update annotator, visualization
This commit is contained in:
parent
bbc1432e68
commit
f969c0e972
@ -2,8 +2,8 @@
|
|||||||
@ Date: 2021-07-16 20:13:57
|
@ Date: 2021-07-16 20:13:57
|
||||||
@ Author: Qing Shuai
|
@ Author: Qing Shuai
|
||||||
@ LastEditors: Qing Shuai
|
@ LastEditors: Qing Shuai
|
||||||
@ LastEditTime: 2021-07-17 19:25:00
|
@ LastEditTime: 2021-07-21 19:56:38
|
||||||
@ FilePath: /EasyMocapRelease/apps/calibration/detect_chessboard.py
|
@ FilePath: /EasyMocap/apps/calibration/detect_chessboard.py
|
||||||
'''
|
'''
|
||||||
# detect the corner of chessboard
|
# detect the corner of chessboard
|
||||||
from easymocap.annotator.file_utils import getFileList, read_json, save_json
|
from easymocap.annotator.file_utils import getFileList, read_json, save_json
|
||||||
@ -60,7 +60,7 @@ def detect_chessboard(path, out, pattern, gridSize, args):
|
|||||||
cv2.imwrite(outname, show)
|
cv2.imwrite(outname, show)
|
||||||
|
|
||||||
def detect_chessboard_sequence(path, out, pattern, gridSize, args):
|
def detect_chessboard_sequence(path, out, pattern, gridSize, args):
|
||||||
# create_chessboard(path, pattern, gridSize, ext=args.ext)
|
create_chessboard(path, pattern, gridSize, ext=args.ext)
|
||||||
subs = sorted(os.listdir(join(path, 'images')))
|
subs = sorted(os.listdir(join(path, 'images')))
|
||||||
for sub in subs:
|
for sub in subs:
|
||||||
dataset = ImageFolder(path, sub=sub, annot='chessboard', ext=args.ext)
|
dataset = ImageFolder(path, sub=sub, annot='chessboard', ext=args.ext)
|
||||||
@ -69,8 +69,8 @@ def detect_chessboard_sequence(path, out, pattern, gridSize, args):
|
|||||||
found = np.zeros(nFrames, dtype=np.bool)
|
found = np.zeros(nFrames, dtype=np.bool)
|
||||||
visited = np.zeros(nFrames, dtype=np.bool)
|
visited = np.zeros(nFrames, dtype=np.bool)
|
||||||
proposals = []
|
proposals = []
|
||||||
init_step = 50
|
init_step = args.max_step
|
||||||
min_step = 1
|
min_step = args.min_step
|
||||||
for nf in range(0, nFrames, init_step):
|
for nf in range(0, nFrames, init_step):
|
||||||
if nf + init_step < len(dataset):
|
if nf + init_step < len(dataset):
|
||||||
proposals.append([nf, nf+init_step])
|
proposals.append([nf, nf+init_step])
|
||||||
@ -98,6 +98,8 @@ def detect_chessboard_sequence(path, out, pattern, gridSize, args):
|
|||||||
if not found[left] and not found[right]:
|
if not found[left] and not found[right]:
|
||||||
continue
|
continue
|
||||||
mid = (left+right)//2
|
mid = (left+right)//2
|
||||||
|
if mid == left or mid == right:
|
||||||
|
continue
|
||||||
if mid - left > min_step:
|
if mid - left > min_step:
|
||||||
proposals.append((left, mid))
|
proposals.append((left, mid))
|
||||||
if right - mid > min_step:
|
if right - mid > min_step:
|
||||||
@ -113,6 +115,9 @@ if __name__ == "__main__":
|
|||||||
help='The pattern of the chessboard', default=(9, 6))
|
help='The pattern of the chessboard', default=(9, 6))
|
||||||
parser.add_argument('--grid', type=float, default=0.1,
|
parser.add_argument('--grid', type=float, default=0.1,
|
||||||
help='The length of the grid size (unit: meter)')
|
help='The length of the grid size (unit: meter)')
|
||||||
|
parser.add_argument('--max_step', type=int, default=50)
|
||||||
|
parser.add_argument('--min_step', type=int, default=0)
|
||||||
|
|
||||||
parser.add_argument('--silent', action='store_true')
|
parser.add_argument('--silent', action='store_true')
|
||||||
parser.add_argument('--debug', action='store_true')
|
parser.add_argument('--debug', action='store_true')
|
||||||
parser.add_argument('--seq', action='store_true')
|
parser.add_argument('--seq', action='store_true')
|
||||||
|
50
apps/vis/vis_smpl.py
Normal file
50
apps/vis/vis_smpl.py
Normal file
@ -0,0 +1,50 @@
|
|||||||
|
'''
|
||||||
|
@ Date: 2021-07-19 20:37:16
|
||||||
|
@ Author: Qing Shuai
|
||||||
|
@ LastEditors: Qing Shuai
|
||||||
|
@ LastEditTime: 2021-08-28 20:42:44
|
||||||
|
@ FilePath: /EasyMocapRelease/apps/vis/vis_smpl.py
|
||||||
|
'''
|
||||||
|
from easymocap.config import Config, load_object
|
||||||
|
import open3d as o3d
|
||||||
|
from easymocap.visualize.o3dwrapper import Vector3dVector, create_mesh, create_coord
|
||||||
|
import numpy as np
|
||||||
|
|
||||||
|
def update_vis(vis, mesh, body_model, params):
|
||||||
|
vertices = body_model(return_verts=True, return_tensor=False, **params)[0]
|
||||||
|
mesh.vertices = Vector3dVector(vertices)
|
||||||
|
vis.update_geometry(model)
|
||||||
|
vis.poll_events()
|
||||||
|
vis.update_renderer()
|
||||||
|
|
||||||
|
if __name__ == "__main__":
|
||||||
|
import argparse
|
||||||
|
parser = argparse.ArgumentParser()
|
||||||
|
parser.add_argument('--cfg', type=str,
|
||||||
|
default='config/model/smpl_neutral.yml')
|
||||||
|
parser.add_argument('--key', type=str,
|
||||||
|
default='poses')
|
||||||
|
parser.add_argument('--num', type=int, default=50)
|
||||||
|
parser.add_argument('--debug', action='store_true')
|
||||||
|
args = parser.parse_args()
|
||||||
|
key = args.key
|
||||||
|
|
||||||
|
config = Config.load(args.cfg)
|
||||||
|
body_model = load_object(config.module, config.args)
|
||||||
|
params = body_model.init_params(1)
|
||||||
|
vertices = body_model(return_verts=True, return_tensor=False, **params)
|
||||||
|
joints = body_model(return_verts=False, return_smpl_joints=True, return_tensor=False, **params)
|
||||||
|
|
||||||
|
model = create_mesh(vertices=vertices[0], faces=body_model.faces)
|
||||||
|
vis = o3d.visualization.Visualizer()
|
||||||
|
vis.create_window(width=900, height=900)
|
||||||
|
vis.add_geometry(model)
|
||||||
|
params = body_model.init_params(1)
|
||||||
|
var_ranges = np.linspace(0, np.pi/2, args.num)
|
||||||
|
var_ranges = np.concatenate([-var_ranges, -var_ranges[::-1], var_ranges, var_ranges[::-1]])
|
||||||
|
for npose in range(54, params[key].shape[1]):
|
||||||
|
print('[Vis] {}: {}'.format(key, npose))
|
||||||
|
for i in range(var_ranges.shape[0]):
|
||||||
|
params[key][0, npose] = var_ranges[i]
|
||||||
|
update_vis(vis, model, body_model, params)
|
||||||
|
import ipdb; ipdb.set_trace()
|
@ -2,7 +2,7 @@
|
|||||||
* @Date: 2021-04-02 11:52:33
|
* @Date: 2021-04-02 11:52:33
|
||||||
* @Author: Qing Shuai
|
* @Author: Qing Shuai
|
||||||
* @LastEditors: Qing Shuai
|
* @LastEditors: Qing Shuai
|
||||||
* @LastEditTime: 2021-06-21 21:18:45
|
* @LastEditTime: 2021-07-22 20:58:33
|
||||||
* @FilePath: /EasyMocapRelease/doc/installation.md
|
* @FilePath: /EasyMocapRelease/doc/installation.md
|
||||||
-->
|
-->
|
||||||
# EasyMocap - Installation
|
# EasyMocap - Installation
|
||||||
@ -74,7 +74,7 @@ data
|
|||||||
- torch==1.4.0
|
- torch==1.4.0
|
||||||
- torchvision==0.5.0
|
- torchvision==0.5.0
|
||||||
- opencv-python
|
- opencv-python
|
||||||
- [pyrender](https://pyrender.readthedocs.io/en/latest/install/index.html#python-installation): for visualization
|
- [pyrender](https://pyrender.readthedocs.io/en/latest/install/index.html#python-installation): for visualization, or [pyrender for server without a screen](https://pyrender.readthedocs.io/en/latest/install/index.html#getting-pyrender-working-with-osmesa).
|
||||||
- chumpy: for loading SMPL model
|
- chumpy: for loading SMPL model
|
||||||
- OpenPose[4]: for 2D pose
|
- OpenPose[4]: for 2D pose
|
||||||
|
|
||||||
|
@ -2,11 +2,13 @@
|
|||||||
* @Date: 2021-04-02 11:53:16
|
* @Date: 2021-04-02 11:53:16
|
||||||
* @Author: Qing Shuai
|
* @Author: Qing Shuai
|
||||||
* @LastEditors: Qing Shuai
|
* @LastEditors: Qing Shuai
|
||||||
* @LastEditTime: 2021-06-14 14:26:19
|
* @LastEditTime: 2021-07-22 20:57:16
|
||||||
* @FilePath: /EasyMocapRelease/doc/quickstart.md
|
* @FilePath: /EasyMocapRelease/doc/quickstart.md
|
||||||
-->
|
-->
|
||||||
# Quick Start
|
# Quick Start
|
||||||
|
|
||||||
|
First install this project following [install](./installation.md)
|
||||||
|
|
||||||
## Demo
|
## Demo
|
||||||
|
|
||||||
We provide an example multiview dataset[[dropbox](https://www.dropbox.com/s/24mb7r921b1g9a7/zju-ls-feng.zip?dl=0)][[BaiduDisk](https://pan.baidu.com/s/1lvAopzYGCic3nauoQXjbPw)(vg1z)], which has 800 frames from 23 synchronized and calibrated cameras. After downloading the dataset, you can run the following example scripts.
|
We provide an example multiview dataset[[dropbox](https://www.dropbox.com/s/24mb7r921b1g9a7/zju-ls-feng.zip?dl=0)][[BaiduDisk](https://pan.baidu.com/s/1lvAopzYGCic3nauoQXjbPw)(vg1z)], which has 800 frames from 23 synchronized and calibrated cameras. After downloading the dataset, you can run the following example scripts.
|
||||||
|
@ -2,8 +2,8 @@
|
|||||||
@ Date: 2021-01-25 21:27:56
|
@ Date: 2021-01-25 21:27:56
|
||||||
@ Author: Qing Shuai
|
@ Author: Qing Shuai
|
||||||
@ LastEditors: Qing Shuai
|
@ LastEditors: Qing Shuai
|
||||||
@ LastEditTime: 2021-06-25 15:50:40
|
@ LastEditTime: 2021-07-28 17:18:20
|
||||||
@ FilePath: /EasyMocapRelease/easymocap/affinity/plucker.py
|
@ FilePath: /EasyMocap/easymocap/affinity/plucker.py
|
||||||
'''
|
'''
|
||||||
import numpy as np
|
import numpy as np
|
||||||
|
|
||||||
@ -14,9 +14,9 @@ def plucker_from_pl(point, line):
|
|||||||
point {tensor} -- N, 3
|
point {tensor} -- N, 3
|
||||||
line {tensor} -- N, 3
|
line {tensor} -- N, 3
|
||||||
"""
|
"""
|
||||||
norm = np.linalg.norm(line, axis=1, keepdims=True)
|
norm = np.linalg.norm(line, axis=-1, keepdims=True)
|
||||||
lunit = line/norm
|
lunit = line/norm
|
||||||
moment = np.cross(point, lunit, axis=1)
|
moment = np.cross(point, lunit, axis=-1)
|
||||||
return lunit, moment
|
return lunit, moment
|
||||||
|
|
||||||
def plucker_from_pp(point1, point2):
|
def plucker_from_pp(point1, point2):
|
||||||
@ -69,4 +69,17 @@ def computeRay(keypoints2d, invK, R, T):
|
|||||||
l, m = plucker_from_pp(cam_center.T, kp_all_3d)
|
l, m = plucker_from_pp(cam_center.T, kp_all_3d)
|
||||||
res = np.hstack((l, m, conf))
|
res = np.hstack((l, m, conf))
|
||||||
# 兼容cpp版本,所以补一个维度
|
# 兼容cpp版本,所以补一个维度
|
||||||
return res[None, :, :]
|
return res[None, :, :]
|
||||||
|
|
||||||
|
def computeRaynd(keypoints2d, invK, R, T):
|
||||||
|
# keypoints2d: (..., 3)
|
||||||
|
conf = keypoints2d[..., 2:]
|
||||||
|
# cam_center: (1, 3)
|
||||||
|
cam_center = - (R.T @ T).T
|
||||||
|
kp_pixel = np.concatenate([keypoints2d[..., :2], np.ones_like(conf)], axis=-1)
|
||||||
|
kp_all_3d = (kp_pixel @ invK.T - T.T) @ R
|
||||||
|
while len(cam_center.shape) < len(kp_all_3d.shape):
|
||||||
|
cam_center = cam_center[None]
|
||||||
|
l, m = plucker_from_pp(cam_center, kp_all_3d)
|
||||||
|
res = np.concatenate((l, m, conf), axis=-1)
|
||||||
|
return res
|
@ -1,7 +1,19 @@
|
|||||||
from .basic_dataset import ImageFolder
|
'''
|
||||||
from .basic_visualize import vis_point, vis_line
|
@ Date: 2021-04-15 16:56:18
|
||||||
from .basic_visualize import plot_bbox_body, plot_skeleton, plot_skeleton_simple, plot_text, vis_active_bbox
|
@ Author: Qing Shuai
|
||||||
from .basic_annotator import AnnotBase
|
@ LastEditors: Qing Shuai
|
||||||
|
@ LastEditTime: 2021-06-09 10:16:29
|
||||||
|
@ FilePath: /EasyMocap/easymocap/annotator/__init__.py
|
||||||
|
'''
|
||||||
|
from .basic_annotator import load_parser, parse_parser
|
||||||
|
from .basic_dataset import ImageFolder, MVBase
|
||||||
|
from .basic_visualize import vis_point, vis_line, vis_bbox
|
||||||
|
from .basic_visualize import plot_bbox_body, plot_skeleton, plot_text, vis_active_bbox, plot_bbox_factory
|
||||||
|
from .basic_annotator import AnnotBase, AnnotMV
|
||||||
from .chessboard import findChessboardCorners
|
from .chessboard import findChessboardCorners
|
||||||
# bbox callbacks
|
# bbox callbacks
|
||||||
from .bbox_callback import callback_select_bbox_center, callback_select_bbox_corner, auto_pose_track
|
# create, delete, copy
|
||||||
|
from .bbox_callback import create_bbox, delete_bbox, delete_all_bbox, copy_previous_bbox, copy_previous_missing
|
||||||
|
# track
|
||||||
|
from .bbox_callback import get_auto_track
|
||||||
|
from .bbox_callback import callback_select_bbox_center, callback_select_bbox_corner
|
||||||
|
@ -1,9 +1,10 @@
|
|||||||
import shutil
|
import shutil
|
||||||
import cv2
|
import cv2
|
||||||
|
from tqdm import tqdm
|
||||||
from .basic_keyboard import register_keys
|
from .basic_keyboard import register_keys
|
||||||
from .basic_visualize import resize_to_screen
|
from .basic_visualize import plot_text, resize_to_screen, merge
|
||||||
from .basic_callback import point_callback, CV_KEY, get_key
|
from .basic_callback import point_callback, CV_KEY, get_key
|
||||||
from .file_utils import load_annot_to_tmp, save_annot
|
from .file_utils import load_annot_to_tmp, read_json, save_annot
|
||||||
|
|
||||||
class ComposedCallback:
|
class ComposedCallback:
|
||||||
def __init__(self, callbacks=[point_callback], processes=[]) -> None:
|
def __init__(self, callbacks=[point_callback], processes=[]) -> None:
|
||||||
@ -12,7 +13,7 @@ class ComposedCallback:
|
|||||||
|
|
||||||
def call(self, event, x, y, flags, param):
|
def call(self, event, x, y, flags, param):
|
||||||
scale = param['scale']
|
scale = param['scale']
|
||||||
x, y = int(x/scale), int(y/scale)
|
x, y = int(round(x/scale)), int(round(y/scale))
|
||||||
for callback in self.callbacks:
|
for callback in self.callbacks:
|
||||||
callback(event, x, y, flags, param)
|
callback(event, x, y, flags, param)
|
||||||
for key in ['click', 'start', 'end']:
|
for key in ['click', 'start', 'end']:
|
||||||
@ -23,28 +24,53 @@ class ComposedCallback:
|
|||||||
for process in self.processes:
|
for process in self.processes:
|
||||||
process(**param)
|
process(**param)
|
||||||
|
|
||||||
|
def get_valid_yn():
|
||||||
|
while True:
|
||||||
|
key = input('Saving this annotations? [y/n]')
|
||||||
|
if key in ['y', 'n']:
|
||||||
|
break
|
||||||
|
print('Please specify [y/n]')
|
||||||
|
return key
|
||||||
|
|
||||||
|
restore_key = {
|
||||||
|
'body25': ('bbox', 'keypoints'),
|
||||||
|
'handl': ('bbox_handl2d', 'handl2d'),
|
||||||
|
'handr': ('bbox_handr2d', 'handr2d'),
|
||||||
|
}
|
||||||
class AnnotBase:
|
class AnnotBase:
|
||||||
def __init__(self, dataset, key_funcs={}, callbacks=[], vis_funcs=[],
|
def __init__(self, dataset, key_funcs={}, callbacks=[], vis_funcs=[],
|
||||||
name = 'main',
|
name = 'main', body='body25',
|
||||||
step=1) -> None:
|
start=0, end=100000, step=10, no_window=False) -> None:
|
||||||
self.name = name
|
self.name = name
|
||||||
self.dataset = dataset
|
self.dataset = dataset
|
||||||
self.nFrames = len(dataset)
|
self.nFrames = len(dataset)
|
||||||
self.step = step
|
self.step = step
|
||||||
self.register_keys = register_keys.copy()
|
self.register_keys = register_keys.copy()
|
||||||
self.register_keys.update(key_funcs)
|
self.register_keys.update(key_funcs)
|
||||||
|
self.no_img = False
|
||||||
|
if resize_to_screen not in vis_funcs:
|
||||||
|
vis_funcs += [resize_to_screen]
|
||||||
|
self.vis_funcs = vis_funcs
|
||||||
|
self.start = start
|
||||||
|
self.end = end
|
||||||
|
|
||||||
self.vis_funcs = vis_funcs + [resize_to_screen]
|
|
||||||
self.isOpen = True
|
self.isOpen = True
|
||||||
self._frame = 0
|
self._frame = self.start
|
||||||
self.visited_frames = set([self._frame])
|
self.visited_frames = set([self._frame])
|
||||||
self.param = {'select': {'bbox': -1, 'corner': -1},
|
bbox_name, kpts_name = restore_key[body]
|
||||||
'start': None, 'end': None, 'click': None,
|
self.param = {
|
||||||
|
'frame': 0, 'nFrames': self.nFrames,
|
||||||
|
'kpts_name': kpts_name, 'bbox_name': bbox_name,
|
||||||
|
'select': {bbox_name: -1, 'corner': -1},
|
||||||
|
'click': None,
|
||||||
|
'name': name,
|
||||||
'capture_screen':False}
|
'capture_screen':False}
|
||||||
self.set_frame(0)
|
self.set_frame(self.start)
|
||||||
cv2.namedWindow(self.name)
|
self.no_window = no_window
|
||||||
callback = ComposedCallback(processes=callbacks)
|
if not no_window:
|
||||||
cv2.setMouseCallback(self.name, callback.call, self.param)
|
cv2.namedWindow(self.name)
|
||||||
|
callback = ComposedCallback(processes=callbacks)
|
||||||
|
cv2.setMouseCallback(self.name, callback.call, self.param)
|
||||||
|
|
||||||
@property
|
@property
|
||||||
def working(self):
|
def working(self):
|
||||||
@ -57,33 +83,30 @@ class AnnotBase:
|
|||||||
flag = True
|
flag = True
|
||||||
return flag
|
return flag
|
||||||
|
|
||||||
def clear_working(self):
|
@staticmethod
|
||||||
self.param['click'] = None
|
def clear_working(param):
|
||||||
self.param['start'] = None
|
param['click'] = None
|
||||||
self.param['end'] = None
|
param['start'] = None
|
||||||
for key in self.param['select']:
|
param['end'] = None
|
||||||
self.param['select'][key] = -1
|
for key in param['select']:
|
||||||
|
param['select'][key] = -1
|
||||||
|
|
||||||
def save_and_quit(self):
|
def save_and_quit(self, key=None):
|
||||||
self.frame = self.frame
|
self.frame = self.frame
|
||||||
self.isOpen = False
|
self.isOpen = False
|
||||||
cv2.destroyWindow(self.name)
|
cv2.destroyWindow(self.name)
|
||||||
# get the input
|
# get the input
|
||||||
while True:
|
if key is None:
|
||||||
key = input('Saving this annotations? [y/n]')
|
key = get_valid_yn()
|
||||||
if key in ['y', 'n']:
|
|
||||||
break
|
|
||||||
print('Please specify [y/n]')
|
|
||||||
if key == 'n':
|
if key == 'n':
|
||||||
return 0
|
return 0
|
||||||
if key == 'n':
|
for frame in tqdm(self.visited_frames, desc='writing'):
|
||||||
return 0
|
|
||||||
for frame in self.visited_frames:
|
|
||||||
self.dataset.isTmp = True
|
self.dataset.isTmp = True
|
||||||
_, annname = self.dataset[frame]
|
_, annname = self.dataset[frame]
|
||||||
self.dataset.isTmp = False
|
self.dataset.isTmp = False
|
||||||
_, annname_ = self.dataset[frame]
|
_, annname_ = self.dataset[frame]
|
||||||
shutil.copy(annname, annname_)
|
if annname is not None:
|
||||||
|
shutil.copy(annname, annname_)
|
||||||
|
|
||||||
@property
|
@property
|
||||||
def frame(self):
|
def frame(self):
|
||||||
@ -97,25 +120,34 @@ class AnnotBase:
|
|||||||
annots = load_annot_to_tmp(annname)
|
annots = load_annot_to_tmp(annname)
|
||||||
return annots
|
return annots
|
||||||
|
|
||||||
def set_frame(self, nf):
|
@staticmethod
|
||||||
self.clear_working()
|
def set_param(param, imgname, annname, nf, no_img=False):
|
||||||
imgname, annname = self.dataset[nf]
|
|
||||||
img0 = cv2.imread(imgname)
|
|
||||||
annots = load_annot_to_tmp(annname)
|
annots = load_annot_to_tmp(annname)
|
||||||
# 清空键盘
|
# 清空键盘
|
||||||
for key in ['click', 'start', 'end']:
|
for key in ['click', 'start', 'end']:
|
||||||
self.param[key] = None
|
param[key] = None
|
||||||
# 清空选中
|
# 清空选中
|
||||||
for key in self.param['select']:
|
for key in param['select']:
|
||||||
self.param['select'][key] = -1
|
param['select'][key] = -1
|
||||||
self.param['imgname'] = imgname
|
param['imgname'] = imgname
|
||||||
self.param['annname'] = annname
|
param['annname'] = annname
|
||||||
self.param['frame'] = nf
|
param['frame'] = nf
|
||||||
self.param['annots'] = annots
|
param['annots'] = annots
|
||||||
self.param['img0'] = img0
|
if not no_img:
|
||||||
# self.param['pid'] = len(annot['annots'])
|
img0 = cv2.imread(imgname)
|
||||||
self.param['scale'] = min(CV_KEY.WINDOW_HEIGHT/img0.shape[0], CV_KEY.WINDOW_WIDTH/img0.shape[1])
|
param['img0'] = img0
|
||||||
|
# param['pid'] = len(annot['annots'])
|
||||||
|
param['scale'] = min(CV_KEY.WINDOW_HEIGHT/img0.shape[0], CV_KEY.WINDOW_WIDTH/img0.shape[1])
|
||||||
|
# param['scale'] = 1
|
||||||
|
|
||||||
|
def set_frame(self, nf):
|
||||||
|
param = self.param
|
||||||
|
if 'annots' in param.keys():
|
||||||
|
save_annot(param['annname'], param['annots'])
|
||||||
|
self.clear_working(param)
|
||||||
|
imgname, annname = self.dataset[nf]
|
||||||
|
self.set_param(param, imgname, annname, nf, no_img=self.no_img)
|
||||||
|
|
||||||
@frame.setter
|
@frame.setter
|
||||||
def frame(self, value):
|
def frame(self, value):
|
||||||
self.visited_frames.add(value)
|
self.visited_frames.add(value)
|
||||||
@ -124,14 +156,232 @@ class AnnotBase:
|
|||||||
save_annot(self.param['annname'], self.param['annots'])
|
save_annot(self.param['annname'], self.param['annots'])
|
||||||
self.set_frame(value)
|
self.set_frame(value)
|
||||||
|
|
||||||
def run(self, key=None):
|
def run(self, key=None, noshow=False):
|
||||||
if key is None:
|
if key is None:
|
||||||
key = chr(get_key())
|
key = chr(get_key())
|
||||||
if key in self.register_keys.keys():
|
if key in self.register_keys.keys():
|
||||||
self.register_keys[key](self, param=self.param)
|
self.register_keys[key](self, param=self.param)
|
||||||
if not self.isOpen:
|
if not self.isOpen:
|
||||||
return 0
|
return 0
|
||||||
|
if noshow:
|
||||||
|
return 0
|
||||||
img = self.param['img0'].copy()
|
img = self.param['img0'].copy()
|
||||||
for func in self.vis_funcs:
|
for func in self.vis_funcs:
|
||||||
img = func(img, **self.param)
|
img = func(img, **self.param)
|
||||||
cv2.imshow(self.name, img)
|
if not self.no_window:
|
||||||
|
cv2.imshow(self.name, img)
|
||||||
|
|
||||||
|
class AnnotMV:
|
||||||
|
def __init__(self, datasets, key_funcs={}, key_funcs_view={}, callbacks=[], vis_funcs=[], vis_funcs_all=[],
|
||||||
|
name='main', step=100, body='body25', start=0, end=100000) -> None:
|
||||||
|
self.subs = list(datasets.keys())
|
||||||
|
self.annotdict = {}
|
||||||
|
self.nFrames = end
|
||||||
|
for sub, dataset in datasets.items():
|
||||||
|
annot = AnnotBase(dataset, key_funcs={}, callbacks=callbacks, vis_funcs=vis_funcs,
|
||||||
|
name=sub, step=step, body=body, start=start, end=end)
|
||||||
|
self.annotdict[sub] = annot
|
||||||
|
self.nFrames = min(self.nFrames, annot.nFrames)
|
||||||
|
self.isOpen = True
|
||||||
|
# self.register_keys_view = {key:register_keys[key] for key in 'q'}
|
||||||
|
self.register_keys_view = {}
|
||||||
|
if 'w' not in key_funcs:
|
||||||
|
for key in 'wasd':
|
||||||
|
self.register_keys_view[key] = register_keys[key]
|
||||||
|
self.register_keys_view.update(key_funcs_view)
|
||||||
|
self.register_keys = {
|
||||||
|
'Q': register_keys['q'],
|
||||||
|
'h': register_keys['H'],
|
||||||
|
'A': register_keys['A']
