17:23:04
@ Author: Qing Shuai
@ LastEditors: Qing Shuai
@ LastEditTime: 2021-01-14 17:11:51
@ LastEditTime: 2021-01-21 15:16:52
@ FilePath: /EasyMocap/code/mytools/vis_base.py
'''
import cv2
@ -73,12 +73,13 @@ def plot_keypoints(img, points, pid, config, vis_conf=False, use_limb_color=True
col = get_rgb(config['colors'][ii])
else:
col = get_rgb(pid)
if pt1[2] > 0.01 and pt2[2] > 0.01:
if pt1[-1] > 0.01 and pt2[-1] > 0.01:
image = cv2.line(
img, (int(pt1[0]+0.5), int(pt1[1]+0.5)), (int(pt2[0]+0.5), int(pt2[1]+0.5)),
col, lw)
for i in range(len(points)):
x, y, c = points[i]
x, y = points[i][0], points[i][1]
c = points[i][-1]
if c > 0.01:
col = get_rgb(pid)
cv2.circle(img, (int(x+0.5), int(y+0.5)), lw*2, col, -1)
@ -98,9 +99,11 @@ def merge(images, row=-1, col=-1, resize=False, ret_range=False):
images = [images[i] for i in [0, 1, 2, 3, 7, 6, 5, 4]]
if len(images) == 7:
row, col = 3, 3
elif len(images) == 2:
row, col = 2, 1
height = images[0].shape[0]
width = images[0].shape[1]
ret_img = np.zeros((height * row, width * col, 3), dtype=np.uint8) + 255
ret_img = np.zeros((height * row, width * col, images[0].shape[2]), dtype=np.uint8) + 255
ranges = []
for i in range(row):
for j in range(col):

View File

@ -2,51 +2,86 @@
@ Date: 2020-11-19 17:46:04
@ Author: Qing Shuai
@ LastEditors: Qing Shuai
@ LastEditTime: 2021-01-14 15:02:39
@ LastEditTime: 2021-01-22 16:51:55
@ FilePath: /EasyMocap/code/pyfitting/lossfactory.py
'''
import torch
from .operation import projection, batch_rodrigues
def ReprojectionLoss(keypoints3d, keypoints2d, K, Rc, Tc, inv_bbox_sizes):
def ReprojectionLoss(keypoints3d, keypoints2d, K, Rc, Tc, inv_bbox_sizes, norm='l2'):
img_points = projection(keypoints3d, K, Rc, Tc)
residual = (img_points - keypoints2d[:, :, :2]) * keypoints2d[:, :, 2:3]
residual = (img_points - keypoints2d[:, :, :2]) * keypoints2d[:, :, -1:]
# squared_res: (nFrames, nJoints, 2)
if norm == 'l2':
squared_res = (residual ** 2) * inv_bbox_sizes
elif norm == 'l1':
squared_res = torch.abs(residual) * inv_bbox_sizes
else:
import ipdb; ipdb.set_trace()
return torch.sum(squared_res)
class SMPLAngleLoss:
def __init__(self, keypoints):
def __init__(self, keypoints, model_type='smpl'):
if keypoints.shape[1] <= 15:
use_feet = False
use_head = False
else:
use_feet = keypoints[:, [19, 20, 21, 22, 23, 24], -1].sum() > 0.1
use_head = keypoints[:, [15, 16, 17, 18], -1].sum() > 0.1
SMPL_JOINT_ZERO_IDX = [3, 6, 9, 13, 14, 20, 21, 22, 23]
if model_type == 'smpl':
SMPL_JOINT_ZERO_IDX = [3, 6, 9, 10, 11, 13, 14, 20, 21, 22, 23]
elif model_type == 'smplh':
SMPL_JOINT_ZERO_IDX = [3, 6, 9, 10, 11, 13, 14]
elif model_type == 'smplx':
SMPL_JOINT_ZERO_IDX = [3, 6, 9, 10, 11, 13, 14]
else:
raise NotImplementedError
if not use_feet:
SMPL_JOINT_ZERO_IDX.extend([7, 8])
if not use_head:
SMPL_JOINT_ZERO_IDX.extend([12, 15])
SMPL_POSES_ZERO_IDX = [[j for j in range(3*i, 3*i+3)] for i in SMPL_JOINT_ZERO_IDX]
SMPL_POSES_ZERO_IDX = sum(SMPL_POSES_ZERO_IDX, [])
# SMPL_POSES_ZERO_IDX.extend([36, 37, 38, 45, 46, 47])
self.idx = SMPL_POSES_ZERO_IDX
def loss(self, poses):
return torch.sum(torch.abs(poses[:, self.idx]))
