diff --git a/doc/log.md b/doc/log.md index fb0b330..ef5046d 100644 --- a/doc/log.md +++ b/doc/log.md @@ -2,12 +2,22 @@ * @Date: 2021-01-24 22:30:40 * @Author: Qing Shuai * @LastEditors: Qing Shuai - * @LastEditTime: 2021-01-24 22:32:53 + * @LastEditTime: 2021-05-27 21:10:07 * @FilePath: /EasyMocapRelease/doc/log.md --> -## 2020.01.24 +## 2021.01.24 1. Support SMPL+H, SMPL-X model. 2. Upgrade `body_model.py`. 3. Update the optimization functions. 4. Add checking length of limb -5. Update the example figures. \ No newline at end of file +5. Update the example figures. + +## 2021.04.13 +1. Add mirrored-human code. +2. Add `calibration` and `annotator` +3. Add `setup.py` + +## 2021.05.27 +1. Remove the `code/` folder +2. Add the support for mano model +3. Add `--write_smpl_full` flag \ No newline at end of file diff --git a/easymocap/dataset/base.py b/easymocap/dataset/base.py index c09b7e9..bd6c05b 100644 --- a/easymocap/dataset/base.py +++ b/easymocap/dataset/base.py @@ -2,11 +2,10 @@ @ Date: 2021-01-13 16:53:55 @ Author: Qing Shuai @ LastEditors: Qing Shuai - @ LastEditTime: 2021-04-13 15:59:35 - @ FilePath: /EasyMocap/easymocap/dataset/base.py + @ LastEditTime: 2021-05-27 20:37:55 + @ FilePath: /EasyMocapRelease/easymocap/dataset/base.py ''' import os -import json from os.path import join from glob import glob import cv2 @@ -14,13 +13,13 @@ import os, sys import numpy as np from ..mytools.camera_utils import read_camera, get_fundamental_matrix, Undistort -from ..mytools import FileWriter, read_annot, getFileList -from ..mytools.reader import read_keypoints3d, read_json +from ..mytools import FileWriter, read_annot, getFileList, save_json +from ..mytools.reader import read_keypoints3d, read_json, read_smpl # from ..mytools.writer import FileWriter # from ..mytools.camera_utils import read_camera, undistort, write_camera, get_fundamental_matrix # from ..mytools.vis_base import merge, plot_bbox, plot_keypoints # from ..mytools.file_utils import read_json, save_json, read_annot, read_smpl, write_smpl, get_bbox_from_pose -# from ..mytools.file_utils import merge_params, select_nf, getFileList +from ..mytools.file_utils import merge_params, select_nf def crop_image(img, annot, vis_2d=False, config={}, crop_square=True): for det in annot: @@ -74,8 +73,6 @@ class ImageFolder: self.imagelist.extend(images) annots = sorted([join(sub, i) for i in os.listdir(join(self.annot_root, sub))]) self.annotlist.extend(annots) - # output - assert out is not None self.out = out self.writer = FileWriter(self.out, config=config) self.gtK, self.gtRT = False, False @@ -132,6 +129,10 @@ class ImageFolder: def write_keypoints3d(self, results, nf): outname = join(self.out, 'keypoints3d', '{}.json'.format(self.basename(nf))) self.writer.write_keypoints3d(results, outname) + + def write_vertices(self, results, nf): + outname = join(self.out, 'vertices', '{}.json'.format(self.basename(nf))) + self.writer.write_vertices(results, outname) def write_smpl(self, results, nf): outname = join(self.out, 'smpl', '{}.json'.format(self.basename(nf))) @@ -144,20 +145,21 @@ class ImageFolder: camera[key] = camera[key][None, :, :] self.writer.vis_smpl(render_data, images, camera, outname, add_back=True) -class VideoFolder(ImageFolder): - "一段视频的图片的文件夹" - def __init__(self, root, name, out=None, - image_root='images', annot_root='annots', - kpts_type='body15', config={}, no_img=False) -> None: - self.root = root - self.image_root = join(root, image_root, name) - self.annot_root = join(root, annot_root, name) - self.name = name - self.kpts_type = kpts_type - self.no_img = no_img - self.imagelist = sorted(os.listdir(self.image_root)) - self.annotlist = sorted(os.listdir(self.annot_root)) - self.ret_crop = False +# class VideoFolder(ImageFolder): +# "一段视频的图片的文件夹" +# def __init__(self, root, name, out=None, +# image_root='images', annot_root='annots', +# kpts_type='body15', config={}, no_img=False) -> None: +# self.root = root +# self.image_root = join(root, image_root, name) +# self.annot_root = join(root, annot_root, name) +# self.name = name +# self.kpts_type = kpts_type +# self.no_img = no_img +# self.imagelist = sorted(os.listdir(self.image_root)) +# self.annotlist = sorted(os.listdir(self.annot_root)) +# self.ret_crop = False +# self.gtK, self.gtRT = False, False def load_annot_all(self, path): # 这个不使用personID,只是单纯的罗列一下 @@ -363,7 +365,10 @@ def load_cameras(path): print('\n\n!!!there is no camera parameters, maybe bug: \n', intri_name, extri_name, '\n') cameras = None return cameras - + +def numpy_to_list(array, precision=3): + return np.round(array, precision).tolist() + class MVBase: """ Dataset for multiview data """ @@ -498,24 +503,33 @@ class MVBase: images = [images[i] for i in valid_idx] lDetections = [lDetections[i] for i in valid_idx] return self.writer.vis_keypoints2d_mv(images, lDetections, outname=outname, vis_id=False) - - def vis_match(self, images, lDetections, nf, to_img=True, sub_vis=[]): - if len(sub_vis) != 0: - valid_idx = [self.cams.index(i) for i in sub_vis] - images = [images[i] for i in valid_idx] - lDetections = [lDetections[i] for i in valid_idx] - return self.writer.vis_detections(images, lDetections, nf, - key='match', to_img=to_img, vis_id=True) def basename(self, nf): return '{:06d}'.format(nf) + def write_keypoints2d(self, lDetections, nf): + for nv in range(len(lDetections)): + cam = self.cams[nv] + annname = join(self.annot_root, cam, self.annotlist[cam][nf]) + outname = join(self.out, 'keypoints2d', cam, self.annotlist[cam][nf]) + annot_origin = read_json(annname) + annots = lDetections[nv] + results = [] + for annot in annots: + results.append({ + 'personID': annot['id'], + 'bbox': numpy_to_list(annot['bbox'], 2), + 'keypoints': numpy_to_list(annot['keypoints'], 2) + }) + annot_origin['annots'] = results + save_json(outname, annot_origin) + def write_keypoints3d(self, results, nf): outname = join(self.out, 'keypoints3d', self.basename(nf)+'.json') self.writer.write_keypoints3d(results, outname) - def write_smpl(self, results, nf): - outname = join(self.out, 'smpl', self.basename(nf)+'.json') + def write_smpl(self, results, nf, mode='smpl'): + outname = join(self.out, mode, self.basename(nf)+'.json') self.writer.write_smpl(results, outname) def vis_smpl(self, peopleDict, faces, images, nf, sub_vis=[], diff --git a/easymocap/dataset/config.py b/easymocap/dataset/config.py index 7cf1ad7..bc23009 100644 --- a/easymocap/dataset/config.py +++ b/easymocap/dataset/config.py @@ -2,7 +2,7 @@ * @ Date: 2020-09-26 16:52:55 * @ Author: Qing Shuai @ LastEditors: Qing Shuai - @ LastEditTime: 2021-04-03 18:30:13 + @ LastEditTime: 2021-05-27 14:33:03 @ FilePath: /EasyMocap/easymocap/dataset/config.py ''' import numpy as np @@ -197,6 +197,9 @@ CONFIG['hand'] = {'kintree': 'y', 'y', 'y', 'y'] } +CONFIG['handl'] = CONFIG['hand'] +CONFIG['handr'] = CONFIG['hand'] + CONFIG['bodyhand'] = {'kintree': [[ 1, 0], [ 2, 1], @@ -673,6 +676,8 @@ CONFIG['total']['nJoints'] = 137 COCO17_IN_BODY25 = [0,16,15,18,17,5,2,6,3,7,4,12,9,13,10,14,11] +CONFIG['bodyhandface']['joint_names'] = CONFIG['body25']['joint_names'] + def coco17tobody25(points2d): dim = 3 if len(points2d.shape) == 2: diff --git a/easymocap/dataset/mv1pmf.py b/easymocap/dataset/mv1pmf.py index 1bedc77..aaf2a5b 100644 --- a/easymocap/dataset/mv1pmf.py +++ b/easymocap/dataset/mv1pmf.py @@ -2,7 +2,7 @@ @ Date: 2021-01-12 17:12:50 @ Author: Qing Shuai @ LastEditors: Qing Shuai - @ LastEditTime: 2021-04-13 10:59:22 + @ LastEditTime: 2021-05-27 20:25:24 @ FilePath: /EasyMocap/easymocap/dataset/mv1pmf.py ''' from ..mytools.file_utils import get_bbox_from_pose @@ -25,10 +25,10 @@ class MV1PMF(MVBase): results = [{'id': self.pid, 'keypoints3d': keypoints3d}] super().write_keypoints3d(results, nf) - def write_smpl(self, params, nf): + def write_smpl(self, params, nf, mode='smpl'): result = {'id': 0} result.update(params) - super().write_smpl([result], nf) + super().write_smpl([result], nf, mode) def vis_smpl(self, vertices, faces, images, nf, sub_vis=[], mode='smpl', extra_data=[], add_back=True): @@ -42,7 +42,7 @@ class MV1PMF(MVBase): if len(sub_vis) == 0: sub_vis = self.cams for key in cameras.keys(): - cameras[key] = [self.cameras[cam][key] for cam in sub_vis] + cameras[key] = np.stack([self.cameras[cam][key] for cam in sub_vis]) images = [images[self.cams.index(cam)] for cam in sub_vis] self.writer.vis_smpl(render_data, images, cameras, outname, add_back=add_back) @@ -57,7 +57,7 @@ class MV1PMF(MVBase): lDetections.append([det]) return super().vis_detections(images, lDetections, nf, sub_vis=sub_vis) - def vis_repro(self, images, kpts_repro, nf, to_img=True, sub_vis=[]): + def vis_repro(self, images, kpts_repro, nf, to_img=True, sub_vis=[], mode='repro'): lDetections = [] for nv in range(len(images)): det = { @@ -66,7 +66,7 @@ class MV1PMF(MVBase): 'bbox': get_bbox_from_pose(kpts_repro[nv], images[nv]) } lDetections.append([det]) - return super().vis_detections(images, lDetections, nf, mode='repro', sub_vis=sub_vis) + return super().vis_detections(images, lDetections, nf, mode=mode, sub_vis=sub_vis) def __getitem__(self, index: int): images, annots_all = super().__getitem__(index) diff --git a/easymocap/mytools/camera_utils.py b/easymocap/mytools/camera_utils.py index 74b4cb5..0c3d8c9 100644 --- a/easymocap/mytools/camera_utils.py +++ b/easymocap/mytools/camera_utils.py @@ -1,6 +1,5 @@ import cv2 import numpy as np -from tqdm import tqdm import os class FileStorage(object): @@ -53,10 +52,6 @@ class FileStorage(object): def close(self): self.__del__(self) -def safe_mkdir(path): - if not os.path.exists(path): - os.makedirs(path) - def read_intri(intri_name): assert os.path.exists(intri_name), intri_name intri = FileStorage(intri_name) @@ -145,6 +140,14 @@ def write_camera(camera, path): extri.write('Rot_{}'.format(key), val['R']) extri.write('T_{}'.format(key), val['T']) +def camera_from_img(img): + height, width = img.shape[0], img.shape[1] + # focal = 1.2*max(height, width) # as colmap + focal = 1.2*min(height, width) # as colmap + K = np.array([focal, 0., width/2, 0., focal, height/2, 0. ,0., 1.]).reshape(3, 3) + camera = {'K':K ,'R': np.eye(3), 'T': np.zeros((3, 1)), 'dist': np.zeros((1, 5))} + return camera + class Undistort: @staticmethod def image(frame, K, dist): @@ -169,84 +172,8 @@ class Undistort: def undistort(camera, frame=None, keypoints=None, output=None, bbox=None): # bbox: 1, 7 - mtx = camera['K'] - dist = camera['dist'] - if frame is not None: - frame = cv2.undistort(frame, mtx, dist, None) - if