|
||||||
|
}
|
||||||
|
self.register_keys.update(key_funcs)
|
||||||
|
self.vis_funcs_all = vis_funcs_all
|
||||||
|
self.name = name
|
||||||
|
self.param = {}
|
||||||
|
|
||||||
|
@property
|
||||||
|
def frame(self):
|
||||||
|
sub = list(self.annotdict.keys())[0]
|
||||||
|
return self.annotdict[sub].frame
|
||||||
|
|
||||||
|
@property
|
||||||
|
def working(self):
|
||||||
|
return False
|
||||||
|
|
||||||
|
def save_and_quit(self):
|
||||||
|
key = get_valid_yn()
|
||||||
|
for sub, annot in self.annotdict.items():
|
||||||
|
annot.save_and_quit(key)
|
||||||
|
self.isOpen = False
|
||||||
|
|
||||||
|
def run(self, key=None, noshow=False):
|
||||||
|
if key is None:
|
||||||
|
key = chr(get_key())
|
||||||
|
for sub, annot in self.annotdict.items():
|
||||||
|
if key in self.register_keys_view.keys():
|
||||||
|
self.register_keys_view[key](annot, param=annot.param)
|
||||||
|
else:
|
||||||
|
annot.run(key='')
|
||||||
|
if key in self.register_keys.keys():
|
||||||
|
self.register_keys[key](self, param=self.param)
|
||||||
|
if len(self.vis_funcs_all) > 0 or True:
|
||||||
|
imgs = []
|
||||||
|
for sub in self.subs:
|
||||||
|
img = self.annotdict[sub].param['img0'].copy()
|
||||||
|
for func in self.vis_funcs_all:
|
||||||
|
img = func(img, sub, param=self.annotdict[sub].param)
|
||||||
|
imgs.append(img)
|
||||||
|
for func in [merge, resize_to_screen]:
|
||||||
|
imgs = func(imgs, scale=0.1)
|
||||||
|
cv2.imshow(self.name, imgs)
|
||||||
|
|
||||||
|
import numpy as np
|
||||||
|
def callback_select_image(click, select, ranges, **kwargs):
|
||||||
|
if click is None:
|
||||||
|
return 0
|
||||||
|
ranges = np.array(ranges)
|
||||||
|
click = np.array(click).reshape(1, -1)
|
||||||
|
res = (click[:, 0]>ranges[:, 0])&(click[:, 0]<ranges[:, 2])&(click[:, 1]>ranges[:, 1])&(click[:, 1]<ranges[:, 3])
|
||||||
|
if res.any():
|
||||||
|
select['camera'] = int(np.where(res)[0])
|
||||||
|
|
||||||
|
class AnnotMVMain:
|
||||||
|
def __init__(self, datasets, key_funcs={}, key_funcs_view={}, callbacks=[], vis_funcs=[], vis_funcs_all=[],
|
||||||
|
name='main', step=100, body='body25', start=0, end=100000) -> None:
|
||||||
|
self.subs = list(datasets.keys())
|
||||||
|
self.annotdict = {}
|
||||||
|
self.nFrames = end
|
||||||
|
for sub, dataset in datasets.items():
|
||||||
|
annot = AnnotBase(dataset, key_funcs={}, callbacks=callbacks, vis_funcs=vis_funcs,
|
||||||
|
name=sub, step=step, body=body, start=start, end=end, no_window=True)
|
||||||
|
self.annotdict[sub] = annot
|
||||||
|
self.nFrames = min(self.nFrames, annot.nFrames)
|
||||||
|
self.isOpen = True
|
||||||
|
self.register_keys_view = {}
|
||||||
|
self.register_keys = {
|
||||||
|
'Q': register_keys['q'],
|
||||||
|
'h': register_keys['H'],
|
||||||
|
'A': register_keys['A']
|
||||||
|
}
|
||||||
|
self.register_keys.update(key_funcs)
|
||||||
|
self.vis_funcs_all = vis_funcs_all
|
||||||
|
self.name = name
|
||||||
|
imgs = self.load_images()
|
||||||
|
imgs, ranges = merge(imgs, ret_range=True)
|
||||||
|
self.param = {
|
||||||
|
'scale': 0.45, 'ranges': ranges,
|
||||||
|
'click': None, 'start': None, 'end': None,
|
||||||
|
'select': {'camera': -1}}
|
||||||
|
callbacks = [callback_select_image]
|
||||||
|
cv2.namedWindow(self.name)
|
||||||
|
callback = ComposedCallback(processes=callbacks)
|
||||||
|
cv2.setMouseCallback(self.name, callback.call, self.param)
|
||||||
|
|
||||||
|
@property
|
||||||
|
def frame(self):
|
||||||
|
sub = list(self.annotdict.keys())[0]
|
||||||
|
return self.annotdict[sub].frame
|
||||||
|
|
||||||
|
@property
|
||||||
|
def working(self):
|
||||||
|
return False
|
||||||
|
|
||||||
|
def save_and_quit(self, key=None):
|
||||||
|
if key is None:
|
||||||
|
key = get_valid_yn()
|
||||||
|
for sub, annot in self.annotdict.items():
|
||||||
|
annot.save_and_quit(key)
|
||||||
|
self.isOpen = False
|
||||||
|
|
||||||
|
def load_images(self):
|
||||||
|
imgs = []
|
||||||
|
for sub in self.subs:
|
||||||
|
img = self.annotdict[sub].param['img0'].copy()
|
||||||
|
imgs.append(img)
|
||||||
|
return imgs
|
||||||
|
|
||||||
|
def run(self, key=None, noshow=False):
|
||||||
|
if key is None:
|
||||||
|
key = chr(get_key())
|
||||||
|
active_v = self.param['select']['camera']
|
||||||
|
if active_v == -1:
|
||||||
|
# run the key for all cameras
|
||||||
|
if key in self.register_keys.keys():
|
||||||
|
self.register_keys[key](self, param=self.param)
|
||||||
|
else:
|
||||||
|
for sub in self.subs:
|
||||||
|
self.annotdict[sub].run(key)
|
||||||
|
else:
|
||||||
|
# run the key for the selected cameras
|
||||||
|
self.annotdict[self.subs[active_v]].run(key=key)
|
||||||
|
if len(self.vis_funcs_all) > 0:
|
||||||
|
imgs = []
|
||||||
|
for nv, sub in enumerate(self.subs):
|
||||||
|
img = self.annotdict[sub].param['img0'].copy()
|
||||||
|
for func in self.vis_funcs_all:
|
||||||
|
# img = func(img, sub, param=self.annotdict[sub].param)
|
||||||
|
img = func(img, **self.annotdict[sub].param)
|
||||||
|
if self.param['select']['camera'] == nv:
|
||||||
|
cv2.rectangle(img, (0, 0), (img.shape[1], img.shape[0]), (0, 0, 255), img.shape[1]//100)
|
||||||
|
# img = plot_text(img, self.annotdict[sub].param['annots'], self.annotdict[sub].param['imgname'])
|
||||||
|
imgs.append(img)
|
||||||
|
for func in [merge, resize_to_screen]:
|
||||||
|
imgs = func(imgs, scale=0.45)
|
||||||
|
cv2.imshow(self.name, imgs)
|
||||||
|
|
||||||
|
def load_parser():
|
||||||
|
import argparse
|
||||||
|
parser = argparse.ArgumentParser()
|
||||||
|
parser.add_argument('path', type=str)
|
||||||
|
parser.add_argument('--out', type=str)
|
||||||
|
parser.add_argument('--sub', type=str, nargs='+', default=[],
|
||||||
|
help='the sub folder lists when in video mode')
|
||||||
|
parser.add_argument('--from_file', type=str, default=None)
|
||||||
|
parser.add_argument('--image', type=str, default='images')
|
||||||
|
parser.add_argument('--annot', type=str, default='annots')
|
||||||
|
parser.add_argument('--body', type=str, default='handl')
|
||||||
|
parser.add_argument('--step', type=int, default=100)
|
||||||
|
parser.add_argument('--vis', action='store_true')
|
||||||
|
parser.add_argument('--debug', action='store_true')
|
||||||
|
|
||||||
|
# new arguments
|
||||||
|
parser.add_argument('--start', type=int, default=0, help='frame start')
|
||||||
|
parser.add_argument('--end', type=int, default=100000, help='frame end')
|
||||||
|
return parser
|
||||||
|
|
||||||
|
def parse_parser(parser):
|
||||||
|
import os
|
||||||
|
from os.path import join
|
||||||
|
args = parser.parse_args()
|
||||||
|
if args.from_file is not None and args.from_file.endswith('.txt'):
|
||||||
|
assert os.path.exists(args.from_file), args.from_file
|
||||||
|
with open(args.from_file) as f:
|
||||||
|
datas = f.readlines()
|
||||||
|
subs = [d for d in datas if not d.startswith('#')]
|
||||||
|
subs = [d.rstrip().replace('https://www.youtube.com/watch?v=', '') for d in subs]
|
||||||
|
newsubs = sorted(os.listdir(join(args.path, 'images')))
|
||||||
|
clips = []
|
||||||
|
for newsub in newsubs:
|
||||||
|
if newsub in subs:
|
||||||
|
continue
|
||||||
|
if newsub.split('+')[0] in subs:
|
||||||
|
clips.append(newsub)
|
||||||
|
for sub in subs:
|
||||||
|
if os.path.exists(join(args.path, 'images', sub)):
|
||||||
|
clips.append(sub)
|
||||||
|
args.sub = sorted(clips)
|
||||||
|
elif args.from_file is not None and args.from_file.endswith('.json'):
|
||||||
|
data = read_json(args.from_file)
|
||||||
|
args.sub = sorted([v['vid'] for v in data])
|
||||||
|
elif len(args.sub) == 0:
|
||||||
|
args.sub = sorted(os.listdir(join(args.path, 'images')))
|
||||||
|
if args.sub[0].isdigit():
|
||||||
|
args.sub = sorted(args.sub, key=lambda x:int(x))
|
||||||
|
helps = """
|
||||||
|
Demo code for annotation:
|
||||||
|
- Input : {}
|
||||||
|
- => {}
|
||||||
|
- => {}
|
||||||
|
""".format(args.path, ', '.join(args.sub), args.annot)
|
||||||
|
print(helps)
|
||||||
|
return args
|
@ -1,3 +1,10 @@
|
|||||||
|
'''
|
||||||
|
@ Date: 2021-04-21 14:18:50
|
||||||
|
@ Author: Qing Shuai
|
||||||
|
@ LastEditors: Qing Shuai
|
||||||
|
@ LastEditTime: 2021-07-11 16:56:39
|
||||||
|
@ FilePath: /EasyMocap/easymocap/annotator/basic_callback.py
|
||||||
|
'''
|
||||||
import cv2
|
import cv2
|
||||||
|
|
||||||
class CV_KEY:
|
class CV_KEY:
|
||||||
@ -38,12 +45,14 @@ def point_callback(event, x, y, flags, param):
|
|||||||
return 0
|
return 0
|
||||||
# 判断出了选择了的点的位置,直接写入这个位置
|
# 判断出了选择了的点的位置,直接写入这个位置
|
||||||
if event == cv2.EVENT_LBUTTONDOWN:
|
if event == cv2.EVENT_LBUTTONDOWN:
|
||||||
|
# 如果选中了框,那么在按下的时候,就不能清零
|
||||||
param['click'] = None
|
param['click'] = None
|
||||||
param['start'] = (x, y)
|
param['start'] = (x, y)
|
||||||
param['end'] = (x, y)
|
param['end'] = (x, y)
|
||||||
# 清除所有选择项
|
# 清除所有选择项:需要操作吗?
|
||||||
for key in param['select'].keys():
|
for key in param['select'].keys():
|
||||||
param['select'][key] = -1
|
if key != 'bbox':
|
||||||
|
param['select'][key] = -1
|
||||||
elif event == cv2.EVENT_MOUSEMOVE and flags == cv2.EVENT_FLAG_LBUTTON:
|
elif event == cv2.EVENT_MOUSEMOVE and flags == cv2.EVENT_FLAG_LBUTTON:
|
||||||
param['end'] = (x, y)
|
param['end'] = (x, y)
|
||||||
elif event == cv2.EVENT_LBUTTONUP:
|
elif event == cv2.EVENT_LBUTTONUP:
|
||||||
|
@ -1,3 +1,11 @@
|
|||||||
|
'''
|
||||||
|
@ Date: 2021-04-15 17:39:34
|
||||||
|
@ Author: Qing Shuai
|
||||||
|
@ LastEditors: Qing Shuai
|
||||||
|
@ LastEditTime: 2021-07-24 17:01:18
|
||||||
|
@ FilePath: /EasyMocap/easymocap/annotator/basic_keyboard.py
|
||||||
|
'''
|
||||||
|
from glob import glob
|
||||||
from tqdm import tqdm
|
from tqdm import tqdm
|
||||||
from .basic_callback import get_key
|
from .basic_callback import get_key
|
||||||
|
|
||||||
@ -6,16 +14,36 @@ def print_help(annotator, **kwargs):
|
|||||||
print('Here is the help:')
|
print('Here is the help:')
|
||||||
print( '------------------')
|
print( '------------------')
|
||||||
for key, val in annotator.register_keys.items():
|
for key, val in annotator.register_keys.items():
|
||||||
# print(' {}: {}'.format(key, ': ', str(val.__doc__)))
|
|
||||||
print(' {}: '.format(key, ': '), str(val.__doc__))
|
print(' {}: '.format(key, ': '), str(val.__doc__))
|
||||||
|
|
||||||
def close(annotator, param, **kwargs):
|
def print_help_mv(annotator, **kwargs):
|
||||||
|
print_help(annotator)
|
||||||
|
print( '------------------')
|
||||||
|
print('Here is the help for each view:')
|
||||||
|
print( '------------------')
|
||||||
|
for key, val in annotator.register_keys_view.items():
|
||||||
|
print(' {}: '.format(key, ': '), str(val.__doc__))
|
||||||
|
|
||||||
|
def close(annotator, **kwargs):
|
||||||
"""quit the annotation"""
|
"""quit the annotation"""
|
||||||
if annotator.working:
|
if annotator.working:
|
||||||
annotator.clear_working()
|
annotator.set_frame(annotator.frame)
|
||||||
else:
|
else:
|
||||||
annotator.save_and_quit()
|
annotator.save_and_quit()
|
||||||
# annotator.pbar.close()
|
# annotator.pbar.close()
|
||||||
|
def skip(annotator, **kwargs):
|
||||||
|
"""skip the annotation"""
|
||||||
|
annotator.save_and_quit(key='y')
|
||||||
|
|
||||||
|
def get_any_move(df):
|
||||||
|
get_frame = lambda x, f: f + df
|
||||||
|
clip_frame = lambda x, f: max(0, min(x.nFrames-1, f))
|
||||||
|
def move(annotator, **kwargs):
|
||||||
|
newframe = get_frame(annotator, annotator.frame)
|
||||||
|
newframe = clip_frame(annotator, newframe)
|
||||||
|
annotator.frame = newframe
|
||||||
|
move.__doc__ = '{} frames'.format(df)
|
||||||
|
return move
|
||||||
|
|
||||||
def get_move(wasd):
|
def get_move(wasd):
|
||||||
get_frame = {
|
get_frame = {
|
||||||
@ -30,18 +58,18 @@ def get_move(wasd):
|
|||||||
'w': 'Move to last step frame',
|
'w': 'Move to last step frame',
|
||||||
's': 'Move to next step frame'
|
's': 'Move to next step frame'
|
||||||
}
|
}
|
||||||
clip_frame = lambda x, f: max(0, min(x.nFrames-1, f))
|
clip_frame = lambda x, f: max(x.start, min(x.nFrames-1, min(x.end-1, f)))
|
||||||
def move(annotator, **kwargs):
|
def move(annotator, **kwargs):
|
||||||
newframe = get_frame(annotator, annotator.frame)
|
newframe = get_frame(annotator, annotator.frame)
|
||||||
newframe = clip_frame(annotator, newframe)
|
newframe = clip_frame(annotator, newframe)
|
||||||
annotator.frame = newframe
|
annotator.frame = newframe
|
||||||
move.__doc__ = text[wasd]
|
move.__doc__ = text[wasd]
|
||||||
return move
|
return move
|
||||||
|
|
||||||
def set_personID(i):
|
def set_personID(i):
|
||||||
def func(self, param, **kwargs):
|
def func(self, param, **kwargs):
|
||||||
active = param['select']['bbox']
|
active = param['select']['bbox']
|
||||||
if active == -1:
|
if active == -1 and active >= len(param['annots']['annots']):
|
||||||
return 0
|
return 0
|
||||||
else:
|
else:
|
||||||
param['annots']['annots'][active]['personID'] = i
|
param['annots']['annots'][active]['personID'] = i
|
||||||
@ -49,15 +77,14 @@ def set_personID(i):
|
|||||||
func.__doc__ = "set the bbox ID to {}".format(i)
|
func.__doc__ = "set the bbox ID to {}".format(i)
|
||||||
return func
|
return func
|
||||||
|
|
||||||
def delete_bbox(self, param, **kwargs):
|
def choose_personID(i):
|
||||||
"delete the person"
|
def func(self, param, **kwargs):
|
||||||
active = param['select']['bbox']
|
for idata, data in enumerate(param['annots']['annots']):
|
||||||
if active == -1:
|
if data['personID'] == i:
|
||||||
|
param['select']['bbox'] = idata
|
||||||
return 0
|
return 0
|
||||||
else:
|
func.__doc__ = "choose the bbox of ID {}".format(i)
|
||||||
param['annots']['annots'].pop(active)
|
return func
|
||||||
param['select']['bbox'] = -1
|
|
||||||
return 0
|
|
||||||
|
|
||||||
def capture_screen(self, param):
|
def capture_screen(self, param):
|
||||||
"capture the screen"
|
"capture the screen"
|
||||||
@ -66,27 +93,97 @@ def capture_screen(self, param):
|
|||||||
else:
|
else:
|
||||||
param['capture_screen'] = True
|
param['capture_screen'] = True
|
||||||
|
|
||||||
def automatic(self, param):
|
remain = 0
|
||||||
"Automatic running"
|
keys_pre = []
|
||||||
keys = input('Enter the ordered key(separate with blank): ').split(' ')
|
|
||||||
repeats = int(input('Input the repeat times: (0->{})'.format(len(self.dataset)-self.frame)))
|
def cont_automatic(self, param):
|
||||||
|
"continue automatic"
|
||||||
|
global remain, keys_pre
|
||||||
|
if remain > 0:
|
||||||
|
keys = keys_pre
|
||||||
|
repeats = remain
|
||||||
|
else:
|
||||||
|
print('Examples: ')
|
||||||
|
print(' - noshow r t: automatic removing and tracking')
|
||||||
|
print(' - noshow nostop r t r c: automatic removing and tracking, if missing, just copy')
|
||||||
|
keys = input('Enter the ordered key(separate with blank): ').split(' ')
|
||||||
|
keys_pre = keys
|
||||||
|
try:
|
||||||
|
repeats = int(input('Input the repeat times(0->{}): '.format(len(self.dataset)-self.frame)))
|
||||||
|
except:
|
||||||
|
repeats = 0
|
||||||
|
if repeats == -1:
|
||||||
|
repeats = len(self.dataset)
|
||||||
|
repeats = min(repeats, len(self.dataset)-self.frame+1)
|
||||||
|
if len(keys) < 1:
|
||||||
|
return 0
|
||||||
|
noshow = 'noshow' in keys
|
||||||
|
if noshow:
|
||||||
|
self.no_img = True
|
||||||
|
nostop = 'nostop' in keys
|
||||||
|
param['stop'] = False
|
||||||
for nf in tqdm(range(repeats), desc='auto {}'.format('->'.join(keys))):
|
for nf in tqdm(range(repeats), desc='auto {}'.format('->'.join(keys))):
|
||||||
for key in keys:
|
for key in keys:
|
||||||
self.run(key=key)
|
self.run(key=key, noshow=noshow)
|
||||||
if chr(get_key()) == 'q':
|
if chr(get_key()) == 'q' or (param['stop'] and not nostop):
|
||||||
|
remain = repeats - nf
|
||||||
break
|
break
|
||||||
self.run(key='d')
|
self.run(key='d', noshow=noshow)
|
||||||
|
else:
|
||||||
|
remain = 0
|
||||||
|
keys_pre = []
|
||||||
|
self.no_img = False
|
||||||
|
|
||||||
|
def automatic(self, param):
|
||||||
|
"Automatic running"
|
||||||
|
global remain, keys_pre
|
||||||
|
print('Examples: ')
|
||||||
|
print(' - noshow r t: automatic removing and tracking')
|
||||||
|
print(' - noshow nostop r t r c: automatic removing and tracking, if missing, just copy')
|
||||||
|
keys = input('Enter the ordered key(separate with blank): ').split(' ')
|
||||||
|
keys_pre = keys
|
||||||
|
try:
|
||||||
|
repeats = int(input('Input the repeat times(0->{}): '.format(self.nFrames-self.frame)))
|
||||||
|
except:
|
||||||
|
repeats = 0
|
||||||
|
repeats = min(repeats, self.nFrames-self.frame+1)
|
||||||
|
if len(keys) < 1:
|
||||||
|
return 0
|
||||||
|
noshow = 'noshow' in keys
|
||||||
|
if noshow:
|
||||||
|
self.no_img = True
|
||||||
|
nostop = 'nostop' in keys
|
||||||
|
param['stop'] = False
|
||||||
|
for nf in tqdm(range(repeats), desc='auto {}'.format('->'.join(keys))):
|
||||||
|
for key in keys:
|
||||||
|
self.run(key=key, noshow=noshow)
|
||||||
|
if chr(get_key()) == 'q' or (param['stop'] and not nostop):
|
||||||
|
remain = repeats - nf
|
||||||
|
break
|
||||||
|
self.run(key='d', noshow=noshow)
|
||||||
|
else:
|
||||||
|
remain = 0
|
||||||
|
keys_pre = []
|
||||||
|
self.no_img = False
|
||||||
|
|
||||||
|
def set_keyframe(self, param):
|
||||||
|
"set/unset the key-frame"
|
||||||
|
param['annots']['isKeyframe'] = not param['annots']['isKeyframe']
|
||||||
|
|
||||||
register_keys = {
|
register_keys = {
|
||||||
'h': print_help,
|
'h': print_help,
|
||||||
|
'H': print_help_mv,
|
||||||
'q': close,
|
'q': close,
|
||||||
'x': delete_bbox,
|
' ': skip,
|
||||||
'p': capture_screen,
|
'p': capture_screen,
|
||||||
'A': automatic
|
'A': automatic,
|
||||||
|
'z': cont_automatic,
|
||||||
|
'k': set_keyframe
|
||||||
}
|
}
|
||||||
|
|
||||||
for key in 'wasd':
|
for key in 'wasd':
|
||||||
register_keys[key] = get_move(key)
|
register_keys[key] = get_move(key)
|
||||||
|
|
||||||
for i in range(10):
|
for i in range(5):
|
||||||
register_keys[str(i)] = set_personID(i)
|
register_keys[str(i)] = set_personID(i)
|
||||||
|
register_keys['s'+str(i)] = choose_personID(i)
|
@ -2,7 +2,8 @@ import numpy as np
|
|||||||
import cv2
|
import cv2
|
||||||
import os
|
import os
|
||||||
from os.path import join
|
from os.path import join
|
||||||
from ..mytools import plot_cross, plot_line, plot_bbox, plot_keypoints, get_rgb
|
from ..mytools import plot_cross, plot_line, plot_bbox, plot_keypoints, get_rgb, merge
|
||||||
|
from ..mytools.file_utils import get_bbox_from_pose
|
||||||
from ..dataset import CONFIG
|
from ..dataset import CONFIG
|
||||||
|
|
||||||
# click and (start, end) is the output of the OpenCV callback
|
# click and (start, end) is the output of the OpenCV callback
|
||||||
@ -13,11 +14,23 @@ def vis_point(img, click, **kwargs):
|
|||||||
|
|
||||||
def vis_line(img, start, end, **kwargs):
|
def vis_line(img, start, end, **kwargs):
|
||||||
if start is not None and end is not None:
|
if start is not None and end is not None:
|
||||||
|
lw = max(2, img.shape[0]//500)
|
||||||
cv2.line(img, (int(start[0]), int(start[1])),
|
cv2.line(img, (int(start[0]), int(start[1])),
|
||||||
(int(end[0]), int(end[1])), (0, 255, 0), 1)
|
(int(end[0]), int(end[1])), (0, 255, 0), lw)
|
||||||
return img
|
return img
|
||||||
|
|
||||||
def resize_to_screen(img, scale=1, capture_screen=False, **kwargs):
|
def vis_bbox(img, start, end, **kwargs):
|
||||||
|
if start is not None and end is not None:
|
||||||
|
lw = max(2, img.shape[0]//500)
|
||||||
|
cv2.rectangle(img, (int(start[0]), int(start[1])),
|
||||||
|
(int(end[0]), int(end[1])), (0, 255, 0), lw)
|
||||||
|
return img
|
||||||
|
|
||||||
|
def resize_to_screen(img, scale=1, **kwargs):
|
||||||
|
img = cv2.resize(img, None, fx=scale, fy=scale)
|
||||||
|
return img
|
||||||
|
|
||||||
|
def capture_screen(img, capture_screen=False, **kwargs):
|
||||||
if capture_screen:
|
if capture_screen:
|
||||||
from datetime import datetime
|
from datetime import datetime
|
||||||
time_now = datetime.now().strftime("%m-%d-%H:%M:%S")
|
time_now = datetime.now().strftime("%m-%d-%H:%M:%S")
|
||||||
@ -25,18 +38,33 @@ def resize_to_screen(img, scale=1, capture_screen=False, **kwargs):
|
|||||||
os.makedirs('capture', exist_ok=True)
|
os.makedirs('capture', exist_ok=True)
|
||||||
cv2.imwrite(outname, img)
|
cv2.imwrite(outname, img)
|
||||||
print('Capture current screen to {}'.format(outname))
|
print('Capture current screen to {}'.format(outname))
|
||||||
img = cv2.resize(img, None, fx=scale, fy=scale)
|
|
||||||
return img
|
return img
|
||||||
|
|
||||||
def plot_text(img, annots, **kwargs):
|
def plot_text(img, annots, imgname, **kwargs):
|
||||||
if annots['isKeyframe']: # 关键帧使用红框表示
|
if 'isKeyframe' in annots.keys():
|
||||||
cv2.rectangle(img, (0, 0), (img.shape[1], img.shape[0]), (0, 0, 255), img.shape[1]//100)
|
if annots['isKeyframe']: # 关键帧使用红框表示
|
||||||
else: # 非关键帧使用绿框表示
|
cv2.rectangle(img, (0, 0), (img.shape[1], img.shape[0]), (0, 0, 255), img.shape[1]//100)
|
||||||
cv2.rectangle(img, (0, 0), (img.shape[1], img.shape[0]), (0, 255, 0), img.shape[1]//100)
|
else: # 非关键帧使用绿框表示
|
||||||
|
cv2.rectangle(img, (0, 0), (img.shape[1], img.shape[0]), (0, 255, 0), img.shape[1]//100)
|
||||||
|
imgname = '/'.join(imgname.split(os.sep)[-3:])
|
||||||
text_size = int(max(1, img.shape[0]//1500))
|
text_size = int(max(1, img.shape[0]//1500))
|
||||||
border = 20 * text_size
|
border = 20 * text_size
|
||||||
width = 2 * text_size
|
width = 2 * text_size
|
||||||
cv2.putText(img, '{}'.format(annots['filename']), (border, img.shape[0]-border), cv2.FONT_HERSHEY_SIMPLEX, text_size, (0, 0, 255), width)
|
cv2.putText(img, '{}'.format(imgname), (border, img.shape[0]-border), cv2.FONT_HERSHEY_SIMPLEX, text_size, (0, 0, 255), width)
|
||||||
|
# 显示标注进度条:
|
||||||
|
if 'frame' in kwargs.keys():
|
||||||
|
width = img.shape[1]
|
||||||
|
frame, nFrames = kwargs['frame'], kwargs['nFrames']
|
||||||
|
lw = 12
|
||||||
|
pos = lambda x: int(width*(x+1)/nFrames)
|
||||||
|
COL_ALL = (0, 255, 0)
|
||||||
|
COL_CUR = (255, 0, 0)
|
||||||
|
COL_PIN = (255, 128, 128)
|
||||||
|
plot_line(img, (0, lw/2), (width, lw/2), lw, COL_ALL)