def SmoothLoss(body_params, keys, weight_loss, span=4):
def SmoothLoss(body_params, keys, weight_loss, span=4, model_type='smpl'):
spans = [i for i in range(1, span)]
span_weights = {i:1/i for i in range(1, span)}
span_weights = {key: i/sum(span_weights) for key, i in span_weights.items()}
loss_dict = {}
nFrames = body_params['poses'].shape[0]
for key in ['poses', 'Th']:
nPoses = body_params['poses'].shape[1]
if model_type == 'smplh' or model_type == 'smplx':
nPoses = 66
for key in ['poses', 'Th', 'poses_hand', 'expression']:
if key not in keys:
continue
k = 'smooth_' + key
if k in weight_loss.keys() and weight_loss[k] > 0.:
loss_dict[k] = 0.
for span in spans:
val = torch.sum((body_params[key][span:, :] - body_params[key][:nFrames-span, :])**2)
if key == 'poses_hand':
val = torch.sum((body_params['poses'][span:, 66:] - body_params['poses'][:nFrames-span, 66:])**2)
else:
val = torch.sum((body_params[key][span:, :nPoses] - body_params[key][:nFrames-span, :nPoses])**2)
loss_dict[k] += span_weights[span] * val
k = 'smooth_' + key + '_l1'
if k in weight_loss.keys() and weight_loss[k] > 0.:
loss_dict[k] = 0.
for span in spans:
if key == 'poses_hand':
val = torch.sum((body_params['poses'][span:, 66:] - body_params['poses'][:nFrames-span, 66:]).abs())
else:
val = torch.sum((body_params[key][span:, :nPoses] - body_params[key][:nFrames-span, :nPoses]).abs())
loss_dict[k] += span_weights[span] * val
# smooth rotation
rot = batch_rodrigues(body_params['Rh'])
key, k = 'Rh', 'smooth_Rh'
if k in weight_loss.keys() and weight_loss[k] > 0.:
if key in keys and k in weight_loss.keys() and weight_loss[k] > 0.:
loss_dict[k] = 0.
for span in spans:
val = torch.sum((rot[span:, :] - rot[:nFrames-span, :])**2)
@ -55,10 +90,24 @@ def SmoothLoss(body_params, keys, weight_loss, span=4):
def RegularizationLoss(body_params, body_params_init, weight_loss):
loss_dict = {}
for key in ['poses', 'shapes', 'Th']:
for key in ['poses', 'shapes', 'Th', 'hands', 'head', 'expression']:
if 'init_'+key in weight_loss.keys() and weight_loss['init_'+key] > 0.:
if key == 'poses':
loss_dict['init_'+key] = torch.sum((body_params[key][:, :66] - body_params_init[key][:, :66])**2)
elif key == 'hands':
loss_dict['init_'+key] = torch.sum((body_params['poses'][: , 66:66+12] - body_params_init['poses'][:, 66:66+12])**2)
elif key == 'head':
loss_dict['init_'+key] = torch.sum((body_params['poses'][: , 78:78+9] - body_params_init['poses'][:, 78:78+9])**2)
elif key in body_params.keys():
loss_dict['init_'+key] = torch.sum((body_params[key] - body_params_init[key])**2)
for key in ['poses', 'shapes']:
for key in ['poses', 'shapes', 'hands', 'head', 'expression']:
if 'reg_'+key in weight_loss.keys() and weight_loss['reg_'+key] > 0.:
if key == 'poses':
loss_dict['reg_'+key] = torch.sum((body_params[key][:, :66])**2)
elif key == 'hands':
loss_dict['reg_'+key] = torch.sum((body_params['poses'][: , 66:66+12])**2)
elif key == 'head':
loss_dict['reg_'+key] = torch.sum((body_params['poses'][: , 78:78+9])**2)
elif key in body_params.keys():
loss_dict['reg_'+key] = torch.sum((body_params[key])**2)
return loss_dict