output is not None: - output = cv2.undistort(output, mtx, dist, None) - if keypoints is not None: - for nP in range(keypoints.shape[0]): - kpts = keypoints[nP][:, None, :2] - kpts = np.ascontiguousarray(kpts) - kpts = cv2.undistortPoints(kpts, mtx, dist, P=mtx) - keypoints[nP, :, :2] = kpts[:, 0] - if bbox is not None: - kpts = np.zeros((2, 1, 2)) - kpts[0, 0, 0] = bbox[0] - kpts[0, 0, 1] = bbox[1] - kpts[1, 0, 0] = bbox[2] - kpts[1, 0, 1] = bbox[3] - kpts = cv2.undistortPoints(kpts, mtx, dist, P=mtx) - bbox[0] = kpts[0, 0, 0] - bbox[1] = kpts[0, 0, 1] - bbox[2] = kpts[1, 0, 0] - bbox[3] = kpts[1, 0, 1] - return bbox - return frame, keypoints, output - -def get_bbox(points_set, H, W, thres=0.1, scale=1.2): - bboxes = np.zeros((points_set.shape[0], 6)) - for iv in range(points_set.shape[0]): - pose = points_set[iv, :, :] - use_idx = pose[:,2] > thres - if np.sum(use_idx) < 1: - continue - ll, rr = np.min(pose[use_idx, 0]), np.max(pose[use_idx, 0]) - bb, tt = np.min(pose[use_idx, 1]), np.max(pose[use_idx, 1]) - center = (int((ll + rr) / 2), int((bb + tt) / 2)) - length = [int(scale*(rr-ll)/2), int(scale*(tt-bb)/2)] - l = max(0, center[0] - length[0]) - r = min(W, center[0] + length[0]) # img.shape[1] - b = max(0, center[1] - length[1]) - t = min(H, center[1] + length[1]) # img.shape[0] - conf = pose[:, 2].mean() - cls_conf = pose[use_idx, 2].mean() - bboxes[iv, 0] = l - bboxes[iv, 1] = r - bboxes[iv, 2] = b - bboxes[iv, 3] = t - bboxes[iv, 4] = conf - bboxes[iv, 5] = cls_conf - return bboxes - -def filterKeypoints(keypoints, thres = 0.1, min_width=40, \ - min_height=40, min_area= 50000, min_count=6): - add_list = [] - # TODO:并行化 - for ik in range(keypoints.shape[0]): - pose = keypoints[ik] - vis_count = np.sum(pose[:15, 2] > thres) #TODO: - if vis_count < min_count: - continue - ll, rr = np.min(pose[pose[:,2]>thres,0]), np.max(pose[pose[:,2]>thres,0]) - bb, tt = np.min(pose[pose[:,2]>thres,1]), np.max(pose[pose[:,2]>thres,1]) - center = (int((ll+rr)/2), int((bb+tt)/2)) - length = [int(1.2*(rr-ll)/2), int(1.2*(tt-bb)/2)] - l = center[0] - length[0] - r = center[0] + length[0] - b = center[1] - length[1] - t = center[1] + length[1] - if (r - l) < min_width: - continue - if (t - b) < min_height: - continue - if (r - l)*(t - b) < min_area: - continue - add_list.append(ik) - keypoints = keypoints[add_list, :, :] - return keypoints, add_list - + print('This function is deprecated') + raise NotImplementedError def get_fundamental_matrix(cameras, basenames): skew_op = lambda x: np.array([[0, -x[2], x[1]], [x[2], 0, -x[0]], [-x[1], x[0], 0]]) diff --git a/easymocap/mytools/cmd_loader.py b/easymocap/mytools/cmd_loader.py index 2f9630d..b0eb5ea 100644 --- a/easymocap/mytools/cmd_loader.py +++ b/easymocap/mytools/cmd_loader.py @@ -2,7 +2,7 @@ @ Date: 2021-01-15 12:09:27 @ Author: Qing Shuai @ LastEditors: Qing Shuai - @ LastEditTime: 2021-04-13 19:45:18 + @ LastEditTime: 2021-05-27 20:36:42 @ FilePath: /EasyMocapRelease/easymocap/mytools/cmd_loader.py ''' import os @@ -12,9 +12,11 @@ def load_parser(): parser = argparse.ArgumentParser('EasyMocap commond line tools') parser.add_argument('path', type=str) parser.add_argument('--out', type=str, default=None) + parser.add_argument('--camera', type=str, default=None) parser.add_argument('--annot', type=str, default='annots', help="sub directory name to store the generated annotation files, default to be annots") parser.add_argument('--sub', type=str, nargs='+', default=[], help='the sub