|
||||||
|
plot_line(img, (0, lw/2), (pos(frame), lw/2), lw, COL_CUR)
|
||||||
|
top = pos(frame)
|
||||||
|
pts = np.array([[top, lw], [top-lw, lw*4], [top+lw, lw*4]])
|
||||||
|
cv2.fillPoly(img, [pts], COL_PIN)
|
||||||
return img
|
return img
|
||||||
|
|
||||||
def plot_bbox_body(img, annots, **kwargs):
|
def plot_bbox_body(img, annots, **kwargs):
|
||||||
@ -52,60 +80,79 @@ def plot_bbox_body(img, annots, **kwargs):
|
|||||||
plot_line(img, (x1, y2), (x2, y1), lw, color)
|
plot_line(img, (x1, y2), (x2, y1), lw, color)
|
||||||
# border
|
# border
|
||||||
cv2.rectangle(img, (int(x1), int(y1)), (int(x2), int(y2)), color, lw+1)
|
cv2.rectangle(img, (int(x1), int(y1)), (int(x2), int(y2)), color, lw+1)
|
||||||
ratio = (y2-y1)/(x2-x1)/2
|
ratio = (y2-y1)/(x2-x1)
|
||||||
w = 10*lw
|
w = 10*lw
|
||||||
cv2.rectangle(img,
|
cv2.rectangle(img,
|
||||||
(int((x1+x2)/2-w), int((y1+y2)/2-w*ratio)),
|
(int((x1+x2)/2-w), int((y1+y2)/2-w*ratio)),
|
||||||
(int((x1+x2)/2+w), int((y1+y2)/2+w*ratio)),
|
(int((x1+x2)/2+w), int((y1+y2)/2+w*ratio)),
|
||||||
color, -1)
|
color, -1)
|
||||||
|
cv2.putText(img, '{}'.format(pid), (int(x1), int(y1)+20), cv2.FONT_HERSHEY_SIMPLEX, 5, color, 2)
|
||||||
|
return img
|
||||||
|
|
||||||
|
def plot_bbox_sp(img, annots, bbox_type='handl_bbox', add_center=False):
|
||||||
|
assert bbox_type in ('bbox', 'bbox_handl2d', 'bbox_handr2d', 'bbox_face2d')
|
||||||
|
for data in annots['annots']:
|
||||||
|
if bbox_type not in data.keys():
|
||||||
|
continue
|
||||||
|
bbox = data[bbox_type]
|
||||||
|
# 画一个X形
|
||||||
|
x1, y1, x2, y2 = bbox[:4]
|
||||||
|
pid = data['personID']
|
||||||
|
color = get_rgb(pid)
|
||||||
|
lw = max(1, int((x2 - x1)//100))
|
||||||
|
plot_line(img, (x1, y1), (x2, y2), lw, color)
|
||||||
|
plot_line(img, (x1, y2), (x2, y1), lw, color)
|
||||||
|
# border
|
||||||
|
cv2.rectangle(img, (int(x1), int(y1)), (int(x2), int(y2)), color, lw+1)
|
||||||
|
ratio = (y2-y1)/(x2-x1)/2
|
||||||
|
w = 10*lw
|
||||||
|
if add_center:
|
||||||
|
cv2.rectangle(img,
|
||||||
|
(int((x1+x2)/2-w), int((y1+y2)/2-w*ratio)),
|
||||||
|
(int((x1+x2)/2+w), int((y1+y2)/2+w*ratio)),
|
||||||
|
color, -1)
|
||||||
cv2.putText(img, '{}'.format(pid), (int(x1), int(y1)+20), cv2.FONT_HERSHEY_SIMPLEX, 1, color, 2)
|
cv2.putText(img, '{}'.format(pid), (int(x1), int(y1)+20), cv2.FONT_HERSHEY_SIMPLEX, 1, color, 2)
|
||||||
return img
|
return img
|
||||||
|
|
||||||
def plot_skeleton(img, annots, **kwargs):
|
def plot_bbox_factory(bbox_type, add_center=False):
|
||||||
|
def ret_foo(img, annots, **kwargs):
|
||||||
|
return plot_bbox_sp(img, annots, bbox_type=bbox_type, add_center=add_center)
|
||||||
|
return ret_foo
|
||||||
|
|
||||||
|
def plot_skeleton(img, annots, body='body25', bbox_name='bbox', kpts_name='keypoints', **kwargs):
|
||||||
annots = annots['annots']
|
annots = annots['annots']
|
||||||
vis_conf = False
|
vis_conf = False
|
||||||
for data in annots:
|
for data in annots:
|
||||||
bbox, keypoints = data['bbox'], data['keypoints']
|
|
||||||
if False:
|
|
||||||
pid = data.get('matchID', -1)
|
|
||||||
else:
|
|
||||||
pid = data.get('personID', -1)
|
|
||||||
plot_bbox(img, bbox, pid)
|
|
||||||
if True:
|
|
||||||
plot_keypoints(img, keypoints, pid, CONFIG['body25'], vis_conf=vis_conf, use_limb_color=True)
|
|
||||||
if 'handl2d' in data.keys():
|
|
||||||
plot_keypoints(img, data['handl2d'], pid, CONFIG['hand'], vis_conf=vis_conf, lw=1, use_limb_color=False)
|
|
||||||
plot_keypoints(img, data['handr2d'], pid, CONFIG['hand'], vis_conf=vis_conf, lw=1, use_limb_color=False)
|
|
||||||
plot_keypoints(img, data['face2d'], pid, CONFIG['face'], vis_conf=vis_conf, lw=1, use_limb_color=False)
|
|
||||||
return img
|
|
||||||
|
|
||||||
def plot_keypoints_whole(img, points, kintree):
|
|
||||||
for ii, (i, j) in enumerate(kintree):
|
|
||||||
if i >= len(points) or j >= len(points):
|
|
||||||
continue
|
|
||||||
col = (255, 240, 160)
|
|
||||||
lw = 4
|
|
||||||
pt1, pt2 = points[i], points[j]
|
|
||||||
if pt1[-1] > 0.01 and pt2[-1] > 0.01:
|
|
||||||
image = cv2.line(
|
|
||||||
img, (int(pt1[0]+0.5), int(pt1[1]+0.5)), (int(pt2[0]+0.5), int(pt2[1]+0.5)),
|
|
||||||
col, lw)
|
|
||||||
|
|
||||||
def plot_skeleton_simple(img, annots, **kwargs):
|
|
||||||
annots = annots['annots']
|
|
||||||
vis_conf = False
|
|
||||||
for data in annots:
|
|
||||||
bbox, keypoints = data['bbox'], data['keypoints']
|
|
||||||
pid = data.get('personID', -1)
|
pid = data.get('personID', -1)
|
||||||
plot_keypoints_whole(img, keypoints, CONFIG['body25']['kintree'])
|
if kpts_name in data.keys():
|
||||||
|
keypoints = data[kpts_name]
|
||||||
|
plot_keypoints(img, keypoints, pid, CONFIG[body], vis_conf=vis_conf, use_limb_color=True)
|
||||||
|
if bbox_name in data.keys():
|
||||||
|
bbox = data[bbox_name]
|
||||||
|
plot_bbox(img, bbox, pid)
|
||||||
|
elif kpts_name in data.keys():
|
||||||
|
bbox = get_bbox_from_pose(np.array(data[kpts_name]))
|
||||||
|
plot_bbox(img, bbox, pid)
|
||||||
return img
|
return img
|
||||||
|
|
||||||
def vis_active_bbox(img, annots, select, **kwargs):
|
def plot_skeleton_factory(body):
|
||||||
active = select['bbox']
|
restore_key = {
|
||||||
if active == -1:
|
'body25': ('bbox', 'keypoints'),
|
||||||
|
'handl': ('bbox_handl2d', 'handl2d'),
|
||||||
|
'handr': ('bbox_handr2d', 'handr2d'),
|
||||||
|
'face': ('bbox_face2d', 'face2d'),
|
||||||
|
}
|
||||||
|
bbox_name, kpts_name = restore_key[body]
|
||||||
|
def ret_foo(img, annots, **kwargs):
|
||||||
|
return plot_skeleton(img, annots, body, bbox_name, kpts_name)
|
||||||
|
return ret_foo
|
||||||
|
|
||||||
|
def vis_active_bbox(img, annots, select, bbox_name, **kwargs):
|
||||||
|
active = select[bbox_name]
|
||||||
|
if active == -1 or active >= len(annots['annots']):
|
||||||
return img
|
return img
|
||||||
else:
|
else:
|
||||||
bbox = annots['annots'][active]['bbox']
|
bbox = annots['annots'][active][bbox_name]
|
||||||
pid = annots['annots'][active]['personID']
|
pid = annots['annots'][active]['personID']
|
||||||
mask = np.zeros_like(img, dtype=np.uint8)
|
mask = np.zeros_like(img, dtype=np.uint8)
|
||||||
cv2.rectangle(mask,
|
cv2.rectangle(mask,
|
||||||
|
@ -1,8 +1,22 @@
|
|||||||
import numpy as np
|
import numpy as np
|
||||||
import cv2
|
|
||||||
|
|
||||||
MIN_PIXEL = 50
|
MIN_PIXEL = 50
|
||||||
def callback_select_bbox_corner(start, end, annots, select, **kwargs):
|
def findNearestPoint(points, click):
|
||||||
|
# points: (N, 2)
|
||||||
|
# click : [x, y]
|
||||||
|
click = np.array(click)
|
||||||
|
if len(points.shape) == 2:
|
||||||
|
click = click[None, :]
|
||||||
|
elif len(points.shape) == 3:
|
||||||
|
click = click[None, None, :]
|
||||||
|
dist = np.linalg.norm(points - click, axis=-1)
|
||||||
|
if dist.min() < MIN_PIXEL:
|
||||||
|
idx = np.unravel_index(dist.argmin(), dist.shape)
|
||||||
|
return True, idx
|
||||||
|
else:
|
||||||
|
return False, (-1, -1)
|
||||||
|
|
||||||
|
def callback_select_bbox_corner(start, end, annots, select, bbox_name, **kwargs):
|
||||||
if start is None or end is None:
|
if start is None or end is None:
|
||||||
select['corner'] = -1
|
select['corner'] = -1
|
||||||
return 0
|
return 0
|
||||||
@ -10,74 +24,190 @@ def callback_select_bbox_corner(start, end, annots, select, **kwargs):
|
|||||||
return 0
|
return 0
|
||||||
# 判断选择了哪个角点
|
# 判断选择了哪个角点
|
||||||
annots = annots['annots']
|
annots = annots['annots']
|
||||||
start = np.array(start)[None, :]
|
# not select a bbox
|
||||||
if select['bbox'] == -1 and select['corner'] == -1:
|
if select[bbox_name] == -1 and select['corner'] == -1:
|
||||||
|
corners = []
|
||||||
for i in range(len(annots)):
|
for i in range(len(annots)):
|
||||||
l, t, r, b = annots[i]['bbox'][:4]
|
l, t, r, b = annots[i][bbox_name][:4]
|
||||||
corners = np.array([(l, t), (l, b), (r, t), (r, b)])
|
corner = np.array([(l, t), (l, b), (r, t), (r, b), ((l+r)/2, (t+b)/2)])
|
||||||
dist = np.linalg.norm(corners - start, axis=1)
|
corners.append(corner)
|
||||||
mindist = dist.min()
|
corners = np.stack(corners)
|
||||||
if mindist < MIN_PIXEL:
|
flag, minid = findNearestPoint(corners, start)
|
||||||
mincor = dist.argmin()
|
if flag:
|
||||||
select['bbox'] = i
|
select[bbox_name] = minid[0]
|
||||||
select['corner'] = mincor
|
select['corner'] = minid[1]
|
||||||
break
|
|
||||||
else:
|
else:
|
||||||
select['corner'] = -1
|
select['corner'] = -1
|
||||||
elif select['bbox'] != -1 and select['corner'] == -1:
|
# have selected a bbox, not select a corner
|
||||||
i = select['bbox']
|
elif select[bbox_name] != -1 and select['corner'] == -1:
|
||||||
l, t, r, b = annots[i]['bbox'][:4]
|
i = select[bbox_name]
|
||||||
corners = np.array([(l, t), (l, b), (r, t), (r, b)])
|
l, t, r, b = annots[i][bbox_name][:4]
|
||||||
dist = np.linalg.norm(corners - start, axis=1)
|
corners = np.array([(l, t), (l, b), (r, t), (r, b), ((l+r)/2, (t+b)/2)])
|
||||||
mindist = dist.min()
|
flag, minid = findNearestPoint(corners, start)
|
||||||
if mindist < MIN_PIXEL:
|
if flag:
|
||||||
mincor = dist.argmin()
|
select['corner'] = minid[0]
|
||||||
select['corner'] = mincor
|
# have selected a bbox, and select a corner
|
||||||
elif select['bbox'] != -1 and select['corner'] != -1:
|
elif select[bbox_name] != -1 and select['corner'] != -1:
|
||||||
# Move the corner
|
|
||||||
x, y = end
|
x, y = end
|
||||||
(i, j) = [(0, 1), (0, 3), (2, 1), (2, 3)][select['corner']]
|
# Move the corner
|
||||||
data = annots[select['bbox']]
|
if select['corner'] < 4:
|
||||||
data['bbox'][i] = x
|
(i, j) = [(0, 1), (0, 3), (2, 1), (2, 3)][select['corner']]
|
||||||
data['bbox'][j] = y
|
data = annots[select[bbox_name]]
|
||||||
elif select['bbox'] == -1 and select['corner'] != -1:
|
data[bbox_name][i] = x
|
||||||
|
data[bbox_name][j] = y
|
||||||
|
# Move the center
|
||||||
|
else:
|
||||||
|
bbox = annots[select[bbox_name]][bbox_name]
|
||||||
|
w = (bbox[2] - bbox[0])/2
|
||||||
|
h = (bbox[3] - bbox[1])/2
|
||||||
|
bbox[0] = x - w
|
||||||
|
bbox[1] = y - h
|
||||||
|
bbox[2] = x + w
|
||||||
|
bbox[3] = y + h
|
||||||
|
|
||||||
|
elif select[bbox_name] == -1 and select['corner'] != -1:
|
||||||
select['corner'] = -1
|
select['corner'] = -1
|
||||||
|
|
||||||
def callback_select_bbox_center(click, annots, select, **kwargs):
|
def callback_select_bbox_center(click, annots, select, bbox_name, **kwargs):
|
||||||
if click is None:
|
if click is None:
|
||||||
return 0
|
return 0
|
||||||
annots = annots['annots']
|
annots = annots['annots']
|
||||||
bboxes = np.array([d['bbox'] for d in annots])
|
bboxes = np.array([d[bbox_name] for d in annots])
|
||||||
center = (bboxes[:, [2, 3]] + bboxes[:, [0, 1]])/2
|
center = (bboxes[:, [2, 3]] + bboxes[:, [0, 1]])/2
|
||||||
click = np.array(click)[None, :]
|
click = np.array(click)[None, :]
|
||||||
dist = np.linalg.norm(click - center, axis=1)
|
dist = np.linalg.norm(click - center, axis=1)
|
||||||
mindist, minid = dist.min(), dist.argmin()
|
mindist, minid = dist.min(), dist.argmin()
|
||||||
if mindist < MIN_PIXEL:
|
if mindist < MIN_PIXEL:
|
||||||
select['bbox'] = minid
|
select[bbox_name] = minid
|
||||||
|
|
||||||
def auto_pose_track(self, param, **kwargs):
|
def get_auto_track(mode='kpts'):
|
||||||
"auto tracking with poses"
|
|
||||||
MAX_SPEED = 100
|
MAX_SPEED = 100
|
||||||
|
if mode == 'bbox':
|
||||||
|
MAX_SPEED = 0.2
|
||||||
|
def auto_track(self, param, **kwargs):
|
||||||
|
if self.frame == 0:
|
||||||
|
return 0
|
||||||
|
previous = self.previous()
|
||||||
|
annots = param['annots']['annots']
|
||||||
|
bbox_name = param['bbox_name']
|
||||||
|
kpts_name = param['kpts_name']
|
||||||
|
if len(annots) == 0:
|
||||||
|
return 0
|
||||||
|
if len(previous['annots']) == 0:
|
||||||
|
return 0
|
||||||
|
if mode == 'kpts':
|
||||||
|
keypoints_pre = np.array([d[kpts_name] for d in previous['annots']])
|
||||||
|
keypoints_now = np.array([d[kpts_name] for d in annots])
|
||||||
|
conf = np.sqrt(keypoints_now[:, None, :, -1] * keypoints_pre[None, :, :, -1])
|
||||||
|
diff = np.linalg.norm(keypoints_now[:, None, :, :2] - keypoints_pre[None, :, :, :2], axis=-1)
|
||||||
|
dist = np.sum(diff * conf, axis=-1)/np.sum(conf, axis=-1)
|
||||||
|
elif mode == bbox_name:
|
||||||
|
# 计算IoU
|
||||||
|
bbox_pre = np.array([d[bbox_name] for d in previous['annots']])
|
||||||
|
bbox_now = np.array([d[bbox_name] for d in annots])
|
||||||
|
bbox_pre = bbox_pre[None]
|
||||||
|
bbox_now = bbox_now[:, None]
|
||||||
|
areas_pre = (bbox_pre[..., 2] - bbox_pre[..., 0]) * (bbox_pre[..., 3] - bbox_pre[..., 1])
|
||||||
|
areas_now = (bbox_now[..., 2] - bbox_now[..., 0]) * (bbox_now[..., 3] - bbox_now[..., 1])
|
||||||
|
# 左边界的大值
|
||||||
|
xx1 = np.maximum(bbox_pre[..., 0], bbox_now[..., 0])
|
||||||
|
yy1 = np.maximum(bbox_pre[..., 1], bbox_now[..., 1])
|
||||||
|
# 右边界的小值
|
||||||
|
xx2 = np.minimum(bbox_pre[..., 2], bbox_now[..., 2])
|
||||||
|
yy2 = np.minimum(bbox_pre[..., 3], bbox_now[..., 3])
|
||||||
|
|
||||||
|
w = np.maximum(0.0, xx2 - xx1)
|
||||||
|
h = np.maximum(0.0, yy2 - yy1)
|
||||||
|
inter = w * h
|
||||||
|
over = inter / (areas_pre + areas_now - inter)
|
||||||
|
dist = 1 - over
|
||||||
|
# diff = np.linalg.norm(bbox_now[:, None, :4] - bbox_pre[None, :, :4], axis=-1)
|
||||||
|
# bbox_size = np.max(bbox_pre[:, [2, 3]] - bbox_pre[:, [0, 1]], axis=1)[None, :]
|
||||||
|
# diff = diff / bbox_size
|
||||||
|
# dist = diff
|
||||||
|
else:
|
||||||
|
raise NotImplementedError
|
||||||
|
nows, pres = np.where(dist < MAX_SPEED)
|
||||||
|
edges = []
|
||||||
|
for n, p in zip(nows, pres):
|
||||||
|
edges.append((n, p, dist[n, p]))
|
||||||
|
edges.sort(key=lambda x:x[2])
|
||||||
|
used_n, used_p = [], []
|
||||||
|
for n, p, _ in edges:
|
||||||
|
if n in used_n or p in used_p:
|
||||||
|
continue
|
||||||
|
annots[n]['personID'] = previous['annots'][p]['personID']
|
||||||
|
used_n.append(n)
|
||||||
|
used_p.append(p)
|
||||||
|
# TODO:stop when missing
|
||||||
|
pre_ids = [d['personID'] for d in previous['annots']]
|
||||||
|
if len(used_p) != len(pre_ids):
|
||||||
|
param['stop'] = True
|
||||||
|
print('>>> Stop because missing key: {}'.format(
|
||||||
|
[i for i in pre_ids if i not in used_p]))
|
||||||
|
print(dist)
|
||||||
|
max_id = max(pre_ids) + 1
|
||||||
|
for i in range(len(annots)):
|
||||||
|
if i in used_n:
|
||||||
|
continue
|
||||||
|
annots[i]['personID'] = max_id
|
||||||
|
max_id += 1
|
||||||
|
auto_track.__doc__ = 'auto track the {}'.format(mode)
|
||||||
|
return auto_track
|
||||||
|
|
||||||
|
def copy_previous_missing(self, param, **kwargs):
|
||||||
|
"copy the missing person of previous frame"
|
||||||
if self.frame == 0:
|
if self.frame == 0:
|
||||||
return 0
|
return 0
|
||||||
previous = self.previous()
|
previous = self.previous()
|
||||||
annots = param['annots']['annots']
|
annots = param['annots']['annots']
|
||||||
keypoints_pre = np.array([d['keypoints'] for d in previous['annots']])
|
pre_ids = [d['personID'] for d in previous['annots']]
|
||||||
keypoints_now = np.array([d['keypoints'] for d in annots])
|
now_ids = [d['personID'] for d in annots]
|
||||||
conf = np.sqrt(keypoints_now[:, None, :, -1] * keypoints_pre[None, :, :, -1])
|
for i in range(len(pre_ids)):
|
||||||
diff = np.linalg.norm(keypoints_now[:, None, :, :] - keypoints_pre[None, :, :, :], axis=-1)
|
if pre_ids[i] not in now_ids:
|
||||||
dist = np.sum(diff * conf, axis=-1)/np.sum(conf, axis=-1)
|
annots.append(previous['annots'][i])
|
||||||
nows, pres = np.where(dist < MAX_SPEED)
|
|
||||||
edges = []
|
def copy_previous_bbox(self, param, **kwargs):
|
||||||
for n, p in zip(nows, pres):
|
"copy the annots of previous frame"
|
||||||
edges.append((n, p, dist[n, p]))
|
if self.frame == 0:
|
||||||
edges.sort(key=lambda x:x[2])
|
return 0
|
||||||
used_n, used_p = [], []
|
previous = self.previous()
|
||||||
for n, p, _ in edges:
|
annots = param['annots']['annots'] = previous['annots']
|
||||||
if n in used_n or p in used_p:
|
|
||||||
continue
|
def create_bbox(self, param, **kwargs):
|
||||||
annots[n]['personID'] = previous['annots'][p]['personID']
|
"add new boundbox"
|
||||||
used_n.append(n)
|
start, end = param['start'], param['end']
|
||||||
used_p.append(p)
|
if start is None or end is None:
|
||||||
# TODO:stop when missing
|
return 0
|
||||||
|
annots = param['annots']['annots']
|
||||||
|
nowids = [d['personID'] for d in annots]
|
||||||
|
bbox_name, kpts_name = param['bbox_name'], param['kpts_name']
|
||||||
|
if len(nowids) == 0:
|
||||||
|
maxID = 0
|
||||||
|
else:
|
||||||
|
maxID = max(nowids) + 1
|
||||||
|
data = {
|
||||||
|
'personID': maxID,
|
||||||
|
bbox_name: [start[0], start[1], end[0], end[1], 1],
|
||||||
|
kpts_name: [[0., 0., 0.] for _ in range(25)]
|
||||||
|
}
|
||||||
|
annots.append(data)
|
||||||
|
param['start'], param['end'] = None, None
|
||||||
|
|
||||||
|
def delete_bbox(self, param, **kwargs):
|
||||||
|
"delete the person"
|
||||||
|
bbox_name = param['bbox_name']
|
||||||
|
active = param['select'][bbox_name]
|
||||||
|
if active == -1:
|
||||||
|
return 0
|
||||||
|
else:
|
||||||
|
param['annots']['annots'].pop(active)
|
||||||
|
param['select'][bbox_name] = -1
|
||||||
|
return 0
|
||||||
|
|
||||||
|
def delete_all_bbox(self, param, **kwargs):
|
||||||
|
"delete the person"
|
||||||
|
bbox_name = param['bbox_name']
|
||||||
|
param['annots']['annots'] = []
|
||||||
|
param['select'][bbox_name] = -1
|
||||||
|
return 0
|
@ -2,7 +2,7 @@
|
|||||||
@ Date: 2021-04-13 16:14:36
|
@ Date: 2021-04-13 16:14:36
|
||||||
@ Author: Qing Shuai
|
@ Author: Qing Shuai
|
||||||
@ LastEditors: Qing Shuai
|
@ LastEditors: Qing Shuai
|
||||||
@ LastEditTime: 2021-05-26 15:42:02
|
@ LastEditTime: 2021-07-17 16:00:17
|
||||||
@ FilePath: /EasyMocap/easymocap/annotator/chessboard.py
|
@ FilePath: /EasyMocap/easymocap/annotator/chessboard.py
|
||||||
'''
|
'''
|
||||||
import numpy as np
|
import numpy as np
|
||||||
@ -53,7 +53,10 @@ def _findChessboardCornersAdapt(img, pattern):
|
|||||||
return _findChessboardCorners(img, pattern)
|
return _findChessboardCorners(img, pattern)
|
||||||
|
|
||||||
def findChessboardCorners(img, annots, pattern):
|
def findChessboardCorners(img, annots, pattern):
|
||||||
if annots['visited']:
|
conf = sum([v[2] for v in annots['keypoints2d']])
|
||||||
|
if annots['visited'] and conf > 0:
|
||||||
|
return True
|
||||||
|
elif annots['visited']:
|
||||||
return None
|
return None
|
||||||
annots['visited'] = True
|
annots['visited'] = True
|
||||||
gray = cv2.cvtColor(img,cv2.COLOR_BGR2GRAY)
|
gray = cv2.cvtColor(img,cv2.COLOR_BGR2GRAY)
|
||||||
|
59
easymocap/annotator/keypoints_callback.py
Normal file
59
easymocap/annotator/keypoints_callback.py
Normal file
@ -0,0 +1,59 @@
|
|||||||
|
'''
|
||||||
|
@ Date: 2021-04-22 11:40:31
|
||||||
|
@ Author: Qing Shuai
|
||||||
|
@ LastEditors: Qing Shuai
|
||||||
|
@ LastEditTime: 2021-06-10 16:00:15
|
||||||
|
@ FilePath: /EasyMocap/easymocap/annotator/keypoints_callback.py
|
||||||
|
'''
|
||||||
|
import numpy as np
|
||||||
|
from .bbox_callback import findNearestPoint
|
||||||
|
|
||||||
|
def callback_select_joints(start, end, annots, select, bbox_name='bbox', kpts_name='keypoints', **kwargs):
|
||||||
|
if start is None or end is None:
|
||||||
|
select['joints'] = -1
|
||||||
|
return 0
|
||||||
|
if start[0] == end[0] and start[1] == end[1]:
|
||||||
|
select['joints'] = -1
|
||||||
|
return 0
|
||||||
|
if select['corner'] != -1:
|
||||||
|
return 0
|
||||||
|
# 判断选择了哪个角点
|
||||||
|
annots = annots['annots']
|
||||||
|
# not select a bbox
|
||||||
|
if select[bbox_name] == -1 and select['joints'] == -1:
|
||||||
|
corners = []
|
||||||
|
for annot in annots:
|
||||||
|
corners.append(np.array(annot[kpts_name]))
|
||||||
|
corners = np.stack(corners)
|
||||||
|
flag, minid = findNearestPoint(corners[..., :2], start)
|
||||||
|
if flag:
|
||||||
|
select[bbox_name] = minid[0]
|
||||||
|
select['joints'] = minid[1]
|
||||||
|
else:
|
||||||
|
select['joints'] = -1
|
||||||
|
# have selected a bbox, not select a corner
|
||||||
|
elif select[bbox_name] != -1 and select['joints'] == -1:
|
||||||
|
i = select[bbox_name]
|
||||||
|
corners = np.array(annots[i][kpts_name])[:, :2]
|
||||||
|
flag, minid = findNearestPoint(corners, start)
|
||||||
|
if flag:
|
||||||
|
select['joints'] = minid[0]
|
||||||
|
# have selected a bbox, and select a corner
|
||||||
|
elif select[bbox_name] != -1 and select['joints'] != -1:
|
||||||
|
x, y = end
|
||||||
|
# Move the corner
|
||||||
|
data = annots[select[bbox_name]]
|
||||||
|
nj = select['joints']
|
||||||
|
data[kpts_name][nj][0] = x
|
||||||
|
data[kpts_name][nj][1] = y
|
||||||
|
if kpts_name == 'keypoints': # for body
|
||||||
|
if nj in [1, 8]:
|
||||||
|
return 0
|
||||||
|
if nj in [2, 5]:
|
||||||
|
data[kpts_name][1][0] = (data[kpts_name][2][0] + data[kpts_name][5][0])/2
|
||||||
|
data[kpts_name][1][1] = (data[kpts_name][2][1] + data[kpts_name][5][1])/2
|
||||||
|
if nj in [9, 12]:
|
||||||
|
data[kpts_name][8][0] = (data[kpts_name][9][0] + data[kpts_name][12][0])/2
|
||||||
|
data[kpts_name][8][1] = (data[kpts_name][9][1] + data[kpts_name][12][1])/2
|
||||||
|
elif select[bbox_name] == -1 and select['joints'] != -1:
|
||||||
|
select['joints'] = -1
|
89
easymocap/annotator/keypoints_keyboard.py
Normal file
89
easymocap/annotator/keypoints_keyboard.py
Normal file
@ -0,0 +1,89 @@
|
|||||||
|
'''
|
||||||
|
@ Date: 2021-06-10 15:39:55
|
||||||
|
@ Author: Qing Shuai
|
||||||
|
@ LastEditors: Qing Shuai
|
||||||
|
@ LastEditTime: 2021-06-10 16:03:13
|
||||||
|
@ FilePath: /EasyMocap/easymocap/annotator/keypoints_keyboard.py
|
||||||
|
'''
|
||||||
|
import numpy as np
|
||||||
|
|
||||||
|
def set_unvisible(self, param, **kwargs):
|
||||||
|
"set the selected joints unvisible"
|
||||||
|
bbox_name, kpts_name = param['bbox_name'], param['kpts_name']
|
||||||
|
select = param['select']
|
||||||
|
if select[bbox_name] == -1:
|
||||||
|
return 0
|
||||||
|
if select['joints'] == -1:
|
||||||
|
return 0
|
||||||
|
param['annots']['annots'][select[bbox_name]][kpts_name][select['joints']][-1] = 0.