View File

@ -2,7 +2,7 @@
@ Date: 2020-11-19 11:39:45
@ Author: Qing Shuai
@ LastEditors: Qing Shuai
@ LastEditTime: 2020-11-19 11:50:20
@ LastEditTime: 2021-01-20 15:06:28
@ FilePath: /EasyMocap/code/pyfitting/operation.py
'''
import torch
@ -47,11 +47,17 @@ def projection(points3d, camera_intri, R=None, T=None, distance=None):
points3d {Tensor} -- (bn, N, 3)
camera_intri {Tensor} -- (bn, 3, 3)
distance {Tensor} -- (bn, 1, 1)
R: bn, 3, 3
T: bn, 3, 1
Returns:
points2d -- (bn, N, 2)
"""
if R is not None:
Rt = torch.transpose(R, 1, 2)
if T.shape[-1] == 1:
Tt = torch.transpose(T, 1, 2)
points3d = torch.matmul(points3d, Rt) + Tt
else:
points3d = torch.matmul(points3d, Rt) + T
if distance is None:

View File

@ -2,8 +2,8 @@
@ Date: 2020-11-19 10:49:26
@ Author: Qing Shuai
@ LastEditors: Qing Shuai
@ LastEditTime: 2021-01-14 20:19:34
@ FilePath: /EasyMocap/code/pyfitting/optimize_simple.py
@ LastEditTime: 2021-01-24 21:29:12
@ FilePath: /EasyMocapRelease/code/pyfitting/optimize_simple.py
'''
import numpy as np
import torch
@ -213,6 +213,7 @@ def optimizeShape(body_model, body_params, keypoints3d,
limb_length = torch.Tensor(limb_length).to(device)
limb_conf = torch.Tensor(limb_conf).to(device)
body_params = {key:torch.Tensor(val).to(device) for key, val in body_params.items()}
body_params_init = {key:val.clone() for key, val in body_params.items()}
opt_params = [body_params['shapes']]
grad_require(opt_params, True)
optimizer = LBFGS(
@ -226,14 +227,16 @@ def optimizeShape(body_model, body_params, keypoints3d,
dst = keypoints3d[:, kintree[:, 1], :3]
direct_est = (dst - src).detach()
direct_norm = torch.norm(direct_est, dim=2, keepdim=True)
direct_normalized = direct_est/direct_norm
direct_normalized = direct_est/(direct_norm + 1e-4)
err = dst - src - direct_normalized * limb_length
loss_dict = {
's3d': torch.sum(err**2*limb_conf)/nFrames,
'reg_shape': torch.sum(body_params['shapes']**2)}
'reg_shapes': torch.sum(body_params['shapes']**2)}
if 'init_shape' in weight_loss.keys():
loss_dict['init_shape'] = torch.sum((body_params['shapes'] - body_params_init['shapes'])**2)
# fittingLog.step(loss_dict, weight_loss)
if verbose:
print(' '.join([key + ' %f'%(loss_dict[key].item()*weight_loss[key])
print(' '.join([key + ' %.3f'%(loss_dict[key].item()*weight_loss[key])
for key in loss_dict.keys() if weight_loss[key]>0]))
loss = sum([loss_dict[key]*weight_loss[key]
for key in loss_dict.keys()])
@ -255,6 +258,9 @@ def optimizeShape(body_model, body_params, keypoints3d,
body_params = {key:val.detach().cpu().numpy() for key, val in body_params.items()}
return body_params
N_BODY = 25
N_HAND = 21
def optimizePose(body_model, body_params, keypoints3d,
weight_loss, kintree, cfg=None):
""" simple function for optimizing model pose given 3d keypoints
@ -268,22 +274,16 @@ def optimizePose(body_model, body_params, keypoints3d,
cfg (Config): Config Node controling running mode
"""
device = body_model.device
model_type = body_model.model_type
# 计算不同的骨长
kintree = np.array(kintree, dtype=np.int)
nFrames = keypoints3d.shape[0]
# limb_length: nFrames, nLimbs, 1
limb = keypoints3d[:, kintree[:, 1], :3] - keypoints3d[:, kintree[:, 0], :3]
limb_length = np.linalg.norm(limb, axis=2, keepdims=True)
# conf: nFrames, nLimbs, 1
limb_conf = np.minimum(keypoints3d[:, kintree[:, 1], 3:], keypoints3d[:, kintree[:, 0], 3:])