folder lists when in video mode') + parser.add_argument('--from_file', type=str, default=None) parser.add_argument('--pid', type=int, nargs='+', default=[0], help='the person IDs') parser.add_argument('--max_person', type=int, default=-1, @@ -28,8 +30,8 @@ def load_parser(): # # keypoints and body model # - parser.add_argument('--body', type=str, default='body25', choices=['body15', 'body25', 'h36m', 'bodyhand', 'bodyhandface', 'total']) - parser.add_argument('--model', type=str, default='smpl', choices=['smpl', 'smplh', 'smplx', 'mano']) + parser.add_argument('--body', type=str, default='body25', choices=['body15', 'body25', 'h36m', 'bodyhand', 'bodyhandface', 'handl', 'handr', 'total']) + parser.add_argument('--model', type=str, default='smpl', choices=['smpl', 'smplh', 'smplx', 'manol', 'manor']) parser.add_argument('--gender', type=str, default='neutral', choices=['neutral', 'male', 'female']) # Input control @@ -50,17 +52,22 @@ def load_parser(): # # visualization part # - parser.add_argument('--vis_det', action='store_true') - parser.add_argument('--vis_repro', action='store_true') - parser.add_argument('--vis_smpl', action='store_true') - parser.add_argument('--undis', action='store_true') - parser.add_argument('--sub_vis', type=str, nargs='+', default=[], + output = parser.add_argument_group('Output control') + output.add_argument('--vis_det', action='store_true') + output.add_argument('--vis_repro', action='store_true') + output.add_argument('--vis_smpl', action='store_true') + output.add_argument('--write_smpl_full', action='store_true') + output.add_argument('--vis_mask', action='store_true') + output.add_argument('--undis', action='store_true') + output.add_argument('--sub_vis', type=str, nargs='+', default=[], help='the sub folder lists for visualization') # # debug # parser.add_argument('--verbose', action='store_true') parser.add_argument('--save_origin', action='store_true') + parser.add_argument('--restart', action='store_true') + parser.add_argument('--no_opt', action='store_true') parser.add_argument('--debug', action='store_true') parser.add_argument('--opts', help="Modify config options using the command-line", @@ -82,6 +89,21 @@ def parse_parser(parser): print(' - [Warning] Please specify the output path `--out ${out}`') print(' - [Warning] Default to {}/output'.format(args.path)) args.out = join(args.path, 'output') + if args.from_file is not None: + assert os.path.exists(args.from_file), args.from_file + with open(args.from_file) as f: + datas = f.readlines() + subs = [d for d in datas if not d.startswith('#')] + subs = [d.rstrip().replace('https://www.youtube.com/watch?v=', '') for d in subs] + newsubs = sorted(os.listdir(join(args.path, 'images'))) + clips = [] + for newsub in newsubs: + if newsub.split('+')[0] in subs: + clips.append(newsub) + for sub in subs: + if os.path.exists(join(args.path, 'images', sub)): + clips.append(sub) + args.sub = clips if len(args.sub) == 0 and os.path.exists(join(args.path, 'images')): args.sub = sorted(os.listdir(join(args.path, 'images'))) if args.sub[0].isdigit(): diff --git a/easymocap/mytools/file_utils.py b/easymocap/mytools/file_utils.py index 151002f..ed5c48c 100644 --- a/easymocap/mytools/file_utils.py +++ b/easymocap/mytools/file_utils.py @@ -2,8 +2,8 @@ @ Date: 2021-03-15 12:23:12 @ Author: Qing Shuai @ LastEditors: Qing Shuai - @ LastEditTime: 2021-04-01 16:17:34 - @ FilePath: /EasyMocap/easymocap/mytools/file_utils.py + @ LastEditTime: 2021-05-27 20:50:43 + @ FilePath: /EasyMocapRelease/easymocap/mytools/file_utils.py ''' import os import json @@ -64,6 +64,13 @@ def read_annot(annotname, mode='body25'): data[i]['keypoints'] = data[i]['keypoints'] elif mode == 'body15': data[i]['keypoints'] = data[i]['keypoints'][:15, :] + elif mode in ['handl', 'handr']: + data[i]['keypoints'] = np.array(data[i][mode+'2d']).astype(np.float32) + key = 'bbox_'+mode+'2d' + if key not in data[i].keys(): + data[i]['bbox'] = np.array(get_bbox_from_pose(data[i]['keypoints'])).astype(np.float32) + else: + data[i]['bbox'] = data[i]['bbox_'+mode+'2d'][:5] elif mode == 'total': data[i]['keypoints'] = np.vstack([data[i][key] for key in ['keypoints', 'handl2d', 'handr2d', 'face2d']]) elif mode == 'bodyhand': @@ -75,42 +82,70 @@ def read_annot(annotname, mode='body25'): data.sort(key=lambda x:x['id']) return data -def write_common_results(dumpname, results, keys, fmt='%.3f'): - mkout(dumpname) +def array2raw(array, separator=' ', fmt='%.3f'): + assert len(array.shape) == 2, 'Only support MxN matrix, {}'.format(array.shape) + res = [] + for data in array: + res.append(separator.join([fmt%(d) for d in data])) + + +def myarray2string(array, separator=', ', fmt='%.3f'): + assert len(array.shape) == 2, 'Only support MxN matrix, {}'.format(array.shape) + res = ['['] + for i in range(array.shape[0]): + res.append(' [{}]'.format(separator.join([fmt%(d) for d in array[i]]))) + if i != array.shape[0] -1: + res[-1] += ', ' + res.append(' ]') + return '\r\n'.join(res) + +def write_common_results(dumpname=None, results=[], keys=[], fmt='%2.3f'): format_out = {'float_kind':lambda x: fmt % x} - with open(dumpname, 'w') as f: - f.write('[\n') - for idata, data in enumerate(results): - f.write(' {\n') - output = {} - output['id'] = data['id'] - for key in keys: - if key not in data.keys():continue - output[key] = np.array2string(data[key], max_line_width=1000, separator=', ', formatter=format_out) - for key in output.keys(): - f.write(' \"{}\": {}'.format(key, output[key])) - if key != keys[-1]: - f.write(',\n') - else: - f.write('\n') - f.write(' }') - if idata != len(results) - 1: - f.write(',\n') + out_text = [] + out_text.append('[\n') + for idata, data in enumerate(results): + out_text.append(' {\n') + output = {} + output['id'] = data['id'] + for key in keys: + if key not in data.keys():continue + # BUG: This function will failed if the rows of the data[key] is too large + # output[key] = np.array2string(data[key], max_line_width=1000, separator=', ', formatter=format_out) + output[key] = myarray2string(data[key], separator=', ', fmt=fmt) + for key in output.keys(): + out_text.append(' \"{}\": {}'.format(key, output[key])) + if key != keys[-1]: + out_text.append(',\n') else: - f.write('\n') - f.write(']\n') + out_text.append('\n') + out_text.append(' }') + if idata != len(results) - 1: + out_text.append(',\n') + else: + out_text.append('\n') + out_text.append(']\n') + if dumpname is not None: + mkout(dumpname) + with open(dumpname, 'w') as f: + f.writelines(out_text) + else: + return ''.join(out_text) def write_keypoints3d(dumpname, results): # TODO:rewrite it keys = ['keypoints3d'] - write_common_results(dumpname, results, keys, fmt='%.3f') + write_common_results(dumpname, results, keys, fmt='%6.3f') + +def write_vertices(dumpname, results): + keys = ['vertices'] + write_common_results(dumpname, results, keys, fmt='%6.3f') def write_smpl(dumpname, results): keys = ['Rh', 'Th', 'poses', 'expression', 'shapes'] write_common_results(dumpname, results, keys) -def