|
||||||
|
|
||||||
|
def set_unvisible_according_previous(self, param, **kwargs):
|
||||||
|
"set the selected joints unvisible if previous unvisible"
|
||||||
|
previous = self.previous()
|
||||||
|
select = param['select']
|
||||||
|
bbox_name, kpts_name = param['bbox_name'], param['kpts_name']
|
||||||
|
if select[bbox_name] == -1:
|
||||||
|
return 0
|
||||||
|
pid = param['annots']['annots'][select[bbox_name]]['personID']
|
||||||
|
kpts_now = param['annots']['annots'][select[bbox_name]][kpts_name]
|
||||||
|
for annots in previous['annots']:
|
||||||
|
if annots['personID'] == pid:
|
||||||
|
kpts_old = annots[kpts_name]
|
||||||
|
for nj in range(len(kpts_old)):
|
||||||
|
kpts_now[nj][2] = min(kpts_old[nj][2], kpts_now[nj][2])
|
||||||
|
|
||||||
|
def set_face_unvisible(self, param, **kwargs):
|
||||||
|
"set the face unvisible"
|
||||||
|
select = param['select']
|
||||||
|
bbox_name, kpts_name = param['bbox_name'], param['kpts_name']
|
||||||
|
if select[bbox_name] == -1:
|
||||||
|
return 0
|
||||||
|
for i in [15, 16, 17, 18]:
|
||||||
|
param['annots']['annots'][select[bbox_name]][kpts_name][i][-1] = 0.
|
||||||
|
|
||||||
|
def mirror_keypoints2d(self, param, **kwargs):
|
||||||
|
"mirror the keypoints2d"
|
||||||
|
select = param['select']
|
||||||
|
bbox_name, kpts_name = param['bbox_name'], param['kpts_name']
|
||||||
|
if select[bbox_name] == -1:
|
||||||
|
return 0
|
||||||
|
kpts = param['annots']['annots'][select[bbox_name]][kpts_name]
|
||||||
|
for pairs in [[(2, 5), (3, 6), (4, 7)], [(15, 16), (17, 18)], [(9, 12), (10, 13), (11, 14), (21, 24), (19, 22), (20, 23)]]:
|
||||||
|
for i, j in pairs:
|
||||||
|
kpts[i], kpts[j] = kpts[j], kpts[i]
|
||||||
|
|
||||||
|
def mirror_keypoints2d_leg(self, param, **kwargs):
|
||||||
|
"mirror the keypoints2d of legs and feet"
|
||||||
|
select = param['select']
|
||||||
|
bbox_name, kpts_name = param['bbox_name'], param['kpts_name']
|
||||||
|
if select[bbox_name] == -1:
|
||||||
|
return 0
|
||||||
|
kpts = param['annots']['annots'][select[bbox_name]][kpts_name]
|
||||||
|
for pairs in [[(9, 12), (10, 13), (11, 14), (21, 24), (19, 22), (20, 23)]]:
|
||||||
|
for i, j in pairs:
|
||||||
|
kpts[i], kpts[j] = kpts[j], kpts[i]
|
||||||
|
|
||||||
|
def check_track(self, param):
|
||||||
|
"check the tracking keypoints"
|
||||||
|
if self.frame == 0:
|
||||||
|
return 0
|
||||||
|
bbox_name, kpts_name = param['bbox_name'], param['kpts_name']
|
||||||
|
annots_pre = self.previous()['annots']
|
||||||
|
annots = param['annots']['annots']
|
||||||
|
if len(annots) == 0 or len(annots_pre) == 0 or len(annots) != len(annots_pre):
|
||||||
|
param['stop'] = True
|
||||||
|
return 0
|
||||||
|
for data in annots:
|
||||||
|
for data_pre in annots_pre:
|
||||||
|
if data_pre['personID'] != data['personID']:
|
||||||
|
continue
|
||||||
|
l, t, r, b, c = data_pre[bbox_name][:5]
|
||||||
|
bbox_size = max(r-l, b-t)
|
||||||
|
keypoints_now = np.array(data[kpts_name])
|
||||||
|
keypoints_pre = np.array(data_pre[kpts_name])
|
||||||
|
conf = np.sqrt(keypoints_now[:, -1] * keypoints_pre[:, -1])
|
||||||
|
diff = np.linalg.norm(keypoints_now[:, :2] - keypoints_pre[:, :2], axis=-1)
|
||||||
|
dist = np.sum(diff * conf, axis=-1)/np.sum(conf, axis=-1)/bbox_size
|
||||||
|
print('{}: {:.2f}'.format(data['personID'], dist))
|
||||||
|
if dist > 0.05:
|
||||||
|
param['stop'] = True
|
@ -1,6 +1,7 @@
|
|||||||
import numpy as np
|
import numpy as np
|
||||||
from easymocap.dataset.mirror import flipPoint2D
|
from easymocap.dataset.mirror import flipPoint2D
|
||||||
|
|
||||||
|
CONF_VANISHING_ANNOT = 2.
|
||||||
def clear_vanish_points(self, param):
|
def clear_vanish_points(self, param):
|
||||||
"remove all vanishing points"
|
"remove all vanishing points"
|
||||||
annots = param['annots']
|
annots = param['annots']
|
||||||
@ -67,12 +68,16 @@ def get_record_vanish_lines(index):
|
|||||||
annots['vanish_point'] = [[], [], []]
|
annots['vanish_point'] = [[], [], []]
|
||||||
start, end = param['start'], param['end']
|
start, end = param['start'], param['end']
|
||||||
if start is not None and end is not None:
|
if start is not None and end is not None:
|
||||||
annots['vanish_line'][index].append([[start[0], start[1], 2], [end[0], end[1], 2]])
|
annots['vanish_line'][index].append([[start[0], start[1], CONF_VANISHING_ANNOT], [end[0], end[1], CONF_VANISHING_ANNOT]])
|
||||||
# 更新vanish point
|
# 更新vanish point
|
||||||
if len(annots['vanish_line'][index]) > 1:
|
|
||||||
annots['vanish_point'][index] = update_vanish_points(annots['vanish_line'][index])
|
|
||||||
param['start'] = None
|
param['start'] = None
|
||||||
param['end'] = None
|
param['end'] = None
|
||||||
|
if len(annots['vanish_line'][index]) > 1:
|
||||||
|
for val in annots['vanish_line'][index]:
|
||||||
|
if len(val[0]) == 2:
|
||||||
|
val[0].append(CONF_VANISHING_ANNOT)
|
||||||
|
val[1].append(CONF_VANISHING_ANNOT)
|
||||||
|
annots['vanish_point'][index] = update_vanish_points(annots['vanish_line'][index])
|
||||||
func = record_vanish_lines
|
func = record_vanish_lines
|
||||||
text = ['parallel to mirror edges', 'vertical to mirror', 'vertical to ground']
|
text = ['parallel to mirror edges', 'vertical to mirror', 'vertical to ground']
|
||||||
func.__doc__ = 'vanish line of ' + text[index]
|
func.__doc__ = 'vanish line of ' + text[index]
|
||||||
@ -135,8 +140,10 @@ def get_calc_intrinsic(mode='xy'):
|
|||||||
K = np.eye(3)
|
K = np.eye(3)
|
||||||
K[0, 2] = W/2
|
K[0, 2] = W/2
|
||||||
K[1, 2] = H/2
|
K[1, 2] = H/2
|
||||||
|
print(vanish_point)
|
||||||
vanish_point[:, 0] -= W/2
|
vanish_point[:, 0] -= W/2
|
||||||
vanish_point[:, 1] -= H/2
|
vanish_point[:, 1] -= H/2
|
||||||
|
print(vanish_point)
|
||||||
focal = np.sqrt(-(vanish_point[0][0]*vanish_point[1][0] + vanish_point[0][1]*vanish_point[1][1]))
|
focal = np.sqrt(-(vanish_point[0][0]*vanish_point[1][0] + vanish_point[0][1]*vanish_point[1][1]))
|
||||||
|
|
||||||
K[0, 0] = focal
|
K[0, 0] = focal
|
||||||
|
@ -1,3 +1,10 @@
|
|||||||
|
'''
|
||||||
|
@ Date: 2021-07-13 21:12:15
|
||||||
|
@ Author: Qing Shuai
|
||||||
|
@ LastEditors: Qing Shuai
|
||||||
|
@ LastEditTime: 2021-07-13 21:12:46
|
||||||
|
@ FilePath: /EasyMocap/easymocap/annotator/vanish_visualize.py
|
||||||
|
'''
|
||||||
import cv2
|
import cv2
|
||||||
import numpy as np
|
import numpy as np
|
||||||
from .basic_visualize import plot_cross
|
from .basic_visualize import plot_cross
|
||||||
@ -17,7 +24,7 @@ def vis_vanish_lines(img, annots, **kwargs):
|
|||||||
plot_cross(img, x, y, colors[i])
|
plot_cross(img, x, y, colors[i])
|
||||||
points = np.array(annots['vanish_line'][i]).reshape(-1, 3)
|
points = np.array(annots['vanish_line'][i]).reshape(-1, 3)
|
||||||
for (xx, yy, conf) in points:
|
for (xx, yy, conf) in points:
|
||||||
plot_cross(img, xx, yy, colors[i])
|
plot_cross(img, xx, yy, col=colors[i])
|
||||||
cv2.line(img, (int(x), int(y)), (int(xx), int(yy)), colors[i], 2)
|
cv2.line(img, (int(x), int(y)), (int(xx), int(yy)), colors[i], 2)
|
||||||
|
|
||||||
for i in range(3):
|
for i in range(3):
|
||||||
|
@ -78,6 +78,16 @@ class CfgNode(dict):
|
|||||||
if type(v) is dict:
|
if type(v) is dict:
|
||||||
# Convert dict to CfgNode
|
# Convert dict to CfgNode
|
||||||
init_dict[k] = CfgNode(v, key_list=key_list + [k])
|
init_dict[k] = CfgNode(v, key_list=key_list + [k])
|
||||||
|
if '_parent_' in v.keys():
|
||||||
|
init_dict[k].merge_from_file(v['_parent_'])
|
||||||
|
init_dict[k].pop('_parent_')
|
||||||
|
if '_const_' in v.keys() and v['_const_']:
|
||||||
|
init_dict[k].__dict__[CfgNode.IMMUTABLE] = True
|
||||||
|
init_dict[k].pop('_const_')
|
||||||
|
elif type(v) is str and v.startswith('_file_/'):
|
||||||
|
filename = v.replace('_file_/', '')
|
||||||
|
init_dict[k] = CfgNode()
|
||||||
|
init_dict[k].merge_from_file(filename)
|
||||||
else:
|
else:
|
||||||
# Check for valid leaf type or nested CfgNode
|
# Check for valid leaf type or nested CfgNode
|
||||||
_assert_with_logging(
|
_assert_with_logging(
|
||||||
@ -385,7 +395,6 @@ def _merge_a_into_b(a, b, root, key_list):
|
|||||||
if '_no_merge_' in a.keys() and a['_no_merge_']:
|
if '_no_merge_' in a.keys() and a['_no_merge_']:
|
||||||
b.clear()
|
b.clear()
|
||||||
a.pop('_no_merge_')
|
a.pop('_no_merge_')
|
||||||
|
|
||||||
for k, v_ in a.items():
|
for k, v_ in a.items():
|
||||||
full_key = ".".join(key_list + [k])
|
full_key = ".".join(key_list + [k])
|
||||||
# a must specify keys that are in b
|
# a must specify keys that are in b
|
||||||
|
@ -2,8 +2,8 @@
|
|||||||
@ Date: 2021-04-21 15:19:21
|
@ Date: 2021-04-21 15:19:21
|
||||||
@ Author: Qing Shuai
|
@ Author: Qing Shuai
|
||||||
@ LastEditors: Qing Shuai
|
@ LastEditors: Qing Shuai
|
||||||
@ LastEditTime: 2021-06-28 11:55:27
|
@ LastEditTime: 2021-07-29 16:12:37
|
||||||
@ FilePath: /EasyMocapRelease/easymocap/mytools/reader.py
|
@ FilePath: /EasyMocap/easymocap/mytools/reader.py
|
||||||
'''
|
'''
|
||||||
# function to read data
|
# function to read data
|
||||||
"""
|
"""
|
||||||
@ -27,7 +27,7 @@ def read_keypoints3d(filename):
|
|||||||
res_ = []
|
res_ = []
|
||||||
for d in data:
|
for d in data:
|
||||||
pid = d['id'] if 'id' in d.keys() else d['personID']
|
pid = d['id'] if 'id' in d.keys() else d['personID']
|
||||||
pose3d = np.array(d['keypoints3d'])
|
pose3d = np.array(d['keypoints3d'], dtype=np.float32)
|
||||||
if pose3d.shape[0] > 25:
|
if pose3d.shape[0] > 25:
|
||||||
# 对于有手的情况,把手的根节点赋值成body25上的点
|
# 对于有手的情况,把手的根节点赋值成body25上的点
|
||||||
pose3d[25, :] = pose3d[7, :]
|
pose3d[25, :] = pose3d[7, :]
|
||||||
@ -40,13 +40,27 @@ def read_keypoints3d(filename):
|
|||||||
})
|
})
|
||||||
return res_
|
return res_
|
||||||
|
|
||||||
|
def read_keypoints3d_dict(filename):
|
||||||
|
data = read_json(filename)
|
||||||
|
res_ = {}
|
||||||
|
for d in data:
|
||||||
|
pid = d['id'] if 'id' in d.keys() else d['personID']
|
||||||
|
pose3d = np.array(d['keypoints3d'], dtype=np.float32)
|
||||||
|
if pose3d.shape[1] == 3:
|
||||||
|
pose3d = np.hstack([pose3d, np.ones((pose3d.shape[0], 1))])
|
||||||
|
res_[pid] = {
|
||||||
|
'id': pid,
|
||||||
|
'keypoints3d': pose3d
|
||||||
|
}
|
||||||
|
return res_
|
||||||
|
|
||||||
def read_smpl(filename):
|
def read_smpl(filename):
|
||||||
datas = read_json(filename)
|
datas = read_json(filename)
|
||||||
outputs = []
|
outputs = []
|
||||||
for data in datas:
|
for data in datas:
|
||||||
for key in ['Rh', 'Th', 'poses', 'shapes', 'expression']:
|
for key in ['Rh', 'Th', 'poses', 'shapes', 'expression']:
|
||||||
if key in data.keys():
|
if key in data.keys():
|
||||||
data[key] = np.array(data[key])
|
data[key] = np.array(data[key], dtype=np.float32)
|
||||||
# for smplx results
|
# for smplx results
|
||||||
outputs.append(data)
|
outputs.append(data)
|
||||||
return outputs
|
return outputs
|
||||||
@ -68,7 +82,7 @@ def read_keypoints3d_a4d(outname):
|
|||||||
pose3d = np.fromstring(content, dtype=float, sep=' ').reshape((nJoints, 4))
|
pose3d = np.fromstring(content, dtype=float, sep=' ').reshape((nJoints, 4))
|
||||||
# association4d 的关节顺序和正常的定义不一样
|
# association4d 的关节顺序和正常的定义不一样
|
||||||
pose3d = pose3d[[4, 1, 5, 9, 13, 6, 10, 14, 0, 2, 7, 11, 3, 8, 12], :]
|
pose3d = pose3d[[4, 1, 5, 9, 13, 6, 10, 14, 0, 2, 7, 11, 3, 8, 12], :]
|
||||||
res_.append({'id':trackId, 'keypoints3d':np.array(pose3d)})
|
res_.append({'id':trackId, 'keypoints3d':np.array(pose3d, dtype=np.float32)})
|
||||||
return res_
|
return res_
|
||||||
|
|
||||||
def read_keypoints3d_all(path, key='keypoints3d', pids=[]):
|
def read_keypoints3d_all(path, key='keypoints3d', pids=[]):
|
||||||
|
@ -2,7 +2,7 @@
|
|||||||
@ Date: 2020-11-28 17:23:04
|
@ Date: 2020-11-28 17:23:04
|
||||||
@ Author: Qing Shuai
|
@ Author: Qing Shuai
|
||||||
@ LastEditors: Qing Shuai
|
@ LastEditors: Qing Shuai
|
||||||
@ LastEditTime: 2021-06-03 22:31:31
|
@ LastEditTime: 2021-08-22 16:11:25
|
||||||
@ FilePath: /EasyMocap/easymocap/mytools/vis_base.py
|
@ FilePath: /EasyMocap/easymocap/mytools/vis_base.py
|
||||||
'''
|
'''
|
||||||
import cv2
|
import cv2
|
||||||
@ -75,7 +75,7 @@ def plot_line(img, pt1, pt2, lw, col):
|
|||||||
|
|
||||||
def plot_cross(img, x, y, col, width=-1, lw=-1):
|
def plot_cross(img, x, y, col, width=-1, lw=-1):
|
||||||
if lw == -1:
|
if lw == -1:
|
||||||
lw = int(round(img.shape[0]/1000))
|
lw = max(1, int(round(img.shape[0]/1000)))
|
||||||
width = lw * 5
|
width = lw * 5
|
||||||
cv2.line(img, (int(x-width), int(y)), (int(x+width), int(y)), col, lw)
|
cv2.line(img, (int(x-width), int(y)), (int(x+width), int(y)), col, lw)
|
||||||
cv2.line(img, (int(x), int(y-width)), (int(x), int(y+width)), col, lw)
|
cv2.line(img, (int(x), int(y-width)), (int(x), int(y+width)), col, lw)
|
||||||
@ -170,7 +170,7 @@ def merge(images, row=-1, col=-1, resize=False, ret_range=False, **kwargs):
|
|||||||
ret_img[height * i: height * (i+1), width * j: width * (j+1)] = img
|
ret_img[height * i: height * (i+1), width * j: width * (j+1)] = img
|
||||||
ranges.append((width*j, height*i, width*(j+1), height*(i+1)))
|
ranges.append((width*j, height*i, width*(j+1), height*(i+1)))
|
||||||
if resize:
|
if resize:
|
||||||
min_height = 3000
|
min_height = 1000
|
||||||
if ret_img.shape[0] > min_height:
|
if ret_img.shape[0] > min_height:
|
||||||
scale = min_height/ret_img.shape[0]
|
scale = min_height/ret_img.shape[0]
|
||||||
ret_img = cv2.resize(ret_img, None, fx=scale, fy=scale)
|
ret_img = cv2.resize(ret_img, None, fx=scale, fy=scale)
|
||||||
|
@ -2,12 +2,13 @@
|
|||||||
@ Date: 2020-11-18 14:04:10
|
@ Date: 2020-11-18 14:04:10
|
||||||
@ Author: Qing Shuai
|
@ Author: Qing Shuai
|
||||||
@ LastEditors: Qing Shuai
|
@ LastEditors: Qing Shuai
|
||||||
@ LastEditTime: 2021-06-28 11:55:00
|
@ LastEditTime: 2021-08-28 16:37:55
|
||||||
@ FilePath: /EasyMocapRelease/easymocap/smplmodel/body_model.py
|
@ FilePath: /EasyMocap/easymocap/smplmodel/body_model.py
|
||||||
'''
|
'''
|
||||||
import torch
|
import torch
|
||||||
import torch.nn as nn
|
import torch.nn as nn
|
||||||
from .lbs import lbs, batch_rodrigues
|
from .lbs import batch_rodrigues
|
||||||
|
from .lbs import lbs, dqs
|
||||||
import os.path as osp
|
import os.path as osp
|
||||||
import pickle
|
import pickle
|
||||||
import numpy as np
|
import numpy as np
|
||||||
@ -59,7 +60,7 @@ class SMPLlayer(nn.Module):
|
|||||||
def __init__(self, model_path, model_type='smpl', gender='neutral', device=None,
|
def __init__(self, model_path, model_type='smpl', gender='neutral', device=None,
|
||||||
regressor_path=None,
|
regressor_path=None,
|
||||||
use_pose_blending=True, use_shape_blending=True, use_joints=True,
|
use_pose_blending=True, use_shape_blending=True, use_joints=True,
|
||||||
with_color=False,
|
with_color=False, use_lbs=True,
|
||||||
**kwargs) -> None:
|
**kwargs) -> None:
|
||||||
super(SMPLlayer, self).__init__()
|
super(SMPLlayer, self).__init__()
|
||||||
dtype = torch.float32
|
dtype = torch.float32
|
||||||
@ -72,7 +73,12 @@ class SMPLlayer(nn.Module):
|
|||||||
device = torch.device(device)
|
device = torch.device(device)
|
||||||
self.device = device
|
self.device = device
|
||||||
self.model_type = model_type
|
self.model_type = model_type
|
||||||
|
self.NUM_POSES = NUM_POSES[model_type]
|
||||||
# create the SMPL model
|
# create the SMPL model
|
||||||
|
if use_lbs:
|
||||||
|
self.lbs = lbs
|
||||||
|
else:
|
||||||
|
self.lbs = dqs
|
||||||
data = load_bodydata(model_type, model_path, gender)
|
data = load_bodydata(model_type, model_path, gender)