limb_dir = limb/limb_length
nJoints = keypoints3d.shape[1]
keypoints3d = torch.Tensor(keypoints3d).to(device)
limb_dir = torch.Tensor(limb_dir).to(device).unsqueeze(2)
limb_conf = torch.Tensor(limb_conf).to(device)
angle_prior = SMPLAngleLoss(keypoints3d)
angle_prior = SMPLAngleLoss(keypoints3d, body_model.model_type)
body_params = {key:torch.Tensor(val).to(device) for key, val in body_params.items()}
body_params_init = {key:val.clone() for key, val in body_params.items()}
if cfg is None:
opt_params = [body_params['Rh'], body_params['Th'], body_params['poses']]
verbose = False
@ -297,35 +297,46 @@ def optimizePose(body_model, body_params, keypoints3d,
opt_params.append(body_params['poses'])
if cfg.OPT_SHAPE:
opt_params.append(body_params['shapes'])
if cfg.OPT_EXPR and model_type == 'smplx':
opt_params.append(body_params['expression'])
verbose = cfg.VERBOSE
grad_require(opt_params, True)
optimizer = LBFGS(
opt_params, line_search_fn='strong_wolfe')
zero_pose = torch.zeros((nFrames, 3), device=device)
if not cfg.OPT_HAND and model_type in ['smplh', 'smplx']:
zero_pose_hand = torch.zeros((nFrames, body_params['poses'].shape[1] - 66), device=device)
nJoints = N_BODY
keypoints3d = keypoints3d[:, :nJoints]
elif cfg.OPT_HAND and not cfg.OPT_EXPR and model_type == 'smplx':
zero_pose_face = torch.zeros((nFrames, body_params['poses'].shape[1] - 78), device=device)
nJoints = N_BODY + N_HAND * 2
keypoints3d = keypoints3d[:, :nJoints]
else:
nJoints = keypoints3d.shape[1]
def closure(debug=False):
optimizer.zero_grad()
new_params = body_params.copy()
new_params['poses'] = torch.cat([zero_pose, body_params['poses'][:, 3:]], dim=1)
kpts_est = body_model(return_verts=False, return_tensor=True, **new_params)
diff_square = (kpts_est - keypoints3d[..., :3])**2
if False:
pass
if not cfg.OPT_HAND and cfg.MODEL in ['smplh', 'smplx']:
new_params['poses'] = torch.cat([zero_pose, body_params['poses'][:, 3:66], zero_pose_hand], dim=1)
else:
new_params['poses'] = torch.cat([zero_pose, body_params['poses'][:, 3:]], dim=1)
kpts_est = body_model(return_verts=False, return_tensor=True, **new_params)[:, :nJoints, :]
diff_square = (kpts_est[:, :nJoints, :3] - keypoints3d[..., :3])**2
# TODO:add robust loss
conf = keypoints3d[..., 3:]
loss_3d = torch.sum(conf * diff_square)
if False:
src = keypoints3d[:, kintree[:, 0], :3].detach()
dst = keypoints3d[:, kintree[:, 1], :3]
direct_est = dst - src
direct_norm = torch.norm(direct_est, dim=2, keepdim=True)
direct_normalized = direct_est/direct_norm
loss_dict = {
'k3d': loss_3d,
'reg_poses_zero': angle_prior.loss(body_params['poses'])
}
# regularize
loss_dict.update(RegularizationLoss(body_params, body_params_init, weight_loss))
# smooth
loss_dict.update(SmoothLoss(body_params, ['poses', 'Th'], weight_loss))
smooth_conf = keypoints3d[1:, ..., -1:]**2
loss_dict['smooth_body'] = torch.sum(smooth_conf[:, :N_BODY] * torch.abs(kpts_est[:-1, :N_BODY] - kpts_est[1:, :N_BODY]))
if cfg.OPT_HAND and cfg.MODEL in ['smplh', 'smplx']:
loss_dict['smooth_hand'] = torch.sum(smooth_conf[:, N_BODY:N_BODY+N_HAND*2] * torch.abs(kpts_est[:-1, N_BODY:N_BODY+N_HAND*2] - kpts_est[1:, N_BODY:N_BODY+N_HAND*2]))
for key in loss_dict.keys():
loss_dict[key] = loss_dict[key]/nFrames
# fittingLog.step(loss_dict, weight_loss)