|
||||||
if with_color:
|
if with_color:
|
||||||
self.color = data['vertex_colors']
|
self.color = data['vertex_colors']
|
||||||
@ -151,35 +157,30 @@ class SMPLlayer(nn.Module):
|
|||||||
self.register_buffer('j_J_regressor', j_J_regressor)
|
self.register_buffer('j_J_regressor', j_J_regressor)
|
||||||
if self.model_type == 'smplh':
|
if self.model_type == 'smplh':
|
||||||
# load smplh data
|
# load smplh data
|
||||||
self.num_pca_comps = 6
|
self.num_pca_comps = kwargs['num_pca_comps']
|
||||||
from os.path import join
|
from os.path import join
|
||||||
for key in ['LEFT', 'RIGHT']:
|
for key in ['LEFT', 'RIGHT']:
|
||||||
left_file = join(os.path.dirname(smpl_path), 'MANO_{}.pkl'.format(key))
|
left_file = join(kwargs['mano_path'], 'MANO_{}.pkl'.format(key))
|
||||||
with open(left_file, 'rb') as f:
|
with open(left_file, 'rb') as f:
|
||||||
data = pickle.load(f, encoding='latin1')
|
data = pickle.load(f, encoding='latin1')
|
||||||
val = to_tensor(to_np(data['hands_mean'].reshape(1, -1)), dtype=dtype)
|
val = to_tensor(to_np(data['hands_mean'].reshape(1, -1)), dtype=dtype)
|
||||||
self.register_buffer('mHandsMean'+key[0], val)
|
self.register_buffer('mHandsMean'+key[0], val)
|
||||||
val = to_tensor(to_np(data['hands_components'][:self.num_pca_comps, :]), dtype=dtype)
|
val = to_tensor(to_np(data['hands_components'][:self.num_pca_comps, :]), dtype=dtype)
|
||||||
self.register_buffer('mHandsComponents'+key[0], val)
|
self.register_buffer('mHandsComponents'+key[0], val)
|
||||||
self.use_pca = True
|
self.use_pca = kwargs['use_pca']
|
||||||
self.use_flat_mean = True
|
self.use_flat_mean = kwargs['use_flat_mean']
|
||||||
elif self.model_type == 'mano':
|
|
||||||
# TODO:write this into config file
|
|
||||||
# self.num_pca_comps = 12
|
|
||||||
# self.use_pca = True
|
|
||||||
# if self.use_pca:
|
|
||||||
# NUM_POSES['mano'] = self.num_pca_comps + 3
|
|
||||||
# else:
|
|
||||||
# NUM_POSES['mano'] = 45 + 3
|
|
||||||
# self.use_flat_mean = True
|
|
||||||
|
|
||||||
self.num_pca_comps = 12
|
|
||||||
self.use_pca = True
|
|
||||||
self.use_flat_mean = True
|
|
||||||
if self.use_pca:
|
if self.use_pca:
|
||||||
NUM_POSES['mano'] = self.num_pca_comps + 3
|
self.NUM_POSES = 66 + self.num_pca_comps * 2
|
||||||
else:
|
else:
|
||||||
NUM_POSES['mano'] = 45 + 3
|
self.NUM_POSES = 66 + 15 * 3 * 2
|
||||||
|
elif self.model_type == 'mano':
|
||||||
|
self.num_pca_comps = kwargs['num_pca_comps']
|
||||||
|
self.use_pca = kwargs['use_pca']
|
||||||
|
self.use_flat_mean = kwargs['use_flat_mean']
|
||||||
|
if self.use_pca:
|
||||||
|
self.NUM_POSES = self.num_pca_comps + 3
|
||||||
|
else:
|
||||||
|
self.NUM_POSES = 45 + 3
|
||||||
|
|
||||||
val = to_tensor(to_np(data['hands_mean'].reshape(1, -1)), dtype=dtype)
|
val = to_tensor(to_np(data['hands_mean'].reshape(1, -1)), dtype=dtype)
|
||||||
self.register_buffer('mHandsMean', val)
|
self.register_buffer('mHandsMean', val)
|
||||||
@ -202,19 +203,21 @@ class SMPLlayer(nn.Module):
|
|||||||
def extend_hand(poses, use_pca, use_flat_mean, coeffs, mean):
|
def extend_hand(poses, use_pca, use_flat_mean, coeffs, mean):
|
||||||
if use_pca:
|
if use_pca:
|
||||||
poses = poses @ coeffs
|
poses = poses @ coeffs
|
||||||
if use_flat_mean:
|
if not use_flat_mean:
|
||||||
poses = poses + mean
|
poses = poses + mean
|
||||||
return poses
|
return poses
|
||||||
|
|
||||||
def extend_pose(self, poses):
|
def extend_pose(self, poses):
|
||||||
|
# skip SMPL or already extend
|
||||||
if self.model_type not in ['smplh', 'smplx', 'mano']:
|
if self.model_type not in ['smplh', 'smplx', 'mano']:
|
||||||
return poses
|
return poses
|
||||||
elif self.model_type == 'smplh' and poses.shape[-1] == 156:
|
elif self.model_type == 'smplh' and poses.shape[-1] == 156 and self.use_flat_mean:
|
||||||
return poses
|
return poses
|
||||||
elif self.model_type == 'smplx' and poses.shape[-1] == 165:
|
elif self.model_type == 'smplx' and poses.shape[-1] == 165 and self.use_flat_mean:
|
||||||
return poses
|
return poses
|
||||||
elif self.model_type == 'mano' and poses.shape[-1] == 48:
|
elif self.model_type == 'mano' and poses.shape[-1] == 48 and self.use_flat_mean:
|
||||||
return poses
|
return poses
|
||||||
|
# skip mano
|
||||||
if self.model_type == 'mano':
|
if self.model_type == 'mano':
|
||||||
poses_hand = self.extend_hand(poses[..., 3:], self.use_pca, self.use_flat_mean,
|
poses_hand = self.extend_hand(poses[..., 3:], self.use_pca, self.use_flat_mean,
|
||||||
self.mHandsComponents, self.mHandsMean)
|
self.mHandsComponents, self.mHandsMean)
|
||||||
@ -231,7 +234,7 @@ class SMPLlayer(nn.Module):
|
|||||||
if self.use_pca:
|
if self.use_pca:
|
||||||
poses_lh = poses_lh @ self.mHandsComponentsL
|
poses_lh = poses_lh @ self.mHandsComponentsL
|
||||||
poses_rh = poses_rh @ self.mHandsComponentsR
|
poses_rh = poses_rh @ self.mHandsComponentsR
|
||||||
if self.use_flat_mean:
|
if not self.use_flat_mean:
|
||||||
poses_lh = poses_lh + self.mHandsMeanL
|
poses_lh = poses_lh + self.mHandsMeanL
|
||||||
poses_rh = poses_rh + self.mHandsMeanR
|
poses_rh = poses_rh + self.mHandsMeanR
|
||||||
if self.model_type == 'smplh':
|
if self.model_type == 'smplh':
|
||||||
@ -299,7 +302,9 @@ class SMPLlayer(nn.Module):
|
|||||||
return poses.detach().cpu().numpy()
|
return poses.detach().cpu().numpy()
|
||||||
|
|
||||||
def forward(self, poses, shapes, Rh=None, Th=None, expression=None,
|
def forward(self, poses, shapes, Rh=None, Th=None, expression=None,
|
||||||
return_verts=True, return_tensor=True, return_smpl_joints=False, only_shape=False, **kwargs):
|
v_template=None,
|
||||||
|
return_verts=True, return_tensor=True, return_smpl_joints=False,
|
||||||
|
only_shape=False, pose2rot=True, **kwargs):
|
||||||
""" Forward pass for SMPL model
|
""" Forward pass for SMPL model
|
||||||
|
|
||||||
Args:
|
Args:
|
||||||
@ -338,20 +343,23 @@ class SMPLlayer(nn.Module):
|
|||||||
if expression is not None and self.model_type == 'smplx':
|
if expression is not None and self.model_type == 'smplx':
|
||||||
shapes = torch.cat([shapes, expression], dim=1)
|
shapes = torch.cat([shapes, expression], dim=1)
|
||||||
# process poses
|
# process poses
|
||||||
poses = self.extend_pose(poses)
|
if pose2rot: # if given rotation matrix, no need for this
|
||||||
|
poses = self.extend_pose(poses)
|
||||||
if return_verts or not self.use_joints:
|
if return_verts or not self.use_joints:
|
||||||
vertices, joints = lbs(shapes, poses, self.v_template,
|
if v_template is None:
|
||||||
|
v_template = self.v_template
|
||||||
|
vertices, joints = self.lbs(shapes, poses, v_template,
|
||||||
self.shapedirs, self.posedirs,
|
self.shapedirs, self.posedirs,
|
||||||
self.J_regressor, self.parents,
|
self.J_regressor, self.parents,
|
||||||
self.weights, pose2rot=True, dtype=self.dtype,
|
self.weights, pose2rot=pose2rot, dtype=self.dtype,
|
||||||
use_pose_blending=self.use_pose_blending, use_shape_blending=self.use_shape_blending, J_shaped=self.J_shaped)
|
use_pose_blending=self.use_pose_blending, use_shape_blending=self.use_shape_blending, J_shaped=self.J_shaped)
|
||||||
if not self.use_joints and not return_verts:
|
if not self.use_joints and not return_verts:
|
||||||
vertices = joints
|
vertices = joints
|
||||||
else:
|
else:
|
||||||
vertices, joints = lbs(shapes, poses, self.j_v_template,
|
vertices, joints = self.lbs(shapes, poses, self.j_v_template,
|
||||||
self.j_shapedirs, self.j_posedirs,
|
self.j_shapedirs, self.j_posedirs,
|
||||||
self.j_J_regressor, self.parents,
|
self.j_J_regressor, self.parents,
|
||||||
self.j_weights, pose2rot=True, dtype=self.dtype, only_shape=only_shape,
|
self.j_weights, pose2rot=pose2rot, dtype=self.dtype, only_shape=only_shape,
|
||||||
use_pose_blending=self.use_pose_blending, use_shape_blending=self.use_shape_blending, J_shaped=self.J_shaped)
|
use_pose_blending=self.use_pose_blending, use_shape_blending=self.use_shape_blending, J_shaped=self.J_shaped)
|
||||||
if return_smpl_joints:
|
if return_smpl_joints:
|
||||||
vertices = vertices[:, :self.J_regressor.shape[0], :]
|
vertices = vertices[:, :self.J_regressor.shape[0], :]
|
||||||
@ -364,13 +372,13 @@ class SMPLlayer(nn.Module):
|
|||||||
|
|
||||||
def init_params(self, nFrames=1, nShapes=1, ret_tensor=False):
|
def init_params(self, nFrames=1, nShapes=1, ret_tensor=False):
|
||||||
params = {
|
params = {
|
||||||
'poses': np.zeros((nFrames, NUM_POSES[self.model_type])),
|
'poses': np.zeros((nFrames, self.NUM_POSES)),
|
||||||
'shapes': np.zeros((nShapes, NUM_SHAPES)),
|
'shapes': np.zeros((nShapes, NUM_SHAPES)),
|
||||||
'Rh': np.zeros((nFrames, 3)),
|
'Rh': np.zeros((nFrames, 3)),
|
||||||
'Th': np.zeros((nFrames, 3)),
|
'Th': np.zeros((nFrames, 3)),
|
||||||
}
|
}
|
||||||
if self.model_type == 'smplx':
|
if self.model_type == 'smplx':
|
||||||
params['expression'] = np.zeros((nFrames, NUM_EXPR))
|
params['expression'] = np.zeros((nFrames, self.NUM_EXPR))
|
||||||
if ret_tensor:
|
if ret_tensor:
|
||||||
for key in params.keys():
|
for key in params.keys():
|
||||||
params[key] = to_tensor(params[key], self.dtype, self.device)
|
params[key] = to_tensor(params[key], self.dtype, self.device)
|
||||||
@ -379,10 +387,10 @@ class SMPLlayer(nn.Module):
|
|||||||
def check_params(self, body_params):
|
def check_params(self, body_params):
|
||||||
model_type = self.model_type
|
model_type = self.model_type
|
||||||
nFrames = body_params['poses'].shape[0]
|
nFrames = body_params['poses'].shape[0]
|
||||||
if body_params['poses'].shape[1] != NUM_POSES[model_type]:
|
if body_params['poses'].shape[1] != self.NUM_POSES:
|
||||||
body_params['poses'] = np.hstack((body_params['poses'], np.zeros((nFrames, NUM_POSES[model_type] - body_params['poses'].shape[1]))))
|
body_params['poses'] = np.hstack((body_params['poses'], np.zeros((nFrames, self.NUM_POSES - body_params['poses'].shape[1]))))
|
||||||
if model_type == 'smplx' and 'expression' not in body_params.keys():
|
if model_type == 'smplx' and 'expression' not in body_params.keys():
|
||||||
body_params['expression'] = np.zeros((nFrames, NUM_EXPR))
|
body_params['expression'] = np.zeros((nFrames, self.NUM_EXPR))
|
||||||
return body_params
|
return body_params
|
||||||
|
|
||||||
@staticmethod
|
@staticmethod
|
||||||
@ -393,4 +401,22 @@ class SMPLlayer(nn.Module):
|
|||||||
output[key] = np.vstack([v[key] for v in param_list])
|
output[key] = np.vstack([v[key] for v in param_list])
|
||||||
if share_shape:
|
if share_shape:
|
||||||
output['shapes'] = output['shapes'].mean(axis=0, keepdims=True)
|
output['shapes'] = output['shapes'].mean(axis=0, keepdims=True)
|
||||||
|
# add other keys
|
||||||
|
for key in param_list[0].keys():
|
||||||
|
if key in output.keys():
|
||||||
|
continue
|
||||||
|
output[key] = np.stack([v[key] for v in param_list])
|
||||||
|
return output
|
||||||
|
|
||||||
|
@staticmethod
|
||||||
|
def select_nf(params_all, nf):
|
||||||
|
output = {}
|
||||||
|
for key in ['poses', 'Rh', 'Th']:
|
||||||
|
output[key] = params_all[key][nf:nf+1, :]
|
||||||
|
if 'expression' in params_all.keys():
|
||||||
|
output['expression'] = params_all['expression'][nf:nf+1, :]
|
||||||
|
if params_all['shapes'].shape[0] == 1:
|
||||||
|
output['shapes'] = params_all['shapes']
|
||||||
|
else:
|
||||||
|
output['shapes'] = params_all['shapes'][nf:nf+1, :]
|
||||||
return output
|
return output
|
@ -379,3 +379,115 @@ def batch_rigid_transform(rot_mats, joints, parents, dtype=torch.float32):
|
|||||||
torch.matmul(transforms, joints_homogen), [3, 0, 0, 0, 0, 0, 0, 0])
|
torch.matmul(transforms, joints_homogen), [3, 0, 0, 0, 0, 0, 0, 0])
|
||||||
|
|
||||||
return posed_joints, rel_transforms
|
return posed_joints, rel_transforms
|
||||||
|
|
||||||
|
def dqs(betas, pose, v_template, shapedirs, posedirs, J_regressor, parents,
|
||||||
|
lbs_weights, pose2rot=True, dtype=torch.float32, only_shape=False,
|
||||||
|
use_shape_blending=True, use_pose_blending=True, J_shaped=None):
|
||||||
|
''' Performs Linear Blend Skinning with the given shape and pose parameters
|
||||||
|
|
||||||
|
Parameters
|
||||||
|
----------
|
||||||
|
betas : torch.tensor BxNB
|
||||||
|
The tensor of shape parameters
|
||||||
|
pose : torch.tensor Bx(J + 1) * 3
|
||||||
|
The pose parameters in axis-angle format
|
||||||
|
v_template torch.tensor BxVx3
|
||||||
|
The template mesh that will be deformed
|
||||||
|
shapedirs : torch.tensor 1xNB
|
||||||
|
The tensor of PCA shape displacements
|
||||||
|
posedirs : torch.tensor Px(V * 3)
|
||||||
|
The pose PCA coefficients
|
||||||
|
J_regressor : torch.tensor JxV
|
||||||
|
The regressor array that is used to calculate the joints from
|
||||||
|
the position of the vertices
|
||||||
|
parents: torch.tensor J
|
||||||
|
The array that describes the kinematic tree for the model
|
||||||
|
lbs_weights: torch.tensor N x V x (J + 1)
|
||||||
|
The linear blend skinning weights that represent how much the
|
||||||
|
rotation matrix of each part affects each vertex
|
||||||
|
pose2rot: bool, optional
|
||||||
|
Flag on whether to convert the input pose tensor to rotation
|
||||||
|
matrices. The default value is True. If False, then the pose tensor
|
||||||
|
should already contain rotation matrices and have a size of
|
||||||
|
Bx(J + 1)x9
|
||||||
|
dtype: torch.dtype, optional
|
||||||
|
|
||||||
|
Returns
|
||||||
|
-------
|
||||||
|
verts: torch.tensor BxVx3
|
||||||
|
The vertices of the mesh after applying the shape and pose
|
||||||
|
displacements.
|
||||||
|
joints: torch.tensor BxJx3
|
||||||
|
The joints of the model
|
||||||
|
'''
|
||||||
|
|
||||||
|
batch_size = max(betas.shape[0], pose.shape[0])
|
||||||
|
device = betas.device
|
||||||
|
|
||||||
|
# Add shape contribution
|
||||||
|
if use_shape_blending:
|
||||||
|
v_shaped = v_template + blend_shapes(betas, shapedirs)
|
||||||
|
# Get the joints
|
||||||
|
# NxJx3 array
|
||||||
|
J = vertices2joints(J_regressor, v_shaped)
|
||||||
|
else:
|
||||||
|
v_shaped = v_template.unsqueeze(0).expand(batch_size, -1, -1)
|
||||||
|
assert J_shaped is not None
|
||||||
|
J = J_shaped[None].expand(batch_size, -1, -1)
|
||||||
|
|
||||||
|
if only_shape:
|
||||||
|
return v_shaped, J
|
||||||
|
# 3. Add pose blend shapes
|
||||||
|
# N x J x 3 x 3
|
||||||
|
if pose2rot:
|
||||||
|
rot_mats = batch_rodrigues(
|
||||||
|
pose.view(-1, 3), dtype=dtype).view([batch_size, -1, 3, 3])
|
||||||
|
else:
|
||||||
|
rot_mats = pose.view(batch_size, -1, 3, 3)
|
||||||
|
|
||||||
|
if use_pose_blending:
|
||||||
|
ident = torch.eye(3, dtype=dtype, device=device)
|
||||||
|
pose_feature = (rot_mats[:, 1:, :, :] - ident).view([batch_size, -1])
|
||||||
|
pose_offsets = torch.matmul(pose_feature, posedirs) \
|
||||||
|
.view(batch_size, -1, 3)
|
||||||
|
v_posed = pose_offsets + v_shaped
|
||||||
|
else:
|
||||||
|
v_posed = v_shaped
|
||||||
|
# 4. Get the global joint location
|
||||||
|
J_transformed, A = batch_rigid_transform(rot_mats, J, parents, dtype=dtype)
|
||||||
|
|
||||||
|
|
||||||
|
# 5. Do skinning:
|
||||||
|
# W is N x V x (J + 1)
|
||||||
|
W = lbs_weights.unsqueeze(dim=0).expand([batch_size, -1, -1])
|
||||||
|
|
||||||
|
verts=batch_dqs_blending(A,W,v_posed)
|
||||||
|
|
||||||
|
return verts, J_transformed
|
||||||
|
|
||||||
|
#A: B,J,4,4 W: B,V,J
|
||||||
|
def batch_dqs_blending(A,W,Vs):
|
||||||
|
Bnum,Jnum,_,_=A.shape
|
||||||
|
_,Vnum,_=W.shape
|
||||||
|
A = A.view(Bnum*Jnum,4,4)
|
||||||
|
Rs=A[:,:3,:3]
|
||||||
|
ws=torch.sqrt(torch.clamp(Rs[:,0,0]+Rs[:,1,1]+Rs[:,2,2]+1.,min=1.e-6))/2.
|
||||||
|
xs=(Rs[:,2,1]-Rs[:,1,2])/(4.*ws)
|
||||||
|
ys=(Rs[:,0,2]-Rs[:,2,0])/(4.*ws)
|
||||||
|
zs=(Rs[:,1,0]-Rs[:,0,1])/(4.*ws)
|
||||||
|
Ts=A[:,:3,3]
|
||||||
|
vDw=-0.5*( Ts[:,0]*xs + Ts[:,1]*ys + Ts[:,2]*zs)
|
||||||
|
vDx=0.5*( Ts[:,0]*ws + Ts[:,1]*zs - Ts[:,2]*ys)
|
||||||
|
vDy=0.5*(-Ts[:,0]*zs + Ts[:,1]*ws + Ts[:,2]*xs)
|
||||||
|
vDz=0.5*( Ts[:,0]*ys - Ts[:,1]*xs + Ts[:,2]*ws)
|
||||||
|
b0=W.unsqueeze(-2)@torch.cat([ws[:,None],xs[:,None],ys[:,None],zs[:,None]],dim=-1).reshape(Bnum, 1, Jnum, 4) #B,V,J,4
|
||||||
|
be=W.unsqueeze(-2)@torch.cat([vDw[:,None],vDx[:,None],vDy[:,None],vDz[:,None]],dim=-1).reshape(Bnum, 1, Jnum, 4) #B,V,J,4
|
||||||
|
b0 = b0.reshape(-1, 4)
|
||||||
|
be = be.reshape(-1, 4)
|
||||||
|
|
||||||
|
ns=torch.norm(b0,dim=-1,keepdim=True)
|
||||||
|
be=be/ns
|
||||||
|
b0=b0/ns
|
||||||
|
Vs=Vs.view(Bnum*Vnum,3)
|
||||||
|
Vs=Vs+2.*b0[:,1:].cross(b0[:,1:].cross(Vs)+b0[:,:1]*Vs)+2.*(b0[:,:1]*be[:,1:]-be[:,:1]*b0[:,1:]+b0[:,1:].cross(be[:,1:]))
|
||||||
|
return Vs.reshape(Bnum,Vnum,3)
|
8
easymocap/visualize/assets/sphere_faces_2.txt
Normal file
8
easymocap/visualize/assets/sphere_faces_2.txt
Normal file
@ -0,0 +1,8 @@
|
|||||||
|
0 2 3
|
||||||
|
1 3 2
|
||||||
|
0 3 4
|
||||||
|
1 4 3
|
||||||
|
0 4 5
|
||||||
|
1 5 4
|
||||||
|
0 5 2
|
||||||
|
1 2 5
|
1520
easymocap/visualize/assets/sphere_faces_20.txt
Normal file
1520
easymocap/visualize/assets/sphere_faces_20.txt
Normal file
File diff suppressed because it is too large
Load Diff
48
easymocap/visualize/assets/sphere_faces_4.txt
Normal file
48
easymocap/visualize/assets/sphere_faces_4.txt
Normal file
@ -0,0 +1,48 @@
|
|||||||
|
0 2 3
|
||||||
|
1 19 18
|
||||||
|
0 3 4
|
||||||
|
1 20 19
|
||||||
|
0 4 5
|
||||||
|
1 21 20
|
||||||
|
0 5 6
|
||||||
|
1 22 21
|
||||||
|
0 6 7
|
||||||
|
1 23 22
|
||||||
|
0 7 8
|
||||||
|
1 24 23
|
||||||
|
0 8 9
|
||||||
|
1 25 24
|
||||||
|
0 9 2
|
||||||
|
1 18 25
|
||||||
|
10 3 2
|
||||||
|
10 11 3
|
||||||
|
11 4 3
|
||||||
|
11 12 4
|
||||||
|
12 5 4
|
||||||
|
12 13 5
|
||||||
|
13 6 5
|
||||||
|
13 14 6
|
||||||
|
14 7 6
|
||||||
|
14 15 7
|
||||||
|
15 8 7
|
||||||
|
15 16 8
|
||||||
|
16 9 8
|
||||||
|
16 17 9
|
||||||
|
17 2 9
|
||||||
|
17 10 2
|
||||||
|
18 11 10
|
||||||
|
18 19 11
|
||||||
|
19 12 11
|
||||||
|
19 20 12
|
||||||
|
20 13 12
|
||||||
|
20 21 13
|
||||||
|
21 14 13
|
||||||
|
21 22 14
|
||||||
|
22 15 14
|
||||||
|
22 23 15
|
||||||
|
23 16 15
|
||||||
|
23 24 16
|
||||||
|
24 17 16
|
||||||
|
24 25 17
|
||||||
|
25 10 17
|
||||||
|
25 18 10
|
224
easymocap/visualize/assets/sphere_faces_8.txt
Normal file
224
easymocap/visualize/assets/sphere_faces_8.txt
Normal file
@ -0,0 +1,224 @@
|
|||||||
|
0 2 3
|
||||||
|
1 99 98
|
||||||
|
0 3 4
|
||||||
|
1 100 99
|
||||||
|
0 4 5
|
||||||
|
1 101 100
|
||||||
|
0 5 6
|
||||||
|
1 102 101
|
||||||
|
0 6 7
|
||||||
|
1 103 102
|
||||||
|
0 7 8
|
||||||
|
1 104 103
|
||||||
|
0 8 9
|
||||||
|
1 105 104
|
||||||
|
0 9 10
|
||||||
|
1 106 105
|
||||||
|
0 10 11
|
||||||
|
1 107 106
|
||||||
|
0 11 12
|
||||||
|
1 108 107
|
||||||
|
0 12 13
|
||||||
|
1 109 108
|
||||||
|
0 13 14
|
||||||
|
1 110 109
|
||||||
|
0 14 15
|
||||||
|
1 111 110
|
||||||
|
0 15 16
|
||||||
|
1 112 111
|
||||||
|
0 16 17
|
||||||
|
1 113 112
|
||||||
|
0 17 2
|
||||||
|
1 98 113
|
||||||
|
18 3 2
|
||||||
|
18 19 3
|
||||||
|
19 4 3
|
||||||
|
19 20 4
|
||||||
|
20 5 4
|
||||||
|
20 21 5
|
||||||
|
21 6 5
|
||||||
|
21 22 6
|
||||||
|
22 7 6
|
||||||
|
22 23 7
|
||||||
|
23 8 7
|
||||||
|
23 24 8
|
||||||
|
24 9 8
|
||||||
|
24 25 9
|
||||||
|
25 10 9
|
||||||
|
25 26 10
|
||||||
|
26 11 10
|
||||||
|
26 27 11
|
||||||
|
27 12 11
|
||||||
|
27 28 12
|
||||||
|
28 13 12
|
||||||
|
28 29 13
|
||||||
|
29 14 13
|
||||||
|
29 30 14
|
||||||
|
30 15 14
|
||||||
|
30 31 15
|
||||||
|
31 16 15
|
||||||
|
31 32 16
|
||||||
|
32 17 16
|
||||||
|
32 33 17
|
||||||
|
33 2 17
|
||||||
|
33 18 2
|
||||||
|
34 19 18
|
||||||
|
34 35 19
|
||||||
|
35 20 19
|
||||||
|
35 36 20
|
||||||
|
36 21 20
|
||||||
|
36 37 21
|
||||||
|
37 22 21
|
||||||
|
37 38 22
|
||||||
|
38 23 22
|
||||||
|
38 39 23
|
||||||
|
39 24 23
|
||||||
|
39 40 24
|
||||||
|
40 25 24
|
||||||
|
40 41 25
|
||||||
|
41 26 25
|
||||||
|
41 42 26
|
||||||
|
42 27 26
|
||||||
|
42 43 27
|
||||||
|
43 28 27
|
||||||
|
43 44 28
|
||||||
|
44 29 28
|
||||||
|
44 45 29
|
||||||
|
45 30 29
|
||||||
|
45 46 30
|
||||||
|
46 31 30
|
||||||
|
46 47 31
|
||||||
|
47 32 31
|
||||||
|
47 48 32
|
||||||
|
48 33 32
|
||||||
|
48 49 33
|
||||||
|
49 18 33
|
||||||
|
49 34 18
|
||||||
|
50 35 34
|
||||||
|
50 51 35
|
||||||
|
51 36 35
|
||||||
|
51 52 36
|
||||||
|
52 37 36
|
||||||
|
52 53 37
|
||||||
|
53 38 37
|
||||||
|
53 54 38
|
||||||
|
54 39 38
|
||||||
|
54 55 39
|
||||||
|
55 40 39
|
||||||
|
55 56 40
|
||||||
|
56 41 40
|
||||||
|
56 57 41
|
||||||
|
57 42 41
|
||||||
|
57 58 42
|
||||||
|
58 43 42
|
||||||
|
58 59 43
|
||||||
|
59 44 43
|
||||||
|
59 60 44
|
||||||
|
60 45 44
|
||||||
|
60 61 45
|
||||||
|
61 46 45
|
||||||
|
61 62 46
|
||||||
|
62 47 46
|
||||||
|
62 63 47
|
||||||
|
63 48 47
|
||||||
|
63 64 48
|
||||||
|
64 49 48
|
||||||
|
64 65 49
|
||||||
|
65 34 49
|
||||||
|
65 50 34
|
||||||
|
66 51 50
|
||||||
|
66 67 51
|
||||||
|
67 52 51
|
||||||
|
67 68 52
|
||||||
|
68 53 52
|
||||||
|
68 69 53
|
||||||
|
69 54 53
|
||||||
|
69 70 54
|
||||||
|
70 55 54
|
||||||
|
70 71 55
|
||||||
|
71 56 55
|
||||||
|
71 72 56
|
||||||
|
72 57 56
|
||||||
|
72 73 57
|
||||||
|
73 58 57
|
||||||
|
73 74 58
|
||||||
|
74 59 58
|
||||||
|
74 75 59
|
||||||
|
75 60 59
|
||||||
|
75 76 60
|
||||||
|
76 61 60
|
||||||
|
76 77 61
|
||||||
|
77 62 61
|
||||||
|
77 78 62
|
||||||
|
78 63 62
|
||||||
|
78 79 63
|
||||||
|
79 64 63
|
||||||
|
79 80 64
|
||||||
|
80 65 64
|
||||||
|
80 81 65
|
||||||
|
81 50 65
|
||||||
|
81 66 50
|
||||||
|
82 67 66
|
||||||
|
82 83 67
|
||||||
|
83 68 67
|
||||||
|
83 84 68
|
||||||
|
84 69 68
|
||||||
|
84 85 69
|
||||||
|
85 70 69
|
||||||
|
85 86 70
|
||||||
|
86 71 70
|
||||||
|
86 87 71
|
||||||
|
87 72 71
|
||||||
|
87 88 72
|
||||||
|
88 73 72
|
||||||
|
88 89 73
|
||||||
|
89 74 73
|
||||||
|
89 90 74
|
||||||
|
90 75 74
|
||||||
|
90 91 75
|
||||||
|
91 76 75
|
||||||
|
91 92 76
|
||||||
|
92 77 76
|
||||||
|
92 93 77
|
||||||
|
93 78 77
|
||||||
|
93 94 78
|
||||||
|
94 79 78
|
||||||
|
94 95 79
|
||||||
|
95 80 79
|
||||||
|
95 96 80
|
||||||
|
96 81 80
|
||||||
|
96 97 81
|
||||||
|
97 66 81
|
||||||
|
97 82 66
|
||||||
|
98 83 82
|
||||||
|
98 99 83
|
||||||
|
99 84 83
|
||||||
|
99 100 84
|
||||||
|
100 85 84
|
||||||
|
100 101 85
|
||||||
|
101 86 85
|
||||||
|
101 102 86
|
||||||
|
102 87 86
|
||||||
|
102 103 87
|
||||||
|
103 88 87
|
||||||
|
103 104 88
|
||||||
|
104 89 88
|
||||||
|
104 105 89
|
||||||
|
105 90 89
|
||||||
|
105 106 90
|
||||||
|
106 91 90
|
||||||
|
106 107 91
|
||||||
|
107 92 91
|
||||||
|
107 108 92
|
||||||
|
108 93 92
|
||||||
|
108 109 93
|
||||||
|
109 94 93
|
||||||
|
109 110 94
|
||||||
|
110 95 94
|
||||||
|
110 111 95
|
||||||
|
111 96 95
|
||||||
|
111 112 96
|
||||||
|
112 97 96
|
||||||
|
112 113 97
|
||||||
|
113 82 97
|
||||||
|
113 98 82
|
6
easymocap/visualize/assets/sphere_vertices_2.txt
Normal file
6
easymocap/visualize/assets/sphere_vertices_2.txt
Normal file
@ -0,0 +1,6 @@
|
|||||||
|
0.000 0.000 1.000
|
||||||
|
0.000 0.000 -1.000
|
||||||
|
1.000 0.000 0.000
|
||||||
|
0.000 1.000 0.000
|
||||||
|
-1.000 0.000 0.000
|
||||||
|
-0.000 -1.000 0.000
|
762
easymocap/visualize/assets/sphere_vertices_20.txt
Normal file
762
easymocap/visualize/assets/sphere_vertices_20.txt
Normal file
@ -0,0 +1,762 @@
|
|||||||
|
0.000 0.000 1.000
|
||||||
|
0.000 0.000 -1.000
|
||||||
|
0.156 0.000 0.988
|
||||||
|
0.155 0.024 0.988
|
||||||
|
0.149 0.048 0.988
|
||||||
|
0.139 0.071 0.988
|
||||||
|
0.127 0.092 0.988
|
||||||
|
0.111 0.111 0.988
|
||||||
|
0.092 0.127 0.988
|
||||||
|
0.071 0.139 0.988
|
||||||
|
0.048 0.149 0.988
|
||||||
|
0.024 0.155 0.988
|
||||||
|
0.000 0.156 0.988
|
||||||
|
-0.024 0.155 0.988
|
||||||
|
-0.048 0.149 0.988
|
||||||
|
-0.071 0.139 0.988
|
||||||
|
-0.092 0.127 0.988
|
||||||
|
-0.111 0.111 0.988
|
||||||
|
-0.127 0.092 0.988
|
||||||
|
-0.139 0.071 0.988
|
||||||
|
-0.149 0.048 0.988
|
||||||
|
-0.155 0.024 0.988
|
||||||
|
-0.156 0.000 0.988
|
||||||
|
-0.155 -0.024 0.988
|
||||||
|
-0.149 -0.048 0.988
|
||||||
|
-0.139 -0.071 0.988
|
||||||
|
-0.127 -0.092 0.988
|
||||||
|
-0.111 -0.111 0.988
|
||||||
|
-0.092 -0.127 0.988
|
||||||
|
-0.071 -0.139 0.988
|
||||||
|
-0.048 -0.149 0.988
|
||||||
|
-0.024 -0.155 0.988
|
||||||
|
-0.000 -0.156 0.988
|
||||||
|
0.024 -0.155 0.988
|
||||||
|
0.048 -0.149 0.988
|
||||||
|
0.071 -0.139 0.988
|
||||||
|
0.092 -0.127 0.988
|
||||||
|
0.111 -0.111 0.988
|
||||||
|
0.127 -0.092 0.988
|
||||||
|
0.139 -0.071 0.988
|
||||||
|
0.149 -0.048 0.988
|
||||||
|
0.155 -0.024 0.988
|
||||||
|
0.309 0.000 0.951
|
||||||
|
0.305 0.048 0.951
|
||||||
|
0.294 0.095 0.951
|
||||||
|
0.275 0.140 0.951
|
||||||
|
0.250 0.182 0.951
|
||||||
|
0.219 0.219 0.951
|
||||||
|
0.182 0.250 0.951
|
||||||
|
0.140 0.275 0.951
|
||||||
|
0.095 0.294 0.951
|
||||||
|
0.048 0.305 0.951
|
||||||
|
0.000 0.309 0.951
|
||||||
|
-0.048 0.305 0.951
|
||||||
|
-0.095 0.294 0.951
|
||||||
|
-0.140 0.275 0.951
|
||||||
|
-0.182 0.250 0.951
|
||||||
|
-0.219 0.219 0.951
|
||||||
|
-0.250 0.182 0.951
|
||||||
|
-0.275 0.140 0.951
|
||||||
|
-0.294 0.095 0.951
|
||||||
|
-0.305 0.048 0.951
|
||||||
|
-0.309 0.000 0.951
|
||||||
|
-0.305 -0.048 0.951
|
||||||
|
-0.294 -0.095 0.951
|
||||||
|
-0.275 -0.140 0.951
|
||||||
|
-0.250 -0.182 0.951
|
||||||
|
-0.219 -0.219 0.951
|
||||||
|
-0.182 -0.250 0.951
|
||||||
|
-0.140 -0.275 0.951
|
||||||
|
-0.095 -0.294 0.951
|
||||||
|
-0.048 -0.305 0.951
|
||||||
|
-0.000 -0.309 0.951
|
||||||
|
0.048 -0.305 0.951
|
||||||
|
0.095 -0.294 0.951
|
||||||
|
0.140 -0.275 0.951
|
||||||
|
0.182 -0.250 0.951
|
||||||
|
0.219 -0.219 0.951
|
||||||
|
0.250 -0.182 0.951
|
||||||
|
0.275 -0.140 0.951
|
||||||
|
0.294 -0.095 0.951
|
||||||
|
0.305 -0.048 0.951
|
||||||
|
0.454 0.000 0.891
|
||||||
|
0.448 0.071 0.891
|
||||||
|
0.432 0.140 0.891
|
||||||
|
0.405 0.206 0.891
|
||||||
|
0.367 0.267 0.891
|
||||||
|
0.321 0.321 0.891
|
||||||
|
0.267 0.367 0.891
|
||||||
|
0.206 0.405 0.891
|
||||||
|
0.140 0.432 0.891
|
||||||
|
0.071 0.448 0.891
|
||||||
|
0.000 0.454 0.891
|
||||||
|
-0.071 0.448 0.891
|
||||||
|
-0.140 0.432 0.891
|
||||||
|
-0.206 0.405 0.891
|
||||||
|
-0.267 0.367 0.891
|
||||||
|
-0.321 0.321 0.891
|
||||||
|
-0.367 0.267 0.891
|
||||||
|
-0.405 0.206 0.891
|
||||||
|
-0.432 0.140 0.891
|
||||||
|
-0.448 0.071 0.891
|
||||||
|
-0.454 0.000 0.891
|
||||||
|
-0.448 -0.071 0.891
|
||||||
|
-0.432 -0.140 0.891
|
||||||
|
-0.405 -0.206 0.891
|
||||||
|
-0.367 -0.267 0.891
|
||||||
|
-0.321 -0.321 0.891
|
||||||
|
-0.267 -0.367 0.891
|
||||||
|
-0.206 -0.405 0.891
|
||||||
|
-0.140 -0.432 0.891
|
||||||
|
-0.071 -0.448 0.891
|
||||||
|
-0.000 -0.454 0.891
|
||||||
|
0.071 -0.448 0.891
|
||||||
|
0.140 -0.432 0.891
|
||||||
|
0.206 -0.405 0.891
|
||||||
|
0.267 -0.367 0.891
|
||||||
|
0.321 -0.321 0.891
|
||||||
|
0.367 -0.267 0.891
|
||||||
|
0.405 -0.206 0.891
|
||||||
|
0.432 -0.140 0.891
|
||||||
|
0.448 -0.071 0.891
|
||||||
|
0.588 0.000 0.809
|
||||||
|
0.581 0.092 0.809
|
||||||
|
0.559 0.182 0.809
|
||||||
|
0.524 0.267 0.809
|
||||||
|
0.476 0.345 0.809
|
||||||
|
0.416 0.416 0.809
|
||||||
|
0.345 0.476 0.809
|
||||||
|
0.267 0.524 0.809
|
||||||
|
0.182 0.559 0.809
|
||||||
|
0.092 0.581 0.809
|
||||||
|
0.000 0.588 0.809
|
||||||
|
-0.092 0.581 0.809
|
||||||
|
-0.182 0.559 0.809
|
||||||
|
-0.267 0.524 0.809
|
||||||
|
-0.345 0.476 0.809
|
||||||
|
-0.416 0.416 0.809
|
||||||
|
-0.476 0.345 0.809
|
||||||
|
-0.524 0.267 0.809
|
||||||
|
-0.559 0.182 0.809
|
||||||
|
-0.581 0.092 0.809
|
||||||
|
-0.588 0.000 0.809
|
||||||
|
-0.581 -0.092 0.809
|
||||||
|
-0.559 -0.182 0.809
|
||||||
|
-0.524 -0.267 0.809
|
||||||
|
-0.476 -0.345 0.809
|
||||||
|
-0.416 -0.416 0.809
|
||||||
|
-0.345 -0.476 0.809
|
||||||
|
-0.267 -0.524 0.809
|
||||||
|
-0.182 -0.559 0.809
|
||||||
|
-0.092 -0.581 0.809
|
||||||
|
-0.000 -0.588 0.809
|
||||||
|
0.092 -0.581 0.809
|
||||||
|
0.182 -0.559 0.809
|
||||||
|
0.267 -0.524 0.809
|
||||||
|
0.345 -0.476 0.809
|
||||||
|
0.416 -0.416 0.809
|
||||||
|
0.476 -0.345 0.809
|
||||||
|
0.524 -0.267 0.809
|
||||||
|
0.559 -0.182 0.809
|
||||||
|
0.581 -0.092 0.809
|
||||||
|
0.707 0.000 0.707
|
||||||
|
0.698 0.111 0.707
|
||||||
|
0.672 0.219 0.707
|
||||||
|
0.630 0.321 0.707
|
||||||
|
0.572 0.416 0.707
|
||||||
|
0.500 0.500 0.707
|
||||||
|
0.416 0.572 0.707
|
||||||
|
0.321 0.630 0.707
|
||||||
|
0.219 0.672 0.707
|
||||||
|
0.111 0.698 0.707
|
||||||
|
0.000 0.707 0.707
|
||||||
|
-0.111 0.698 0.707
|
||||||
|
-0.219 0.672 0.707
|
||||||
|
-0.321 0.630 0.707
|
||||||
|
-0.416 0.572 0.707
|
||||||
|
-0.500 0.500 0.707
|
||||||
|
-0.572 0.416 0.707
|
||||||
|
-0.630 0.321 0.707
|
||||||
|
-0.672 0.219 0.707
|
||||||
|
-0.698 0.111 0.707
|
||||||
|
-0.707 0.000 0.707
|
||||||
|
-0.698 -0.111 0.707
|
||||||
|
-0.672 -0.219 0.707
|
||||||
|
-0.630 -0.321 0.707
|
||||||
|
-0.572 -0.416 0.707
|
||||||
|
-0.500 -0.500 0.707
|
||||||
|
-0.416 -0.572 0.707
|
||||||
|
-0.321 -0.630 0.707
|
||||||
|
-0.219 -0.672 0.707
|
||||||
|
-0.111 -0.698 0.707
|
||||||
|
-0.000 -0.707 0.707
|
||||||
|
0.111 -0.698 0.707
|
||||||
|
0.219 -0.672 0.707
|
||||||
|
0.321 -0.630 0.707
|
||||||
|
0.416 -0.572 0.707
|
||||||
|
0.500 -0.500 0.707
|
||||||
|
0.572 -0.416 0.707
|
||||||
|
0.630 -0.321 0.707
|
||||||
|
0.672 -0.219 0.707
|
||||||
|
0.698 -0.111 0.707
|
||||||
|
0.809 0.000 0.588
|
||||||
|
0.799 0.127 0.588
|
||||||
|
0.769 0.250 0.588
|
||||||
|
0.721 0.367 0.588
|
||||||
|
0.655 0.476 0.588
|
||||||
|
0.572 0.572 0.588
|
||||||
|
0.476 0.655 0.588
|
||||||
|
0.367 0.721 0.588
|
||||||
|
0.250 0.769 0.588
|
||||||
|
0.127 0.799 0.588
|
||||||
|
0.000 0.809 0.588
|
||||||
|
-0.127 0.799 0.588
|
||||||
|
-0.250 0.769 0.588
|
||||||
|
-0.367 0.721 0.588
|
||||||
|
-0.476 0.655 0.588
|
||||||
|
-0.572 0.572 0.588
|
||||||
|
-0.655 0.476 0.588
|
||||||
|
-0.721 0.367 0.588
|
||||||
|
-0.769 0.250 0.588
|
||||||
|
-0.799 0.127 0.588
|
||||||
|
-0.809 0.000 0.588
|
||||||
|
-0.799 -0.127 0.588
|
||||||
|
-0.769 -0.250 0.588
|
||||||
|
-0.721 -0.367 0.588
|
||||||
|
-0.655 -0.476 0.588
|
||||||
|
-0.572 -0.572 0.588
|
||||||
|
-0.476 -0.655 0.588
|
||||||
|
-0.367 -0.721 0.588
|
||||||
|
-0.250 -0.769 0.588
|
||||||
|
-0.127 -0.799 0.588
|
||||||
|
-0.000 -0.809 0.588
|
||||||
|
0.127 -0.799 0.588
|
||||||
|
0.250 -0.769 0.588
|
||||||
|
0.367 -0.721 0.588
|
||||||
|
0.476 -0.655 0.588
|
||||||
|
0.572 -0.572 0.588
|
||||||
|
0.655 -0.476 0.588
|
||||||
|
0.721 -0.367 0.588
|
||||||
|
0.769 -0.250 0.588
|
||||||
|
0.799 -0.127 0.588
|
||||||
|
0.891 0.000 0.454
|
||||||
|
0.880 0.139 0.454
|
||||||
|
0.847 0.275 0.454
|
||||||
|
0.794 0.405 0.454
|
||||||
|
0.721 0.524 0.454
|
||||||
|
0.630 0.630 0.454
|
||||||
|
0.524 0.721 0.454
|
||||||
|
0.405 0.794 0.454
|
||||||
|
0.275 0.847 0.454
|
||||||
|
0.139 0.880 0.454
|
||||||
|
0.000 0.891 0.454
|
||||||
|
-0.139 0.880 0.454
|
||||||
|
-0.275 0.847 0.454
|
||||||
|
-0.405 0.794 0.454
|
||||||
|
-0.524 0.721 0.454
|
||||||
|
-0.630 0.630 0.454
|
||||||
|
-0.721 0.524 0.454
|
||||||
|
-0.794 0.405 0.454
|
||||||
|
-0.847 0.275 0.454
|
||||||
|
-0.880 0.139 0.454
|
||||||
|
-0.891 0.000 0.454
|
||||||
|
-0.880 -0.139 0.454
|
||||||
|
-0.847 -0.275 0.454
|
||||||
|
-0.794 -0.405 0.454
|
||||||
|
-0.721 -0.524 0.454
|
||||||
|
-0.630 -0.630 0.454
|
||||||
|
-0.524 -0.721 0.454
|
||||||
|
-0.405 -0.794 0.454
|
||||||
|
-0.275 -0.847 0.454
|
||||||
|
-0.139 -0.880 0.454
|
||||||
|
-0.000 -0.891 0.454
|
||||||
|
0.139 -0.880 0.454
|
||||||
|
0.275 -0.847 0.454
|
||||||
|
0.405 -0.794 0.454
|
||||||
|
0.524 -0.721 0.454
|
||||||
|
0.630 -0.630 0.454
|
||||||
|
0.721 -0.524 0.454
|
||||||
|
0.794 -0.405 0.454
|
||||||
|
0.847 -0.275 0.454
|
||||||
|
0.880 -0.139 0.454
|
||||||
|
0.951 0.000 0.309
|
||||||
|
0.939 0.149 0.309
|
||||||
|
0.905 0.294 0.309
|
||||||
|
0.847 0.432 0.309
|
||||||
|
0.769 0.559 0.309
|
||||||
|
0.672 0.672 0.309
|
||||||
|
0.559 0.769 0.309
|
||||||
|
0.432 0.847 0.309
|
||||||
|
0.294 0.905 0.309
|
||||||
|
0.149 0.939 0.309
|
||||||
|
0.000 0.951 0.309
|
||||||
|
-0.149 0.939 0.309
|
||||||
|
-0.294 0.905 0.309
|
||||||
|
-0.432 0.847 0.309
|
||||||
|
-0.559 0.769 0.309
|
||||||
|
-0.672 0.672 0.309
|
||||||
|
-0.769 0.559 0.309
|
||||||
|
-0.847 0.432 0.309
|
||||||
|
-0.905 0.294 0.309
|
||||||
|
-0.939 0.149 0.309
|
||||||
|
-0.951 0.000 0.309
|
||||||
|
-0.939 -0.149 0.309
|
||||||
|
-0.905 -0.294 0.309
|
||||||
|
-0.847 -0.432 0.309
|
||||||
|
-0.769 -0.559 0.309
|
||||||
|
-0.672 -0.672 0.309
|
||||||
|
-0.559 -0.769 0.309
|
||||||
|
-0.432 -0.847 0.309
|
||||||
|
-0.294 -0.905 0.309
|
||||||
|
-0.149 -0.939 0.309
|
||||||
|
-0.000 -0.951 0.309
|
||||||
|
0.149 -0.939 0.309
|
||||||
|
0.294 -0.905 0.309
|
||||||
|
0.432 -0.847 0.309
|
||||||
|
0.559 -0.769 0.309
|
||||||
|
0.672 -0.672 0.309
|
||||||
|
0.769 -0.559 0.309
|
||||||
|
0.847 -0.432 0.309
|
||||||
|
0.905 -0.294 0.309
|
||||||
|
0.939 -0.149 0.309
|
||||||
|
0.988 0.000 0.156
|
||||||
|
0.976 0.155 0.156
|
||||||
|
0.939 0.305 0.156
|
||||||
|
0.880 0.448 0.156
|
||||||
|
0.799 0.581 0.156
|
||||||
|
0.698 0.698 0.156
|
||||||
|
0.581 0.799 0.156
|
||||||
|
0.448 0.880 0.156
|
||||||
|
0.305 0.939 0.156
|
||||||
|
0.155 0.976 0.156
|
||||||
|
0.000 0.988 0.156
|
||||||
|
-0.155 0.976 0.156
|
||||||
|
-0.305 0.939 0.156
|
||||||
|
-0.448 0.880 0.156
|
||||||
|
-0.581 0.799 0.156
|
||||||
|
-0.698 0.698 0.156
|
||||||
|
-0.799 0.581 0.156
|
||||||
|
-0.880 0.448 0.156
|
||||||
|
-0.939 0.305 0.156
|
||||||
|
-0.976 0.155 0.156
|
||||||
|
-0.988 0.000 0.156
|
||||||
|
-0.976 -0.155 0.156
|
||||||
|
-0.939 -0.305 0.156
|
||||||
|
-0.880 -0.448 0.156
|
||||||
|
-0.799 -0.581 0.156