View File

@ -2,8 +2,9 @@
@ Date: 2020-11-18 14:33:20
@ Author: Qing Shuai
@ LastEditors: Qing Shuai
@ LastEditTime: 2021-01-14 20:12:26
@ LastEditTime: 2021-01-20 16:33:02
@ FilePath: /EasyMocap/code/smplmodel/__init__.py
'''
from .body_model import SMPLlayer
from .body_param import merge_params, select_nf, init_params, Config
from .body_param import load_model
from .body_param import merge_params, select_nf, init_params, Config, check_params, check_keypoints

View File

@ -2,7 +2,7 @@
@ Date: 2020-11-18 14:04:10
@ Author: Qing Shuai
@ LastEditors: Qing Shuai
@ LastEditTime: 2021-01-14 20:14:34
@ LastEditTime: 2021-01-22 16:04:54
@ FilePath: /EasyMocap/code/smplmodel/body_model.py
'''
import torch
@ -11,6 +11,7 @@ from .lbs import lbs, batch_rodrigues
import os.path as osp
import pickle
import numpy as np
import os
def to_tensor(array, dtype=torch.float32, device=torch.device('cpu')):
if 'torch.tensor' not in str(type(array)):
@ -23,13 +24,29 @@ def to_np(array, dtype=np.float32):
array = array.todense()
return np.array(array, dtype=dtype)
def load_regressor(regressor_path):
if regressor_path.endswith('.npy'):
X_regressor = to_tensor(np.load(regressor_path))
elif regressor_path.endswith('.txt'):
data = np.loadtxt(regressor_path)
with open(regressor_path, 'r') as f:
shape = f.readline().split()[1:]
reg = np.zeros((int(shape[0]), int(shape[1])))
for i, j, v in data:
reg[int(i), int(j)] = v
X_regressor = to_tensor(reg)
else:
import ipdb; ipdb.set_trace()
return X_regressor
class SMPLlayer(nn.Module):
def __init__(self, model_path, gender='neutral', device=None,
def __init__(self, model_path, model_type='smpl', gender='neutral', device=None,
regressor_path=None) -> None:
super(SMPLlayer, self).__init__()
dtype = torch.float32
self.dtype = dtype
self.device = device
self.model_type = model_type
# create the SMPL model
if osp.isdir(model_path):
model_fn = 'SMPL_{}.{ext}'.format(gender.upper(), ext='pkl')
@ -58,13 +75,18 @@ class SMPLlayer(nn.Module):
parents = to_tensor(to_np(data['kintree_table'][0])).long()
parents[0] = -1
self.register_buffer('parents', parents)
if self.model_type == 'smplx':
# shape
self.num_expression_coeffs = 10
self.num_shapes = 10
self.shapedirs = self.shapedirs[:, :, :self.num_shapes+self.num_expression_coeffs]
# joints regressor
if regressor_path is not None:
X_regressor = to_tensor(np.load(regressor_path))
X_regressor = load_regressor(regressor_path)
X_regressor = torch.cat((self.J_regressor, X_regressor), dim=0)
j_J_regressor = torch.zeros(24, X_regressor.shape[0], device=device)
for i in range(24):
j_J_regressor = torch.zeros(self.J_regressor.shape[0], X_regressor.shape[0], device=device)
for i in range(self.J_regressor.shape[0]):
j_J_regressor[i, i] = 1
j_v_template = X_regressor @ self.v_template
#
@ -79,8 +101,65 @@ class SMPLlayer(nn.Module):
self.register_buffer('j_weights', j_weights)
self.register_buffer('j_v_template', j_v_template)
self.register_buffer('j_J_regressor', j_J_regressor)
if self.model_type == 'smplh':
# load smplh data
self.num_pca_comps = 6
from os.path import join
for key in ['LEFT', 'RIGHT']:
left_file = join(os.path.dirname(smpl_path), 'MANO_{}.pkl'.format(key))
with open(left_file, 'rb') as f:
data = pickle.load(f, encoding='latin1')
val = to_tensor(to_np(data['hands_mean'].reshape(1, -1)), dtype=dtype)
self.register_buffer('mHandsMean'+key[0], val)
val = to_tensor(to_np(data['hands_components'][:self.num_pca_comps, :]), dtype=dtype)
self.register_buffer('mHandsComponents'+key[0], val)
self.use_pca = True
self.use_flat_mean = True
elif self.model_type == 'smplx':
# hand pose
self.num_pca_comps = 6
from os.path import join
for key in ['Ll', 'Rr']:
val = to_tensor(to_np(data['hands_mean'+key[1]].reshape(1, -1)), dtype=dtype)
self.register_buffer('mHandsMean'+key[0], val)
val = to_tensor(to_np(data['hands_components'+key[1]][:self.num_pca_comps, :]), dtype=dtype)
self.register_buffer('mHandsComponents'+key[0], val)
self.use_pca = True
self.use_flat_mean = True
def forward(self, poses, shapes, Rh=None, Th=None, return_verts=True, return_tensor=True, only_shape=False, **kwargs):
def extend_pose(self, poses):
if self.model_type not in ['smplh', 'smplx']:
return poses
elif self.model_type == 'smplh' and poses.shape[-1] == 156:
return poses
elif self.model_type == 'smplx' and poses.shape[-1] == 165:
return poses
NUM_BODYJOINTS = 22 * 3
if self.use_pca:
NUM_HANDJOINTS = self.num_pca_comps
else:
NUM_HANDJOINTS = 15 * 3
NUM_FACEJOINTS = 3 * 3
poses_lh = poses[:, NUM_BODYJOINTS:NUM_BODYJOINTS + NUM_HANDJOINTS]
poses_rh = poses[:, NUM_BODYJOINTS + NUM_HANDJOINTS:NUM_BODYJOINTS+NUM_HANDJOINTS*2]
if self.use_pca:
poses_lh = poses_lh @ self.mHandsComponentsL
poses_rh = poses_rh @ self.mHandsComponentsR
if self.use_flat_mean:
poses_lh = poses_lh + self.mHandsMeanL
poses_rh = poses_rh + self.mHandsMeanR
if self.model_type == 'smplh':
poses = torch.cat([poses[:, :NUM_BODYJOINTS], poses_lh, poses_rh], dim=1)
elif self.model_type == 'smplx':
# the head part have only three joints
# poses_head: (N, 9), jaw_pose, leye_pose, reye_pose respectively
poses_head = poses[:, NUM_BODYJOINTS+NUM_HANDJOINTS*2:]
# body, head, left hand, right hand
poses = torch.cat([poses[:, :NUM_BODYJOINTS], poses_head, poses_lh, poses_rh], dim=1)
return poses
def forward(self, poses, shapes, Rh=None, Th=None, expression=None, return_verts=True, return_tensor=True, only_shape=False, **kwargs):
""" Forward pass for SMPL model
Args:
@ -96,13 +175,23 @@ class SMPLlayer(nn.Module):
shapes = to_tensor(shapes, dtype, device)
Rh = to_tensor(Rh, dtype, device)
Th = to_tensor(Th, dtype, device)
if expression is not None:
expression = to_tensor(expression, dtype, device)
bn = poses.shape[0]
# process Rh, Th
if Rh is None:
Rh = torch.zeros(bn, 3, device=poses.device)
rot = batch_rodrigues(Rh)
transl = Th.unsqueeze(dim=1)
# process shapes
if shapes.shape[0] < bn:
shapes = shapes.expand(bn, -1)
if expression is not None and self.model_type == 'smplx':
shapes = torch.cat([shapes, expression], dim=1)
# process poses
if self.model_type == 'smplh' or self.model_type == 'smplx':
poses = self.extend_pose(poses)
if return_verts:
vertices, joints = lbs(shapes, poses, self.v_template,
self.shapedirs, self.posedirs,
@ -113,7 +202,7 @@ class SMPLlayer(nn.Module):
self.j_shapedirs, self.j_posedirs,
self.j_J_regressor, self.parents,
self.j_weights, pose2rot=True, dtype=self.dtype, only_shape=only_shape)
vertices = vertices[:, 24:, :]
vertices = vertices[:, self.J_regressor.shape[0]:, :]
vertices = torch.matmul(vertices, rot.transpose(1, 2)) + transl
if not return_tensor:
vertices = vertices.detach().cpu().numpy()

View File

@ -2,14 +2,15 @@
@ Date: 2020-11-20 13:34:54
@ Author: Qing Shuai
@ LastEditors: Qing Shuai
@ LastEditTime: 2021-01-14 20:09:40
@ FilePath: /EasyMocap/code/smplmodel/body_param.py
@ LastEditTime: 2021-01-24 18:39:45
@ FilePath: /EasyMocapRelease/code/smplmodel/body_param.py
'''
import numpy as np
def merge_params(param_list, share_shape=True):
output = {}
for key in ['poses', 'shapes', 'Rh', 'Th']:
for key in ['poses', 'shapes', 'Rh', 'Th', 'expression']:
if key in param_list[0].keys():
output[key] = np.vstack([v[key] for v in param_list])
if share_shape:
output['shapes'] = output['shapes'].mean(axis=0, keepdims=True)
@ -19,24 +20,83 @@ def select_nf(params_all, nf):
output = {}
for key in ['poses', 'Rh', 'Th']:
output[key] = params_all[key][nf:nf+1, :]
if 'expression' in params_all.keys():
output['expression'] = params_all['expression'][nf:nf+1, :]
if params_all['shapes'].shape[0] == 1:
output['shapes'] = params_all['shapes']
else:
output['shapes'] = params_all['shapes'][nf:nf+1, :]
return output
def init_params(nFrames=1):
NUM_POSES = {'smpl': 72, 'smplh': 78, 'smplx': 66 + 12 + 9}
NUM_EXPR = 10
def init_params(nFrames=1, model_type='smpl'):
params = {
'poses': np.zeros((nFrames, 72)),
'poses': np.zeros((nFrames, NUM_POSES[model_type])),
'shapes': np.zeros((1, 10)),
'Rh': np.zeros((nFrames, 3)),
'Th': np.zeros((nFrames, 3)),
}
if model_type == 'smplx':
params['expression'] = np.zeros((nFrames, NUM_EXPR))
return params
def check_params(body_params, model_type):
nFrames = body_params['poses'].shape[0]
if body_params['poses'].shape[1] != NUM_POSES[model_type]:
body_params['poses'] = np.hstack((body_params['poses'], np.zeros((nFrames, NUM_POSES[model_type] - body_params['poses'].shape[1]))))
if model_type == 'smplx' and 'expression' not in body_params.keys():
body_params['expression'] = np.zeros((nFrames, NUM_EXPR))
return body_params
class Config:
OPT_R = False
OPT_T = False
OPT_POSE = False
OPT_SHAPE = False
OPT_HAND = False
OPT_EXPR = False
VERBOSE = False
MODEL = 'smpl'
def load_model(gender='neutral', use_cuda=True, model_type='smpl'):
# prepare SMPL model
import torch
if use_cuda:
device = torch.device('cuda')
else:
device = torch.device('cpu')
from .body_model import SMPLlayer
if model_type == 'smpl':
body_model = SMPLlayer('data/smplx/smpl', gender=gender, device=device,
regressor_path='data/smplx/J_regressor_body25.npy')
elif model_type == 'smplh':
body_model = SMPLlayer('data/smplx/smplh/SMPLH_MALE.pkl', model_type='smplh', gender=gender, device=device,
regressor_path='data/smplx/J_regressor_body25_smplh.txt')
elif model_type == 'smplx':
body_model = SMPLlayer('data/smplx/smplx/SMPLX_{}.pkl'.format(gender.upper()), model_type='smplx', gender=gender, device=device,
regressor_path='data/smplx/J_regressor_body25_smplx.txt')
else:
body_model = None
body_model.to(device)
return body_model
def check_keypoints(keypoints2d, WEIGHT_DEBUFF=1.2):
# keypoints2d: nFrames, nJoints, 3
#
# wrong feet
# if keypoints2d.shape[-2] > 25 + 42:
# keypoints2d[..., 0, 2] = 0
# keypoints2d[..., [15, 16, 17, 18], -1] = 0
# keypoints2d[..., [19, 20, 21, 22, 23, 24], -1] /= 2
if keypoints2d.shape[-2] > 25:
# set the hand keypoints
keypoints2d[..., 25, :] = keypoints2d[..., 7, :]
keypoints2d[..., 46, :] = keypoints2d[..., 4, :]
keypoints2d[..., 25:, -1] *= WEIGHT_DEBUFF
# reduce the confidence of hand and face
MIN_CONF = 0.3
conf = keypoints2d[..., -1]
conf[conf<MIN_CONF] = 0
return keypoints2d