|
||||||
|
-0.698 -0.698 0.156
|
||||||
|
-0.581 -0.799 0.156
|
||||||
|
-0.448 -0.880 0.156
|
||||||
|
-0.305 -0.939 0.156
|
||||||
|
-0.155 -0.976 0.156
|
||||||
|
-0.000 -0.988 0.156
|
||||||
|
0.155 -0.976 0.156
|
||||||
|
0.305 -0.939 0.156
|
||||||
|
0.448 -0.880 0.156
|
||||||
|
0.581 -0.799 0.156
|
||||||
|
0.698 -0.698 0.156
|
||||||
|
0.799 -0.581 0.156
|
||||||
|
0.880 -0.448 0.156
|
||||||
|
0.939 -0.305 0.156
|
||||||
|
0.976 -0.155 0.156
|
||||||
|
1.000 0.000 0.000
|
||||||
|
0.988 0.156 0.000
|
||||||
|
0.951 0.309 0.000
|
||||||
|
0.891 0.454 0.000
|
||||||
|
0.809 0.588 0.000
|
||||||
|
0.707 0.707 0.000
|
||||||
|
0.588 0.809 0.000
|
||||||
|
0.454 0.891 0.000
|
||||||
|
0.309 0.951 0.000
|
||||||
|
0.156 0.988 0.000
|
||||||
|
0.000 1.000 0.000
|
||||||
|
-0.156 0.988 0.000
|
||||||
|
-0.309 0.951 0.000
|
||||||
|
-0.454 0.891 0.000
|
||||||
|
-0.588 0.809 0.000
|
||||||
|
-0.707 0.707 0.000
|
||||||
|
-0.809 0.588 0.000
|
||||||
|
-0.891 0.454 0.000
|
||||||
|
-0.951 0.309 0.000
|
||||||
|
-0.988 0.156 0.000
|
||||||
|
-1.000 0.000 0.000
|
||||||
|
-0.988 -0.156 0.000
|
||||||
|
-0.951 -0.309 0.000
|
||||||
|
-0.891 -0.454 0.000
|
||||||
|
-0.809 -0.588 0.000
|
||||||
|
-0.707 -0.707 0.000
|
||||||
|
-0.588 -0.809 0.000
|
||||||
|
-0.454 -0.891 0.000
|
||||||
|
-0.309 -0.951 0.000
|
||||||
|
-0.156 -0.988 0.000
|
||||||
|
-0.000 -1.000 0.000
|
||||||
|
0.156 -0.988 0.000
|
||||||
|
0.309 -0.951 0.000
|
||||||
|
0.454 -0.891 0.000
|
||||||
|
0.588 -0.809 0.000
|
||||||
|
0.707 -0.707 0.000
|
||||||
|
0.809 -0.588 0.000
|
||||||
|
0.891 -0.454 0.000
|
||||||
|
0.951 -0.309 0.000
|
||||||
|
0.988 -0.156 0.000
|
||||||
|
0.988 0.000 -0.156
|
||||||
|
0.976 0.155 -0.156
|
||||||
|
0.939 0.305 -0.156
|
||||||
|
0.880 0.448 -0.156
|
||||||
|
0.799 0.581 -0.156
|
||||||
|
0.698 0.698 -0.156
|
||||||
|
0.581 0.799 -0.156
|
||||||
|
0.448 0.880 -0.156
|
||||||
|
0.305 0.939 -0.156
|
||||||
|
0.155 0.976 -0.156
|
||||||
|
0.000 0.988 -0.156
|
||||||
|
-0.155 0.976 -0.156
|
||||||
|
-0.305 0.939 -0.156
|
||||||
|
-0.448 0.880 -0.156
|
||||||
|
-0.581 0.799 -0.156
|
||||||
|
-0.698 0.698 -0.156
|
||||||
|
-0.799 0.581 -0.156
|
||||||
|
-0.880 0.448 -0.156
|
||||||
|
-0.939 0.305 -0.156
|
||||||
|
-0.976 0.155 -0.156
|
||||||
|
-0.988 0.000 -0.156
|
||||||
|
-0.976 -0.155 -0.156
|
||||||
|
-0.939 -0.305 -0.156
|
||||||
|
-0.880 -0.448 -0.156
|
||||||
|
-0.799 -0.581 -0.156
|
||||||
|
-0.698 -0.698 -0.156
|
||||||
|
-0.581 -0.799 -0.156
|
||||||
|
-0.448 -0.880 -0.156
|
||||||
|
-0.305 -0.939 -0.156
|
||||||
|
-0.155 -0.976 -0.156
|
||||||
|
-0.000 -0.988 -0.156
|
||||||
|
0.155 -0.976 -0.156
|
||||||
|
0.305 -0.939 -0.156
|
||||||
|
0.448 -0.880 -0.156
|
||||||
|
0.581 -0.799 -0.156
|
||||||
|
0.698 -0.698 -0.156
|
||||||
|
0.799 -0.581 -0.156
|
||||||
|
0.880 -0.448 -0.156
|
||||||
|
0.939 -0.305 -0.156
|
||||||
|
0.976 -0.155 -0.156
|
||||||
|
0.951 0.000 -0.309
|
||||||
|
0.939 0.149 -0.309
|
||||||
|
0.905 0.294 -0.309
|
||||||
|
0.847 0.432 -0.309
|
||||||
|
0.769 0.559 -0.309
|
||||||
|
0.672 0.672 -0.309
|
||||||
|
0.559 0.769 -0.309
|
||||||
|
0.432 0.847 -0.309
|
||||||
|
0.294 0.905 -0.309
|
||||||
|
0.149 0.939 -0.309
|
||||||
|
0.000 0.951 -0.309
|
||||||
|
-0.149 0.939 -0.309
|
||||||
|
-0.294 0.905 -0.309
|
||||||
|
-0.432 0.847 -0.309
|
||||||
|
-0.559 0.769 -0.309
|
||||||
|
-0.672 0.672 -0.309
|
||||||
|
-0.769 0.559 -0.309
|
||||||
|
-0.847 0.432 -0.309
|
||||||
|
-0.905 0.294 -0.309
|
||||||
|
-0.939 0.149 -0.309
|
||||||
|
-0.951 0.000 -0.309
|
||||||
|
-0.939 -0.149 -0.309
|
||||||
|
-0.905 -0.294 -0.309
|
||||||
|
-0.847 -0.432 -0.309
|
||||||
|
-0.769 -0.559 -0.309
|
||||||
|
-0.672 -0.672 -0.309
|
||||||
|
-0.559 -0.769 -0.309
|
||||||
|
-0.432 -0.847 -0.309
|
||||||
|
-0.294 -0.905 -0.309
|
||||||
|
-0.149 -0.939 -0.309
|
||||||
|
-0.000 -0.951 -0.309
|
||||||
|
0.149 -0.939 -0.309
|
||||||
|
0.294 -0.905 -0.309
|
||||||
|
0.432 -0.847 -0.309
|
||||||
|
0.559 -0.769 -0.309
|
||||||
|
0.672 -0.672 -0.309
|
||||||
|
0.769 -0.559 -0.309
|
||||||
|
0.847 -0.432 -0.309
|
||||||
|
0.905 -0.294 -0.309
|
||||||
|
0.939 -0.149 -0.309
|
||||||
|
0.891 0.000 -0.454
|
||||||
|
0.880 0.139 -0.454
|
||||||
|
0.847 0.275 -0.454
|
||||||
|
0.794 0.405 -0.454
|
||||||
|
0.721 0.524 -0.454
|
||||||
|
0.630 0.630 -0.454
|
||||||
|
0.524 0.721 -0.454
|
||||||
|
0.405 0.794 -0.454
|
||||||
|
0.275 0.847 -0.454
|
||||||
|
0.139 0.880 -0.454
|
||||||
|
0.000 0.891 -0.454
|
||||||
|
-0.139 0.880 -0.454
|
||||||
|
-0.275 0.847 -0.454
|
||||||
|
-0.405 0.794 -0.454
|
||||||
|
-0.524 0.721 -0.454
|
||||||
|
-0.630 0.630 -0.454
|
||||||
|
-0.721 0.524 -0.454
|
||||||
|
-0.794 0.405 -0.454
|
||||||
|
-0.847 0.275 -0.454
|
||||||
|
-0.880 0.139 -0.454
|
||||||
|
-0.891 0.000 -0.454
|
||||||
|
-0.880 -0.139 -0.454
|
||||||
|
-0.847 -0.275 -0.454
|
||||||
|
-0.794 -0.405 -0.454
|
||||||
|
-0.721 -0.524 -0.454
|
||||||
|
-0.630 -0.630 -0.454
|
||||||
|
-0.524 -0.721 -0.454
|
||||||
|
-0.405 -0.794 -0.454
|
||||||
|
-0.275 -0.847 -0.454
|
||||||
|
-0.139 -0.880 -0.454
|
||||||
|
-0.000 -0.891 -0.454
|
||||||
|
0.139 -0.880 -0.454
|
||||||
|
0.275 -0.847 -0.454
|
||||||
|
0.405 -0.794 -0.454
|
||||||
|
0.524 -0.721 -0.454
|
||||||
|
0.630 -0.630 -0.454
|
||||||
|
0.721 -0.524 -0.454
|
||||||
|
0.794 -0.405 -0.454
|
||||||
|
0.847 -0.275 -0.454
|
||||||
|
0.880 -0.139 -0.454
|
||||||
|
0.809 0.000 -0.588
|
||||||
|
0.799 0.127 -0.588
|
||||||
|
0.769 0.250 -0.588
|
||||||
|
0.721 0.367 -0.588
|
||||||
|
0.655 0.476 -0.588
|
||||||
|
0.572 0.572 -0.588
|
||||||
|
0.476 0.655 -0.588
|
||||||
|
0.367 0.721 -0.588
|
||||||
|
0.250 0.769 -0.588
|
||||||
|
0.127 0.799 -0.588
|
||||||
|
0.000 0.809 -0.588
|
||||||
|
-0.127 0.799 -0.588
|
||||||
|
-0.250 0.769 -0.588
|
||||||
|
-0.367 0.721 -0.588
|
||||||
|
-0.476 0.655 -0.588
|
||||||
|
-0.572 0.572 -0.588
|
||||||
|
-0.655 0.476 -0.588
|
||||||
|
-0.721 0.367 -0.588
|
||||||
|
-0.769 0.250 -0.588
|
||||||
|
-0.799 0.127 -0.588
|
||||||
|
-0.809 0.000 -0.588
|
||||||
|
-0.799 -0.127 -0.588
|
||||||
|
-0.769 -0.250 -0.588
|
||||||
|
-0.721 -0.367 -0.588
|
||||||
|
-0.655 -0.476 -0.588
|
||||||
|
-0.572 -0.572 -0.588
|
||||||
|
-0.476 -0.655 -0.588
|
||||||
|
-0.367 -0.721 -0.588
|
||||||
|
-0.250 -0.769 -0.588
|
||||||
|
-0.127 -0.799 -0.588
|
||||||
|
-0.000 -0.809 -0.588
|
||||||
|
0.127 -0.799 -0.588
|
||||||
|
0.250 -0.769 -0.588
|
||||||
|
0.367 -0.721 -0.588
|
||||||
|
0.476 -0.655 -0.588
|
||||||
|
0.572 -0.572 -0.588
|
||||||
|
0.655 -0.476 -0.588
|
||||||
|
0.721 -0.367 -0.588
|
||||||
|
0.769 -0.250 -0.588
|
||||||
|
0.799 -0.127 -0.588
|
||||||
|
0.707 0.000 -0.707
|
||||||
|
0.698 0.111 -0.707
|
||||||
|
0.672 0.219 -0.707
|
||||||
|
0.630 0.321 -0.707
|
||||||
|
0.572 0.416 -0.707
|
||||||
|
0.500 0.500 -0.707
|
||||||
|
0.416 0.572 -0.707
|
||||||
|
0.321 0.630 -0.707
|
||||||
|
0.219 0.672 -0.707
|
||||||
|
0.111 0.698 -0.707
|
||||||
|
0.000 0.707 -0.707
|
||||||
|
-0.111 0.698 -0.707
|
||||||
|
-0.219 0.672 -0.707
|
||||||
|
-0.321 0.630 -0.707
|
||||||
|
-0.416 0.572 -0.707
|
||||||
|
-0.500 0.500 -0.707
|
||||||
|
-0.572 0.416 -0.707
|
||||||
|
-0.630 0.321 -0.707
|
||||||
|
-0.672 0.219 -0.707
|
||||||
|
-0.698 0.111 -0.707
|
||||||
|
-0.707 0.000 -0.707
|
||||||
|
-0.698 -0.111 -0.707
|
||||||
|
-0.672 -0.219 -0.707
|
||||||
|
-0.630 -0.321 -0.707
|
||||||
|
-0.572 -0.416 -0.707
|
||||||
|
-0.500 -0.500 -0.707
|
||||||
|
-0.416 -0.572 -0.707
|
||||||
|
-0.321 -0.630 -0.707
|
||||||
|
-0.219 -0.672 -0.707
|
||||||
|
-0.111 -0.698 -0.707
|
||||||
|
-0.000 -0.707 -0.707
|
||||||
|
0.111 -0.698 -0.707
|
||||||
|
0.219 -0.672 -0.707
|
||||||
|
0.321 -0.630 -0.707
|
||||||
|
0.416 -0.572 -0.707
|
||||||
|
0.500 -0.500 -0.707
|
||||||
|
0.572 -0.416 -0.707
|
||||||
|
0.630 -0.321 -0.707
|
||||||
|
0.672 -0.219 -0.707
|
||||||
|
0.698 -0.111 -0.707
|
||||||
|
0.588 0.000 -0.809
|
||||||
|
0.581 0.092 -0.809
|
||||||
|
0.559 0.182 -0.809
|
||||||
|
0.524 0.267 -0.809
|
||||||
|
0.476 0.345 -0.809
|
||||||
|
0.416 0.416 -0.809
|
||||||
|
0.345 0.476 -0.809
|
||||||
|
0.267 0.524 -0.809
|
||||||
|
0.182 0.559 -0.809
|
||||||
|
0.092 0.581 -0.809
|
||||||
|
0.000 0.588 -0.809
|
||||||
|
-0.092 0.581 -0.809
|
||||||
|
-0.182 0.559 -0.809
|
||||||
|
-0.267 0.524 -0.809
|
||||||
|
-0.345 0.476 -0.809
|
||||||
|
-0.416 0.416 -0.809
|
||||||
|
-0.476 0.345 -0.809
|
||||||
|
-0.524 0.267 -0.809
|
||||||
|
-0.559 0.182 -0.809
|
||||||
|
-0.581 0.092 -0.809
|
||||||
|
-0.588 0.000 -0.809
|
||||||
|
-0.581 -0.092 -0.809
|
||||||
|
-0.559 -0.182 -0.809
|
||||||
|
-0.524 -0.267 -0.809
|
||||||
|
-0.476 -0.345 -0.809
|
||||||
|
-0.416 -0.416 -0.809
|
||||||
|
-0.345 -0.476 -0.809
|
||||||
|
-0.267 -0.524 -0.809
|
||||||
|
-0.182 -0.559 -0.809
|
||||||
|
-0.092 -0.581 -0.809
|
||||||
|
-0.000 -0.588 -0.809
|
||||||
|
0.092 -0.581 -0.809
|
||||||
|
0.182 -0.559 -0.809
|
||||||
|
0.267 -0.524 -0.809
|
||||||
|
0.345 -0.476 -0.809
|
||||||
|
0.416 -0.416 -0.809
|
||||||
|
0.476 -0.345 -0.809
|
||||||
|
0.524 -0.267 -0.809
|
||||||
|
0.559 -0.182 -0.809
|
||||||
|
0.581 -0.092 -0.809
|
||||||
|
0.454 0.000 -0.891
|
||||||
|
0.448 0.071 -0.891
|
||||||
|
0.432 0.140 -0.891
|
||||||
|
0.405 0.206 -0.891
|
||||||
|
0.367 0.267 -0.891
|
||||||
|
0.321 0.321 -0.891
|
||||||
|
0.267 0.367 -0.891
|
||||||
|
0.206 0.405 -0.891
|
||||||
|
0.140 0.432 -0.891
|
||||||
|
0.071 0.448 -0.891
|
||||||
|
0.000 0.454 -0.891
|
||||||
|
-0.071 0.448 -0.891
|
||||||
|
-0.140 0.432 -0.891
|
||||||
|
-0.206 0.405 -0.891
|
||||||
|
-0.267 0.367 -0.891
|
||||||
|
-0.321 0.321 -0.891
|
||||||
|
-0.367 0.267 -0.891
|
||||||
|
-0.405 0.206 -0.891
|
||||||
|
-0.432 0.140 -0.891
|
||||||
|
-0.448 0.071 -0.891
|
||||||
|
-0.454 0.000 -0.891
|
||||||
|
-0.448 -0.071 -0.891
|
||||||
|
-0.432 -0.140 -0.891
|
||||||
|
-0.405 -0.206 -0.891
|
||||||
|
-0.367 -0.267 -0.891
|
||||||
|
-0.321 -0.321 -0.891
|
||||||
|
-0.267 -0.367 -0.891
|
||||||
|
-0.206 -0.405 -0.891
|
||||||
|
-0.140 -0.432 -0.891
|
||||||
|
-0.071 -0.448 -0.891
|
||||||
|
-0.000 -0.454 -0.891
|
||||||
|
0.071 -0.448 -0.891
|
||||||
|
0.140 -0.432 -0.891
|
||||||
|
0.206 -0.405 -0.891
|
||||||
|
0.267 -0.367 -0.891
|
||||||
|
0.321 -0.321 -0.891
|
||||||
|
0.367 -0.267 -0.891
|
||||||
|
0.405 -0.206 -0.891
|
||||||
|
0.432 -0.140 -0.891
|
||||||
|
0.448 -0.071 -0.891
|
||||||
|
0.309 0.000 -0.951
|
||||||
|
0.305 0.048 -0.951
|
||||||
|
0.294 0.095 -0.951
|
||||||
|
0.275 0.140 -0.951
|
||||||
|
0.250 0.182 -0.951
|
||||||
|
0.219 0.219 -0.951
|
||||||
|
0.182 0.250 -0.951
|
||||||
|
0.140 0.275 -0.951
|
||||||
|
0.095 0.294 -0.951
|
||||||
|
0.048 0.305 -0.951
|
||||||
|
0.000 0.309 -0.951
|
||||||
|
-0.048 0.305 -0.951
|
||||||
|
-0.095 0.294 -0.951
|
||||||
|
-0.140 0.275 -0.951
|
||||||
|
-0.182 0.250 -0.951
|
||||||
|
-0.219 0.219 -0.951
|
||||||
|
-0.250 0.182 -0.951
|
||||||
|
-0.275 0.140 -0.951
|
||||||
|
-0.294 0.095 -0.951
|
||||||
|
-0.305 0.048 -0.951
|
||||||
|
-0.309 0.000 -0.951
|
||||||
|
-0.305 -0.048 -0.951
|
||||||
|
-0.294 -0.095 -0.951
|
||||||
|
-0.275 -0.140 -0.951
|
||||||
|
-0.250 -0.182 -0.951
|
||||||
|
-0.219 -0.219 -0.951
|
||||||
|
-0.182 -0.250 -0.951
|
||||||
|
-0.140 -0.275 -0.951
|
||||||
|
-0.095 -0.294 -0.951
|
||||||
|
-0.048 -0.305 -0.951
|
||||||
|
-0.000 -0.309 -0.951
|
||||||
|
0.048 -0.305 -0.951
|
||||||
|
0.095 -0.294 -0.951
|
||||||
|
0.140 -0.275 -0.951
|
||||||
|
0.182 -0.250 -0.951
|
||||||
|
0.219 -0.219 -0.951
|
||||||
|
0.250 -0.182 -0.951
|
||||||
|
0.275 -0.140 -0.951
|
||||||
|
0.294 -0.095 -0.951
|
||||||
|
0.305 -0.048 -0.951
|
||||||
|
0.156 0.000 -0.988
|
||||||
|
0.155 0.024 -0.988
|
||||||
|
0.149 0.048 -0.988
|
||||||
|
0.139 0.071 -0.988
|
||||||
|
0.127 0.092 -0.988
|
||||||
|
0.111 0.111 -0.988
|
||||||
|
0.092 0.127 -0.988
|
||||||
|
0.071 0.139 -0.988
|
||||||
|
0.048 0.149 -0.988
|
||||||
|
0.024 0.155 -0.988
|
||||||
|
0.000 0.156 -0.988
|
||||||
|
-0.024 0.155 -0.988
|
||||||
|
-0.048 0.149 -0.988
|
||||||
|
-0.071 0.139 -0.988
|
||||||
|
-0.092 0.127 -0.988
|
||||||
|
-0.111 0.111 -0.988
|
||||||
|
-0.127 0.092 -0.988
|
||||||
|
-0.139 0.071 -0.988
|
||||||
|
-0.149 0.048 -0.988
|
||||||
|
-0.155 0.024 -0.988
|
||||||
|
-0.156 0.000 -0.988
|
||||||
|
-0.155 -0.024 -0.988
|
||||||
|
-0.149 -0.048 -0.988
|
||||||
|
-0.139 -0.071 -0.988
|
||||||
|
-0.127 -0.092 -0.988
|
||||||
|
-0.111 -0.111 -0.988
|
||||||
|
-0.092 -0.127 -0.988
|
||||||
|
-0.071 -0.139 -0.988
|
||||||
|
-0.048 -0.149 -0.988
|
||||||
|
-0.024 -0.155 -0.988
|
||||||
|
-0.000 -0.156 -0.988
|
||||||
|
0.024 -0.155 -0.988
|
||||||
|
0.048 -0.149 -0.988
|
||||||
|
0.071 -0.139 -0.988
|
||||||
|
0.092 -0.127 -0.988
|
||||||
|
0.111 -0.111 -0.988
|
||||||
|
0.127 -0.092 -0.988
|
||||||
|
0.139 -0.071 -0.988
|
||||||
|
0.149 -0.048 -0.988
|
||||||
|
0.155 -0.024 -0.988
|
26
easymocap/visualize/assets/sphere_vertices_4.txt
Normal file
26
easymocap/visualize/assets/sphere_vertices_4.txt
Normal file
@ -0,0 +1,26 @@
|
|||||||
|
0.000 0.000 1.000
|
||||||
|
0.000 0.000 -1.000
|
||||||
|
0.707 0.000 0.707
|
||||||
|
0.500 0.500 0.707
|
||||||
|
0.000 0.707 0.707
|
||||||
|
-0.500 0.500 0.707
|
||||||
|
-0.707 0.000 0.707
|
||||||
|
-0.500 -0.500 0.707
|
||||||
|
-0.000 -0.707 0.707
|
||||||
|
0.500 -0.500 0.707
|
||||||
|
1.000 0.000 0.000
|
||||||
|
0.707 0.707 0.000
|
||||||
|
0.000 1.000 0.000
|
||||||
|
-0.707 0.707 0.000
|
||||||
|
-1.000 0.000 0.000
|
||||||
|
-0.707 -0.707 0.000
|
||||||
|
-0.000 -1.000 0.000
|
||||||
|
0.707 -0.707 0.000
|
||||||
|
0.707 0.000 -0.707
|
||||||
|
0.500 0.500 -0.707
|
||||||
|
0.000 0.707 -0.707
|
||||||
|
-0.500 0.500 -0.707
|
||||||
|
-0.707 0.000 -0.707
|
||||||
|
-0.500 -0.500 -0.707
|
||||||
|
-0.000 -0.707 -0.707
|
||||||
|
0.500 -0.500 -0.707
|
114
easymocap/visualize/assets/sphere_vertices_8.txt
Normal file
114
easymocap/visualize/assets/sphere_vertices_8.txt
Normal file
@ -0,0 +1,114 @@
|
|||||||
|
0.000 0.000 1.000
|
||||||
|
0.000 0.000 -1.000
|
||||||
|
0.383 0.000 0.924
|
||||||
|
0.354 0.146 0.924
|
||||||
|
0.271 0.271 0.924
|
||||||
|
0.146 0.354 0.924
|
||||||
|
0.000 0.383 0.924
|
||||||
|
-0.146 0.354 0.924
|
||||||
|
-0.271 0.271 0.924
|
||||||
|
-0.354 0.146 0.924
|
||||||
|
-0.383 0.000 0.924
|
||||||
|
-0.354 -0.146 0.924
|
||||||
|
-0.271 -0.271 0.924
|
||||||
|
-0.146 -0.354 0.924
|
||||||
|
-0.000 -0.383 0.924
|
||||||
|
0.146 -0.354 0.924
|
||||||
|
0.271 -0.271 0.924
|
||||||
|
0.354 -0.146 0.924
|
||||||
|
0.707 0.000 0.707
|
||||||
|
0.653 0.271 0.707
|
||||||
|
0.500 0.500 0.707
|
||||||
|
0.271 0.653 0.707
|
||||||
|
0.000 0.707 0.707
|
||||||
|
-0.271 0.653 0.707
|
||||||
|
-0.500 0.500 0.707
|
||||||
|
-0.653 0.271 0.707
|
||||||
|
-0.707 0.000 0.707
|
||||||
|
-0.653 -0.271 0.707
|
||||||
|
-0.500 -0.500 0.707
|
||||||
|
-0.271 -0.653 0.707
|
||||||
|
-0.000 -0.707 0.707
|
||||||
|
0.271 -0.653 0.707
|
||||||
|
0.500 -0.500 0.707
|
||||||
|
0.653 -0.271 0.707
|
||||||
|
0.924 0.000 0.383
|
||||||
|
0.854 0.354 0.383
|
||||||
|
0.653 0.653 0.383
|
||||||
|
0.354 0.854 0.383
|
||||||
|
0.000 0.924 0.383
|
||||||
|
-0.354 0.854 0.383
|
||||||
|
-0.653 0.653 0.383
|
||||||
|
-0.854 0.354 0.383
|
||||||
|
-0.924 0.000 0.383
|
||||||
|
-0.854 -0.354 0.383
|
||||||
|
-0.653 -0.653 0.383
|
||||||
|
-0.354 -0.854 0.383
|
||||||
|
-0.000 -0.924 0.383
|
||||||
|
0.354 -0.854 0.383
|
||||||
|
0.653 -0.653 0.383
|
||||||
|
0.854 -0.354 0.383
|
||||||
|
1.000 0.000 0.000
|
||||||
|
0.924 0.383 0.000
|
||||||
|
0.707 0.707 0.000
|
||||||
|
0.383 0.924 0.000
|
||||||
|
0.000 1.000 0.000
|
||||||
|
-0.383 0.924 0.000
|
||||||
|
-0.707 0.707 0.000
|
||||||
|
-0.924 0.383 0.000
|
||||||
|
-1.000 0.000 0.000
|
||||||
|
-0.924 -0.383 0.000
|
||||||
|
-0.707 -0.707 0.000
|
||||||
|
-0.383 -0.924 0.000
|
||||||
|
-0.000 -1.000 0.000
|
||||||
|
0.383 -0.924 0.000
|
||||||
|
0.707 -0.707 0.000
|
||||||
|
0.924 -0.383 0.000
|
||||||
|
0.924 0.000 -0.383
|
||||||
|
0.854 0.354 -0.383
|
||||||
|
0.653 0.653 -0.383
|
||||||
|
0.354 0.854 -0.383
|
||||||
|
0.000 0.924 -0.383
|
||||||
|
-0.354 0.854 -0.383
|
||||||
|
-0.653 0.653 -0.383
|
||||||
|
-0.854 0.354 -0.383
|
||||||
|
-0.924 0.000 -0.383
|
||||||
|
-0.854 -0.354 -0.383
|
||||||
|
-0.653 -0.653 -0.383
|
||||||
|
-0.354 -0.854 -0.383
|
||||||
|
-0.000 -0.924 -0.383
|
||||||
|
0.354 -0.854 -0.383
|
||||||
|
0.653 -0.653 -0.383
|
||||||
|
0.854 -0.354 -0.383
|
||||||
|
0.707 0.000 -0.707
|
||||||
|
0.653 0.271 -0.707
|
||||||
|
0.500 0.500 -0.707
|
||||||
|
0.271 0.653 -0.707
|
||||||
|
0.000 0.707 -0.707
|
||||||
|
-0.271 0.653 -0.707
|
||||||
|
-0.500 0.500 -0.707
|
||||||
|
-0.653 0.271 -0.707
|
||||||
|
-0.707 0.000 -0.707
|
||||||
|
-0.653 -0.271 -0.707
|
||||||
|
-0.500 -0.500 -0.707
|
||||||
|
-0.271 -0.653 -0.707
|
||||||
|
-0.000 -0.707 -0.707
|
||||||
|
0.271 -0.653 -0.707
|
||||||
|
0.500 -0.500 -0.707
|
||||||
|
0.653 -0.271 -0.707
|
||||||
|
0.383 0.000 -0.924
|
||||||
|
0.354 0.146 -0.924
|
||||||
|
0.271 0.271 -0.924
|
||||||
|
0.146 0.354 -0.924
|
||||||
|
0.000 0.383 -0.924
|
||||||
|
-0.146 0.354 -0.924
|
||||||
|
-0.271 0.271 -0.924
|
||||||
|
-0.354 0.146 -0.924
|
||||||
|
-0.383 0.000 -0.924
|
||||||
|
-0.354 -0.146 -0.924
|
||||||
|
-0.271 -0.271 -0.924
|
||||||
|
-0.146 -0.354 -0.924
|
||||||
|
-0.000 -0.383 -0.924
|
||||||
|
0.146 -0.354 -0.924
|
||||||
|
0.271 -0.271 -0.924
|
||||||
|
0.354 -0.146 -0.924
|
@ -2,7 +2,7 @@
|
|||||||
@ Date: 2021-01-17 22:44:34
|
@ Date: 2021-01-17 22:44:34
|
||||||
@ Author: Qing Shuai
|
@ Author: Qing Shuai
|
||||||
@ LastEditors: Qing Shuai
|
@ LastEditors: Qing Shuai
|
||||||
@ LastEditTime: 2021-06-20 17:24:12
|
@ LastEditTime: 2021-08-24 16:28:15
|
||||||
@ FilePath: /EasyMocap/easymocap/visualize/geometry.py
|
@ FilePath: /EasyMocap/easymocap/visualize/geometry.py
|
||||||
'''
|
'''
|
||||||
import numpy as np
|
import numpy as np
|
||||||
@ -30,11 +30,13 @@ def create_point(points, r=0.01):
|
|||||||
points (array): (N, 3)/(N, 4)
|
points (array): (N, 3)/(N, 4)
|
||||||
r (float, optional): radius. Defaults to 0.01.