View File

@ -79,13 +79,14 @@ if render_flags['rgba']:
class Renderer(object):
def __init__(self, focal_length=1000, height=512, width=512, faces=None,
bg_color=[0.0, 0.0, 0.0, 0.0] # render 配置
bg_color=[1.0, 1.0, 1.0, 0.0], down_scale=1 # render 配置
):
self.renderer = pyrender.OffscreenRenderer(height, width)
self.faces = faces
self.focal_length = focal_length
self.bg_color = bg_color
self.ambient_light = (0.3, 0.3, 0.3)
self.ambient_light = (0.5, 0.5, 0.5)
self.down_scale = down_scale
def add_light(self, scene):
trans = [0, 0, 0]
@ -101,7 +102,7 @@ class Renderer(object):
scene.add(light, pose=light_pose)
def render(self, render_data, cameras, images,
use_white=False,
use_white=False, add_back=True,
ret_depth=False, ret_color=False):
# Need to flip x-axis
rot = trimesh.transformations.rotation_matrix(
@ -112,7 +113,11 @@ class Renderer(object):
img = np.zeros_like(img_, dtype=np.uint8) + 255
else:
img = img_.copy()
K, R, T = cameras['K'][nv], cameras['R'][nv], cameras['T'][nv]
K, R, T = cameras['K'][nv].copy(), cameras['R'][nv], cameras['T'][nv]
# down scale the image to speed up rendering
img = cv2.resize(img, None, fx=1/self.down_scale, fy=1/self.down_scale)
K[:2, :] /= self.down_scale
self.renderer.viewport_height = img.shape[0]
self.renderer.viewport_width = img.shape[1]
scene = pyrender.Scene(bg_color=self.bg_color,
@ -120,9 +125,10 @@ class Renderer(object):
for trackId, data in render_data.items():
vert = data['vertices'].copy()
faces = data['faces']
vert = vert @ R.T + T.T
if 'colors' not in data.keys():
# 如果使用了vid这个键那么可视化的颜色使用vid的颜色
col = get_colors(data.get('vid', trackId))
vert = vert @ R.T + T.T
mesh = trimesh.Trimesh(vert, faces)
mesh.apply_transform(rot)
@ -133,7 +139,17 @@ class Renderer(object):
mesh = pyrender.Mesh.from_trimesh(
mesh,
material=material)
scene.add(mesh, 'mesh')
scene.add(mesh, data['name'])
else:
mesh = trimesh.Trimesh(vert, faces, vertex_colors=data['colors'], process=False)
# mesh = trimesh.Trimesh(vert, faces, process=False)
mesh.apply_transform(rot)
material = pyrender.MetallicRoughnessMaterial(
metallicFactor=0.0,
alphaMode='OPAQUE',
baseColorFactor=(1., 1., 1.))
mesh = pyrender.Mesh.from_trimesh(mesh, material=material)
scene.add(mesh, data['name'])
camera_pose = np.eye(4)
camera = pyrender.camera.IntrinsicsCamera(fx=K[0, 0], fy=K[1, 1], cx=K[0, 2], cy=K[1, 2])
scene.add(camera, pose=camera_pose)
@ -144,7 +160,12 @@ class Renderer(object):
if rend_rgba.shape[2] == 3: # fail to generate transparent channel
valid_mask = (rend_depth > 0)[:, :, None]
rend_rgba = np.dstack((rend_rgba, (valid_mask*255).astype(np.uint8)))
rend_cat = cv2.addWeighted(cv2.bitwise_and(img, 255 - rend_rgba[:, :, 3:4].repeat(3, 2)), 1, rend_rgba[:, :, :3], 1, 0)
if add_back:
rend_cat = cv2.addWeighted(
cv2.bitwise_and(img, 255 - rend_rgba[:, :, 3:4].repeat(3, 2)), 1,
cv2.bitwise_and(rend_rgba[:, :, :3], rend_rgba[:, :, 3:4].repeat(3, 2)), 1, 0)
else:
rend_cat = rend_rgba
output_colors.append(rend_rgba)
output_depths.append(rend_depth)

11
doc/evaluation.md Normal file
View File

@ -0,0 +1,11 @@
<!--
* @Date: 2021-01-15 21:12:49
* @Author: Qing Shuai
* @LastEditors: Qing Shuai
* @LastEditTime: 2021-01-15 21:13:35
* @FilePath: /EasyMocapRelease/doc/evaluation.md
-->
# Evaluation
## Evaluation of fitting SMPL
### Human3.6M

BIN
doc/feng/000400.jpg Normal file

Binary file not shown.

After

Width:  |  Height:  |  Size: 81 KiB

BIN
doc/feng/skel.gif Normal file

Binary file not shown.

After

Width:  |  Height:  |  Size: 1.9 MiB

BIN
doc/feng/smplx.gif Normal file

Binary file not shown.

After

Width:  |  Height:  |  Size: 2.1 MiB

13
doc/log.md Normal file
View File

@ -0,0 +1,13 @@
<!--
* @Date: 2021-01-24 22:30:40
* @Author: Qing Shuai
* @LastEditors: Qing Shuai
* @LastEditTime: 2021-01-24 22:32:53
* @FilePath: /EasyMocapRelease/doc/log.md
-->
## 2020.01.24
1. Support SMPL+H, SMPL-X model.
2. Upgrade `body_model.py`.
3. Update the optimization functions.
4. Add checking length of limb
5. Update the example figures.

18
doc/tutorial_new_task.md Normal file
View File

@ -0,0 +1,18 @@
<!--
* @Date: 2021-01-21 11:18:47
* @Author: Qing Shuai
* @LastEditors: Qing Shuai
* @LastEditTime: 2021-01-21 11:20:42
* @FilePath: /EasyMocapRelease/doc/tutorial_add_new_task.md
-->
# Add new tasks
## 0. Prepare the data and dataset
## 1. Add new loss functions
## 2. Add new optimization
## 3. Write your own main function
## 4. Evaluation for the new tasks