|
r (float, optional): radius. Defaults to 0.01.
|
||||||
"""
|
"""
|
||||||
|
points = np.array(points)
|
||||||
nPoints = points.shape[0]
|
nPoints = points.shape[0]
|
||||||
vert, face = load_sphere()
|
vert, face = load_sphere()
|
||||||
|
vert = vert * r
|
||||||
nVerts = vert.shape[0]
|
nVerts = vert.shape[0]
|
||||||
vert = vert[None, :, :].repeat(points.shape[0], 0)
|
vert = vert[None, :, :].repeat(points.shape[0], 0)
|
||||||
vert = vert + points[:, None, :]
|
vert = vert + points[:, None, :3]
|
||||||
verts = np.vstack(vert)
|
verts = np.vstack(vert)
|
||||||
face = face[None, :, :].repeat(points.shape[0], 0)
|
face = face[None, :, :].repeat(points.shape[0], 0)
|
||||||
face = face + nVerts * np.arange(nPoints).reshape(nPoints, 1, 1)
|
face = face + nVerts * np.arange(nPoints).reshape(nPoints, 1, 1)
|
||||||
@ -148,6 +150,17 @@ def create_plane(normal, center, dx=1, dy=1, dz=0.005, color=[0.8, 0.8, 0.8]):
|
|||||||
vertices += np.array(center).reshape(-1, 3)
|
vertices += np.array(center).reshape(-1, 3)
|
||||||
return {'vertices': vertices, 'faces': PLANE_FACES.copy(), 'name': 'plane'}
|
return {'vertices': vertices, 'faces': PLANE_FACES.copy(), 'name': 'plane'}
|
||||||
|
|
||||||
|
def merge_meshes(meshes):
|
||||||
|
verts = []
|
||||||
|
faces = []
|
||||||
|
# TODO:add colors
|
||||||
|
nVerts = 0
|
||||||
|
for mesh in meshes:
|
||||||
|
verts.append(mesh['vertices'])
|
||||||
|
faces.append(mesh['faces'] + nVerts)
|
||||||
|
nVerts += mesh['vertices'].shape[0]
|
||||||
|
return {'vertices': np.vstack(verts), 'faces':np.vstack(faces), 'name': 'compose_{}'.format(meshes[0]['name'])}
|
||||||
|
|
||||||
def create_cameras(cameras):
|
def create_cameras(cameras):
|
||||||
vertex = np.array([[0.203982,0.061435,0.00717595],[-0.116019,0.061435,0.00717595],[-0.116019,-0.178565,0.00717595],[0.203982,-0.178565,0.00717595],[0.203982,0.061435,-0.092824],[-0.116019,0.061435,-0.092824],[-0.116019,-0.178565,-0.092824],[0.203982,-0.178565,-0.092824],[0.131154,-0.0361827,0.00717595],[0.131154,-0.0361827,0.092176],[0.122849,-0.015207,0.00717595],[0.122849,-0.015207,0.092176],[0.109589,0.00304419,0.00717595],[0.109589,0.00304419,0.092176],[0.092206,0.0174247,0.00717595],[0.092206,0.0174247,0.092176],[0.071793,0.0270302,0.00717595],[0.071793,0.0270302,0.092176],[0.0496327,0.0312577,0.00717595],[0.0496327,0.0312577,0.092176],[0.0271172,0.0298412,0.00717595],[0.0271172,0.0298412,0.092176],[0.00566135,0.0228697,0.00717595],[0.00566135,0.0228697,0.092176],[-0.0133865,0.0107812,0.00717595],[-0.0133865,0.0107812,0.092176],[-0.02883,-0.0056643,0.00717595],[-0.02883,-0.0056643,0.092176],[-0.0396985,-0.0254336,0.00717595],[-0.0396985,-0.0254336,0.092176],[-0.045309,-0.0472848,0.00717595],[-0.045309,-0.0472848,0.092176],[-0.045309,-0.069845,0.00717595],[-0.045309,-0.069845,0.092176],[-0.0396985,-0.091696,0.00717595],[-0.0396985,-0.091696,0.092176],[-0.02883,-0.111466,0.00717595],[-0.02883,-0.111466,0.092176],[-0.0133865,-0.127911,0.00717595],[-0.0133865,-0.127911,0.092176],[0.00566135,-0.14,0.00717595],[0.00566135,-0.14,0.092176],[0.0271172,-0.146971,0.00717595],[0.0271172,-0.146971,0.092176],[0.0496327,-0.148388,0.00717595],[0.0496327,-0.148388,0.092176],[0.071793,-0.14416,0.00717595],[0.071793,-0.14416,0.092176],[0.092206,-0.134554,0.00717595],[0.092206,-0.134554,0.092176],[0.109589,-0.120174,0.00717595],[0.109589,-0.120174,0.092176],[0.122849,-0.101923,0.00717595],[0.122849,-0.101923,0.092176],[0.131154,-0.080947,0.00717595],[0.131154,-0.080947,0.092176],[0.133982,-0.058565,0.00717595],[0.133982,-0.058565,0.092176],[-0.0074325,0.061435,-0.0372285],[-0.0074325,0.074435,-0.0372285],[-0.0115845,0.061435,-0.0319846],[-0.0115845,0.074435,-0.0319846],[-0.018215,0.061435,-0.0274218],[-0.018215,0.074435,-0.0274218],[-0.0269065,0.061435,-0.0238267],[-0.0269065,0.074435,-0.0238267],[-0.0371125,0.061435,-0.0214253],[-0.0371125,0.074435,-0.0214253],[-0.048193,0.061435,-0.0203685],[-0.048193,0.074435,-0.0203685],[-0.0594505,0.061435,-0.0207226],[-0.0594505,0.074435,-0.0207226],[-0.0701785,0.061435,-0.0224655],[-0.0701785,0.074435,-0.0224655],[-0.0797025,0.061435,-0.0254875],[-0.0797025,0.074435,-0.0254875],[-0.0874245,0.061435,-0.0295989],[-0.0874245,0.074435,-0.0295989],[-0.0928585,0.061435,-0.0345412],[-0.0928585,0.074435,-0.0345412],[-0.0956635,0.061435,-0.040004],[-0.0956635,0.074435,-0.040004],[-0.0956635,0.061435,-0.045644],[-0.0956635,0.074435,-0.045644],[-0.0928585,0.061435,-0.051107],[-0.0928585,0.074435,-0.051107],[-0.0874245,0.061435,-0.056049],[-0.0874245,0.074435,-0.056049],[-0.0797025,0.061435,-0.0601605],[-0.0797025,0.074435,-0.0601605],[-0.0701785,0.061435,-0.0631825],[-0.0701785,0.074435,-0.0631825],[-0.0594505,0.061435,-0.0649255],[-0.0594505,0.074435,-0.0649255],[-0.048193,0.061435,-0.0652795],[-0.048193,0.074435,-0.0652795],[-0.0371125,0.061435,-0.064223],[-0.0371125,0.074435,-0.064223],[-0.0269065,0.061435,-0.0618215],[-0.0269065,0.074435,-0.0618215],[-0.018215,0.061435,-0.0582265],[-0.018215,0.074435,-0.0582265],[-0.0115845,0.061435,-0.0536635],[-0.0115845,0.074435,-0.0536635],[-0.0074325,0.061435,-0.0484195],[-0.0074325,0.074435,-0.0484195],[-0.0060185,0.061435,-0.0428241],[-0.0060185,0.074435,-0.0428241]])*0.5
|
vertex = np.array([[0.203982,0.061435,0.00717595],[-0.116019,0.061435,0.00717595],[-0.116019,-0.178565,0.00717595],[0.203982,-0.178565,0.00717595],[0.203982,0.061435,-0.092824],[-0.116019,0.061435,-0.092824],[-0.116019,-0.178565,-0.092824],[0.203982,-0.178565,-0.092824],[0.131154,-0.0361827,0.00717595],[0.131154,-0.0361827,0.092176],[0.122849,-0.015207,0.00717595],[0.122849,-0.015207,0.092176],[0.109589,0.00304419,0.00717595],[0.109589,0.00304419,0.092176],[0.092206,0.0174247,0.00717595],[0.092206,0.0174247,0.092176],[0.071793,0.0270302,0.00717595],[0.071793,0.0270302,0.092176],[0.0496327,0.0312577,0.00717595],[0.0496327,0.0312577,0.092176],[0.0271172,0.0298412,0.00717595],[0.0271172,0.0298412,0.092176],[0.00566135,0.0228697,0.00717595],[0.00566135,0.0228697,0.092176],[-0.0133865,0.0107812,0.00717595],[-0.0133865,0.0107812,0.092176],[-0.02883,-0.0056643,0.00717595],[-0.02883,-0.0056643,0.092176],[-0.0396985,-0.0254336,0.00717595],[-0.0396985,-0.0254336,0.092176],[-0.045309,-0.0472848,0.00717595],[-0.045309,-0.0472848,0.092176],[-0.045309,-0.069845,0.00717595],[-0.045309,-0.069845,0.092176],[-0.0396985,-0.091696,0.00717595],[-0.0396985,-0.091696,0.092176],[-0.02883,-0.111466,0.00717595],[-0.02883,-0.111466,0.092176],[-0.0133865,-0.127911,0.00717595],[-0.0133865,-0.127911,0.092176],[0.00566135,-0.14,0.00717595],[0.00566135,-0.14,0.092176],[0.0271172,-0.146971,0.00717595],[0.0271172,-0.146971,0.092176],[0.0496327,-0.148388,0.00717595],[0.0496327,-0.148388,0.092176],[0.071793,-0.14416,0.00717595],[0.071793,-0.14416,0.092176],[0.092206,-0.134554,0.00717595],[0.092206,-0.134554,0.092176],[0.109589,-0.120174,0.00717595],[0.109589,-0.120174,0.092176],[0.122849,-0.101923,0.00717595],[0.122849,-0.101923,0.092176],[0.131154,-0.080947,0.00717595],[0.131154,-0.080947,0.092176],[0.133982,-0.058565,0.00717595],[0.133982,-0.058565,0.092176],[-0.0074325,0.061435,-0.0372285],[-0.0074325,0.074435,-0.0372285],[-0.0115845,0.061435,-0.0319846],[-0.0115845,0.074435,-0.0319846],[-0.018215,0.061435,-0.0274218],[-0.018215,0.074435,-0.0274218],[-0.0269065,0.061435,-0.0238267],[-0.0269065,0.074435,-0.0238267],[-0.0371125,0.061435,-0.0214253],[-0.0371125,0.074435,-0.0214253],[-0.048193,0.061435,-0.0203685],[-0.048193,0.074435,-0.0203685],[-0.0594505,0.061435,-0.0207226],[-0.0594505,0.074435,-0.0207226],[-0.0701785,0.061435,-0.0224655],[-0.0701785,0.074435,-0.0224655],[-0.0797025,0.061435,-0.0254875],[-0.0797025,0.074435,-0.0254875],[-0.0874245,0.061435,-0.0295989],[-0.0874245,0.074435,-0.0295989],[-0.0928585,0.061435,-0.0345412],[-0.0928585,0.074435,-0.0345412],[-0.0956635,0.061435,-0.040004],[-0.0956635,0.074435,-0.040004],[-0.0956635,0.061435,-0.045644],[-0.0956635,0.074435,-0.045644],[-0.0928585,0.061435,-0.051107],[-0.0928585,0.074435,-0.051107],[-0.0874245,0.061435,-0.056049],[-0.0874245,0.074435,-0.056049],[-0.0797025,0.061435,-0.0601605],[-0.0797025,0.074435,-0.0601605],[-0.0701785,0.061435,-0.0631825],[-0.0701785,0.074435,-0.0631825],[-0.0594505,0.061435,-0.0649255],[-0.0594505,0.074435,-0.0649255],[-0.048193,0.061435,-0.0652795],[-0.048193,0.074435,-0.0652795],[-0.0371125,0.061435,-0.064223],[-0.0371125,0.074435,-0.064223],[-0.0269065,0.061435,-0.0618215],[-0.0269065,0.074435,-0.0618215],[-0.018215,0.061435,-0.0582265],[-0.018215,0.074435,-0.0582265],[-0.0115845,0.061435,-0.0536635],[-0.0115845,0.074435,-0.0536635],[-0.0074325,0.061435,-0.0484195],[-0.0074325,0.074435,-0.0484195],[-0.0060185,0.061435,-0.0428241],[-0.0060185,0.074435,-0.0428241]])*0.5
|
||||||
tri = [[4,3,2],[1,4,2],[6,1,2],[6,5,1],[8,4,1],[5,8,1],[3,7,2],[7,6,2],[4,7,3],[8,7,4],[6,7,5],[7,8,5],[43,42,44],[42,43,41],[43,46,45],[46,43,44],[58,9,57],[9,58,10],[55,58,57],[56,58,55],[53,54,55],[54,56,55],[12,11,9],[12,9,10],[21,20,22],[20,21,19],[34,33,32],[32,33,31],[35,36,37],[37,36,38],[33,36,35],[36,33,34],[29,30,31],[30,32,31],[40,39,37],[40,37,38],[39,40,41],[40,42,41],[47,48,49],[49,48,50],[48,47,45],[46,48,45],[49,52,51],[52,49,50],[52,53,51],[52,54,53],[14,15,13],[15,14,16],[11,14,13],[12,14,11],[18,17,15],[18,15,16],[17,18,19],[18,20,19],[27,35,37],[17,27,15],[27,53,55],[27,49,51],[11,27,9],[27,47,49],[27,33,35],[23,27,21],[27,39,41],[27,55,57],[9,27,57],[15,27,13],[39,27,37],[47,27,45],[53,27,51],[27,11,13],[43,27,41],[27,29,31],[27,43,45],[27,17,19],[21,27,19],[33,27,31],[27,23,25],[23,24,25],[25,24,26],[24,21,22],[24,23,21],[28,36,34],[42,28,44],[28,58,56],[54,28,56],[52,28,54],[28,34,32],[28,46,44],[18,28,20],[20,28,22],[30,28,32],[40,28,42],[58,28,10],[28,48,46],[28,12,10],[28,14,12],[36,28,38],[28,24,22],[28,40,38],[48,28,50],[28,52,50],[14,28,16],[28,18,16],[24,28,26],[28,27,25],[28,25,26],[28,30,29],[27,28,29],[108,59,60],[59,108,107],[62,59,61],[59,62,60],[103,102,101],[102,103,104],[64,61,63],[64,62,61],[70,67,69],[67,70,68],[70,71,72],[71,70,69],[83,84,82],[83,82,81],[86,85,87],[86,87,88],[86,83,85],[83,86,84],[77,78,75],[75,78,76],[105,106,103],[103,106,104],[108,106,107],[106,105,107],[97,96,95],[96,97,98],[96,93,95],[93,96,94],[93,92,91],[92,93,94],[79,105,103],[59,79,61],[79,93,91],[83,79,85],[85,79,87],[61,79,63],[79,103,101],[65,79,67],[79,99,97],[89,79,91],[79,77,75],[79,59,107],[67,79,69],[79,89,87],[79,73,71],[105,79,107],[79,97,95],[79,71,69],[79,83,81],[99,79,101],[93,79,95],[79,65,63],[73,79,75],[99,100,97],[97,100,98],[102,100,101],[100,99,101],[89,90,87],[87,90,88],[90,89,91],[92,90,91],[66,67,68],[66,65,67],[66,64,63],[65,66,63],[74,75,76],[74,73,75],[71,74,72],[73,74,71],[80,106,108],[74,80,72],[86,80,84],[84,80,82],[64,80,62],[80,108,60],[80,100,102],[62,80,60],[66,80,64],[80,70,72],[80,102,104],[96,80,94],[80,90,92],[70,80,68],[80,86,88],[78,80,76],[106,80,104],[80,96,98],[80,92,94],[100,80,98],[90,80,88],[80,66,68],[80,74,76],[82,80,81],[80,79,81],[80,78,77],[79,80,77]]
|
tri = [[4,3,2],[1,4,2],[6,1,2],[6,5,1],[8,4,1],[5,8,1],[3,7,2],[7,6,2],[4,7,3],[8,7,4],[6,7,5],[7,8,5],[43,42,44],[42,43,41],[43,46,45],[46,43,44],[58,9,57],[9,58,10],[55,58,57],[56,58,55],[53,54,55],[54,56,55],[12,11,9],[12,9,10],[21,20,22],[20,21,19],[34,33,32],[32,33,31],[35,36,37],[37,36,38],[33,36,35],[36,33,34],[29,30,31],[30,32,31],[40,39,37],[40,37,38],[39,40,41],[40,42,41],[47,48,49],[49,48,50],[48,47,45],[46,48,45],[49,52,51],[52,49,50],[52,53,51],[52,54,53],[14,15,13],[15,14,16],[11,14,13],[12,14,11],[18,17,15],[18,15,16],[17,18,19],[18,20,19],[27,35,37],[17,27,15],[27,53,55],[27,49,51],[11,27,9],[27,47,49],[27,33,35],[23,27,21],[27,39,41],[27,55,57],[9,27,57],[15,27,13],[39,27,37],[47,27,45],[53,27,51],[27,11,13],[43,27,41],[27,29,31],[27,43,45],[27,17,19],[21,27,19],[33,27,31],[27,23,25],[23,24,25],[25,24,26],[24,21,22],[24,23,21],[28,36,34],[42,28,44],[28,58,56],[54,28,56],[52,28,54],[28,34,32],[28,46,44],[18,28,20],[20,28,22],[30,28,32],[40,28,42],[58,28,10],[28,48,46],[28,12,10],[28,14,12],[36,28,38],[28,24,22],[28,40,38],[48,28,50],[28,52,50],[14,28,16],[28,18,16],[24,28,26],[28,27,25],[28,25,26],[28,30,29],[27,28,29],[108,59,60],[59,108,107],[62,59,61],[59,62,60],[103,102,101],[102,103,104],[64,61,63],[64,62,61],[70,67,69],[67,70,68],[70,71,72],[71,70,69],[83,84,82],[83,82,81],[86,85,87],[86,87,88],[86,83,85],[83,86,84],[77,78,75],[75,78,76],[105,106,103],[103,106,104],[108,106,107],[106,105,107],[97,96,95],[96,97,98],[96,93,95],[93,96,94],[93,92,91],[92,93,94],[79,105,103],[59,79,61],[79,93,91],[83,79,85],[85,79,87],[61,79,63],[79,103,101],[65,79,67],[79,99,97],[89,79,91],[79,77,75],[79,59,107],[67,79,69],[79,89,87],[79,73,71],[105,79,107],[79,97,95],[79,71,69],[79,83,81],[99,79,101],[93,79,95],[79,65,63],[73,79,75],[99,100,97],[97,100,98],[102,100,101],[100,99,101],[89,90,87],[87,90,88],[90,89,91],[92,90,91],[66,67,68],[66,65,67],[66,64,63],[65,66,63],[74,75,76],[74,73,75],[71,74,72],[73,74,71],[80,106,108],[74,80,72],[86,80,84],[84,80,82],[64,80,62],[80,108,60],[80,100,102],[62,80,60],[66,80,64],[80,70,72],[80,102,104],[96,80,94],[80,90,92],[70,80,68],[80,86,88],[78,80,76],[106,80,104],[80,96,98],[80,92,94],[100,80,98],[90,80,88],[80,66,68],[80,74,76],[82,80,81],[80,79,81],[80,78,77],[79,80,77]]
|
||||||
@ -159,6 +172,7 @@ def create_cameras(cameras):
|
|||||||
meshes.append({
|
meshes.append({
|
||||||
'vertices': vertices, 'faces': triangles, 'name': 'camera_{}'.format(nv), 'vid': nv
|
'vertices': vertices, 'faces': triangles, 'name': 'camera_{}'.format(nv), 'vid': nv
|
||||||
})
|
})
|
||||||
|
meshes = merge_meshes(meshes)
|
||||||
return meshes
|
return meshes
|
||||||
|
|
||||||
import os
|
import os
|
||||||
@ -202,4 +216,7 @@ def create_mesh_pyrender(vert, faces, col):
|
|||||||
mesh = pyrender.Mesh.from_trimesh(
|
mesh = pyrender.Mesh.from_trimesh(
|
||||||
mesh,
|
mesh,
|
||||||
material=material)
|
material=material)
|
||||||
return mesh
|
return mesh
|
||||||
|
|
||||||
|
if __name__ == "__main__":
|
||||||
|
pass
|
@ -2,8 +2,8 @@
|
|||||||
@ Date: 2021-01-17 21:38:19
|
@ Date: 2021-01-17 21:38:19
|
||||||
@ Author: Qing Shuai
|
@ Author: Qing Shuai
|
||||||
@ LastEditors: Qing Shuai
|
@ LastEditors: Qing Shuai
|
||||||
@ LastEditTime: 2021-06-28 11:43:00
|
@ LastEditTime: 2021-08-24 16:42:22
|
||||||
@ FilePath: /EasyMocapRelease/easymocap/visualize/skelmodel.py
|
@ FilePath: /EasyMocap/easymocap/visualize/skelmodel.py
|
||||||
'''
|
'''
|
||||||
import numpy as np
|
import numpy as np
|
||||||
import cv2
|
import cv2
|
||||||
@ -39,7 +39,7 @@ def calTransformation(v_i, v_j, r, adaptr=False, ratio=10):
|
|||||||
return T, r, length
|
return T, r, length
|
||||||
|
|
||||||
class SkelModel:
|
class SkelModel:
|
||||||
def __init__(self, nJoints=None, kintree=None, body_type=None, joint_radius=0.02, **kwargs) -> None:
|
def __init__(self, nJoints=None, kintree=None, body_type=None, joint_radius=0.02, res=20, **kwargs) -> None:
|
||||||
if nJoints is not None:
|
if nJoints is not None:
|
||||||
self.nJoints = nJoints
|
self.nJoints = nJoints
|
||||||
self.kintree = kintree
|
self.kintree = kintree
|
||||||
@ -50,8 +50,8 @@ class SkelModel:
|
|||||||
self.body_type = body_type
|
self.body_type = body_type
|
||||||
self.device = 'none'
|
self.device = 'none'
|
||||||
cur_dir = os.path.dirname(__file__)
|
cur_dir = os.path.dirname(__file__)
|
||||||
faces = np.loadtxt(join(cur_dir, 'sphere_faces_20.txt'), dtype=np.int)
|
faces = np.loadtxt(join(cur_dir, 'assets', 'sphere_faces_{}.txt'.format(res)), dtype=np.int)
|
||||||
self.vertices = np.loadtxt(join(cur_dir, 'sphere_vertices_20.txt'))
|
self.vertices = np.loadtxt(join(cur_dir, 'assets', 'sphere_vertices_{}.txt'.format(res)))
|
||||||
# compose faces
|
# compose faces
|
||||||
faces_all = []
|
faces_all = []
|
||||||
for nj in range(self.nJoints):
|
for nj in range(self.nJoints):
|
||||||
@ -69,7 +69,7 @@ class SkelModel:
|
|||||||
if not return_verts:
|
if not return_verts:
|
||||||
return keypoints3d
|
return keypoints3d
|
||||||
if keypoints3d.shape[-1] == 3: # add confidence
|
if keypoints3d.shape[-1] == 3: # add confidence
|
||||||
keypoints3d = np.hstack((keypoints3d, np.ones((keypoints3d.shape[0], 1))))
|
keypoints3d = np.dstack((keypoints3d, np.ones((keypoints3d.shape[0], keypoints3d.shape[1], 1))))
|
||||||
r = self.joint_radius
|
r = self.joint_radius
|
||||||
# joints
|
# joints
|
||||||
min_conf = 0.1
|
min_conf = 0.1
|
||||||
|
Loading…
Reference in New Issue
Block a user