View File

@ -2,15 +2,17 @@
@ Date: 2021-01-13 20:38:33
@ Author: Qing Shuai
@ LastEditors: Qing Shuai
@ LastEditTime: 2021-01-14 16:59:06
@ FilePath: /EasyMocapRelease/scripts/preprocess/extract_video.py
@ LastEditTime: 2021-01-22 20:45:37
@ FilePath: /EasyMocap/scripts/preprocess/extract_video.py
'''
import os
import os, sys
import cv2
from os.path import join
from tqdm import tqdm
from glob import glob
import numpy as np
code_path = join(os.path.dirname(__file__), '..', '..', 'code')
sys.path.append(code_path)
mkdir = lambda x: os.makedirs(x, exist_ok=True)
@ -18,12 +20,12 @@ def extract_video(videoname, path, start=0, end=10000, step=1):
base = os.path.basename(videoname).replace('.mp4', '')
if not os.path.exists(videoname):
return base
video = cv2.VideoCapture(videoname)
outpath = join(path, 'images', base)
if os.path.exists(outpath) and len(os.listdir(outpath)) > 0:
return base
else:
os.makedirs(outpath)
video = cv2.VideoCapture(videoname)
totalFrames = int(video.get(cv2.CAP_PROP_FRAME_COUNT))
for cnt in tqdm(range(totalFrames)):
ret, frame = video.read()
@ -36,6 +38,7 @@ def extract_video(videoname, path, start=0, end=10000, step=1):
def extract_2d(openpose, image, keypoints, render):
if not os.path.exists(keypoints):
os.makedirs(keypoints, exist_ok=True)
cmd = './build/examples/openpose/openpose.bin --image_dir {} --write_json {} --display 0'.format(image, keypoints)
if args.handface:
cmd = cmd + ' --hand --face'
@ -87,7 +90,7 @@ def bbox_from_openpose(keypoints, rescale=1.2, detection_thresh=0.01):
center[1] - bbox_size[1]/2,
center[0] + bbox_size[0]/2,
center[1] + bbox_size[1]/2,
keypoints[valid, :2].mean()
keypoints[valid, 2].mean()
]
return bbox
@ -129,10 +132,62 @@ def convert_from_openpose(src, dst):
annot['annots'] = annots
save_json(annotname, annot)
def detect_frame(detector, img, pid=0):
lDetections = detector.detect([img])[0]
annots = []
for i in range(len(lDetections)):
annot = {
'bbox': [float(d) for d in lDetections[i]['bbox']],
'personID': pid + i,
'keypoints': lDetections[i]['keypoints'].tolist(),
'isKeyframe': True
}
annots.append(annot)
return annots
def extract_yolo_hrnet(image_root, annot_root):
imgnames = sorted(glob(join(image_root, '*.jpg')))
import torch
device = torch.device('cuda')
from estimator.detector import Detector
config = {
'yolov4': {
'ckpt_path': 'data/models/yolov4.weights',
'conf_thres': 0.3,
'box_nms_thres': 0.5 # 阈值=0.9表示IOU 0.9的不会被筛掉
},
'hrnet':{
'nof_joints': 17,
'c': 48,
'checkpoint_path': 'data/models/pose_hrnet_w48_384x288.pth'
},
'detect':{
'MIN_PERSON_JOINTS': 10,
'MIN_BBOX_AREA': 5000,
'MIN_JOINTS_CONF': 0.3,
'MIN_BBOX_LEN': 150
}
}
detector = Detector('yolo', 'hrnet', device, config)
for nf, imgname in enumerate(tqdm(imgnames)):
annotname = join(annot_root, os.path.basename(imgname).replace('.jpg', '.json'))
annot = create_annot_file(annotname, imgname)
img0 = cv2.imread(imgname)
annot['annots'] = detect_frame(detector, img0, 0)
for i in range(len(annot['annots'])):
x = annot['annots'][i]
x['area'] = max(x['bbox'][2] - x['bbox'][0], x['bbox'][3] - x['bbox'][1])**2
annot['annots'].sort(key=lambda x:-x['area'])
# 重新赋值人的ID
for i in range(len(annot['annots'])):
annot['annots'][i]['personID'] = i
save_json(annotname, annot)
if __name__ == "__main__":
import argparse
parser = argparse.ArgumentParser()
parser.add_argument('path', type=str, default=None)
parser.add_argument('--mode', type=str, default='openpose', choices=['openpose', 'yolo-hrnet'])
parser.add_argument('--handface', action='store_true')
parser.add_argument('--openpose', type=str,
default='/media/qing/Project/openpose')
@ -140,24 +195,31 @@ if __name__ == "__main__":
parser.add_argument('--no2d', action='store_true')
parser.add_argument('--debug', action='store_true')
args = parser.parse_args()
mode = args.mode
if os.path.isdir(args.path):
videos = sorted(glob(join(args.path, 'videos', '*.mp4')))
subs = []
for video in videos:
basename = extract_video(video, args.path)
subs.append(basename)
print('cameras: ', ' '.join(subs))
if not args.no2d:
os.makedirs(join(args.path, 'openpose'), exist_ok=True)
for sub in subs:
image_root = join(args.path, 'images', sub)
annot_root = join(args.path, 'annots', sub)
if os.path.exists(annot_root):
print('skip ', annot_root)
continue
extract_2d(args.openpose, join(args.path, 'images', sub),
if mode == 'openpose':
extract_2d(args.openpose, image_root,
join(args.path, 'openpose', sub),
join(args.path, 'openpose_render', sub))
convert_from_openpose(
src=join(args.path, 'openpose', sub),
dst=annot_root
)
elif mode == 'yolo-hrnet':
extract_yolo_hrnet(image_root, annot_root)
else:
print(args.path, ' not exists')