get_bbox_from_pose(pose_2d, img, rate = 0.1): +def get_bbox_from_pose(pose_2d, img=None, rate = 0.1): # this function returns bounding box from the 2D pose # here use pose_2d[:, -1] instead of pose_2d[:, 2] # because when vis reprojection, the result will be (x, y, depth, conf) @@ -125,7 +160,8 @@ def get_bbox_from_pose(pose_2d, img, rate = 0.1): dy = (y_max - y_min)*rate # 后面加上类别这些 bbox = [x_min-dx, y_min-dy, x_max+dx, y_max+dy, 1] - correct_bbox(img, bbox) + if img is not None: + correct_bbox(img, bbox) return bbox def correct_bbox(img, bbox): diff --git a/easymocap/pipeline/basic.py b/easymocap/pipeline/basic.py index ed4fcde..98d66c0 100644 --- a/easymocap/pipeline/basic.py +++ b/easymocap/pipeline/basic.py @@ -2,11 +2,10 @@ @ Date: 2021-04-13 20:43:16 @ Author: Qing Shuai @ LastEditors: Qing Shuai - @ LastEditTime: 2021-04-14 13:38:34 - @ FilePath: /EasyMocapRelease/easymocap/pipeline/basic.py + @ LastEditTime: 2021-05-27 15:35:22 + @ FilePath: /EasyMocap/easymocap/pipeline/basic.py ''' from ..pyfitting import optimizeShape, optimizePose2D, optimizePose3D -from ..smplmodel import init_params from ..mytools import Timer from ..dataset import CONFIG from .weight import load_weight_pose, load_weight_shape @@ -37,10 +36,26 @@ def multi_stage_optimize(body_model, params, kp3ds, kp2ds=None, bboxes=None, Pal params = optimizePose2D(body_model, params, bboxes, kp2ds, Pall, weight=weight, cfg=cfg) return params +def multi_stage_optimize2d(body_model, params, kp2ds, bboxes, Pall, weight={}, args=None): + cfg = Config(args) + cfg.device = body_model.device + cfg.device = body_model.device + cfg.model = body_model.model_type + with Timer('Optimize global RT'): + cfg.OPT_R = True + cfg.OPT_T = True + params = optimizePose2D(body_model, params, bboxes, kp2ds, Pall, weight=weight, cfg=cfg) + with Timer('Optimize 2D Pose/{} frames'.format(kp2ds.shape[0])): + cfg.OPT_POSE = True + cfg.OPT_SHAPE = True + # bboxes => (nFrames, nViews, 5), keypoints2d => (nFrames, nViews, nJoints, 3) + params = optimizePose2D(body_model, params, bboxes, kp2ds, Pall, weight=weight, cfg=cfg) + return params + def smpl_from_keypoints3d2d(body_model, kp3ds, kp2ds, bboxes, Pall, config, args, weight_shape=None, weight_pose=None): model_type = body_model.model_type - params_init = init_params(nFrames=1, model_type=model_type) + params_init = body_model.init_params(nFrames=1) if weight_shape is None: weight_shape = load_weight_shape(args.opts) if model_type in ['smpl', 'smplh', 'smplx']: @@ -54,7 +69,7 @@ def smpl_from_keypoints3d2d(body_model, kp3ds, kp2ds, bboxes, Pall, config, args # optimize 3D pose cfg = Config(args) cfg.device = body_model.device - params = init_params(nFrames=kp3ds.shape[0], model_type=model_type) + params = body_model.init_params(nFrames=kp3ds.shape[0]) params['shapes'] = params_shape['shapes'].copy() if weight_pose is None: weight_pose = load_weight_pose(model_type, args.opts) @@ -65,7 +80,7 @@ def smpl_from_keypoints3d2d(body_model, kp3ds, kp2ds, bboxes, Pall, config, args def smpl_from_keypoints3d(body_model, kp3ds, config, args, weight_shape=None, weight_pose=None): model_type = body_model.model_type - params_init = init_params(nFrames=1, model_type=model_type) + params_init = body_model.init_params(nFrames=1) if weight_shape is None: weight_shape = load_weight_shape(args.opts) if model_type in ['smpl', 'smplh', 'smplx']: @@ -80,7 +95,7 @@ def smpl_from_keypoints3d(body_model, kp3ds, config, args, cfg = Config(args) cfg.device = body_model.device cfg.model_type = model_type - params = init_params(nFrames=kp3ds.shape[0], model_type=model_type) + params = body_model.init_params(nFrames=kp3ds.shape[0]) params['shapes'] = params_shape['shapes'].copy() if weight_pose is None: weight_pose = load_weight_pose(model_type, args.opts) diff --git a/easymocap/pipeline/weight.py b/easymocap/pipeline/weight.py index 3a0e87d..8810a8c 100644 --- a/easymocap/pipeline/weight.py +++ b/easymocap/pipeline/weight.py @@ -2,8 +2,8 @@ @ Date: 2021-04-13 20:12:58 @ Author: Qing Shuai @ LastEditors: Qing Shuai - @ LastEditTime: 2021-04-13 22:51:39 - @ FilePath: /EasyMocapRelease/easymocap/pipeline/weight.py + @ LastEditTime: 2021-05-27 17:04:47 + @ FilePath: /EasyMocap/easymocap/pipeline/weight.py ''' def load_weight_shape(opts): weight = {'s3d': 1., 'reg_shapes': 5e-3} @@ -35,9 +35,33 @@ def load_weight_pose(model, opts): 'reg_hand': 1e-4, 'reg_expr': 1e-2, 'reg_head': 1e-2, 'k2d': 1e-4 } + elif model == 'mano': + weight = { + 'k3d': 1e2, 'k2d': 1e-3, + 'reg_poses': 1e-3, 'smooth_body': 1e2 + } else: + print(model) raise NotImplementedError for key in opts.keys(): if key in weight.keys(): weight[key] = opts[key] return weight + +def load_weight_pose2d(model, opts): + if model == 'smpl': + weight = { + 'k2d': 2e-4, + 'init_poses': 1e-3, 'init_shapes': 1e-2, + 'smooth_body': 5e-1, 'smooth_poses': 1e-1, + } + elif model == 'smplh': + raise NotImplementedError + elif model == 'smplx': + raise NotImplementedError + else: + weight = {} + for key in opts.keys(): + if key in weight.keys(): + weight[key] = opts[key] + return weight \ No newline at end of file diff --git a/easymocap/pyfitting/optimize_simple.py b/easymocap/pyfitting/optimize_simple.py index 83c2448..1877309 100644 --- a/easymocap/pyfitting/optimize_simple.py +++ b/easymocap/pyfitting/optimize_simple.py @@ -2,8 +2,8 @@ @ Date: 2020-11-19 10:49:26 @ Author: Qing Shuai @ LastEditors: Qing Shuai - @ LastEditTime: 2021-04-13 22:52:28 - @ FilePath: /EasyMocapRelease/easymocap/pyfitting/optimize_simple.py + @ LastEditTime: 2021-05-25 19:51:12 + @ FilePath: /EasyMocap/easymocap/pyfitting/optimize_simple.py ''' import numpy as np import torch @@ -279,8 +279,9 @@ def optimizePose3D(body_model, params, keypoints3d, weight, cfg): 'smooth_poses': LossSmoothPoses(1, nFrames, cfg).poses, 'reg_poses': LossRegPoses(cfg).reg_body, 'init_poses': LossInit(params, cfg).init_poses, - 'reg_poses_zero': LossRegPosesZero(keypoints3d, cfg).__call__, } + if body_model.model_type != 'mano': + loss_funcs['reg_poses_zero'] = LossRegPosesZero(keypoints3d, cfg).__call__ if cfg.OPT_HAND: loss_funcs['k3d_hand'] = LossKeypoints3D(keypoints3d, cfg, norm='l1').hand loss_funcs['reg_hand'] = LossRegPoses(cfg).reg_hand @@ -327,9 +328,12 @@ def optimizePose2D(body_model, params, bboxes, keypoints2d, Pall, weight, cfg): 'smooth_body': LossSmoothBodyMean(cfg).body, 'init_poses': LossInit(params, cfg).init_poses, 'smooth_poses': LossSmoothPoses(nViews, nFrames, cfg).poses, - # 'reg_poses': LossRegPoses(cfg).reg_body, - 'reg_poses_zero': LossRegPosesZero(keypoints2d, cfg).__call__, + 'reg_poses': LossRegPoses(cfg).reg_body, } + if body_model.model_type != 'mano': + loss_funcs['reg_poses_zero'] = LossRegPosesZero(keypoints2d, cfg).__call__ + if cfg.OPT_SHAPE: + loss_funcs['init_shapes'] = LossInit(params, cfg).init_shapes if cfg.OPT_HAND: loss_funcs['reg_hand'] = LossRegPoses(cfg).reg_hand # loss_funcs['smooth_hand'] = LossSmoothPoses(1, nFrames, cfg).hands diff --git a/easymocap/smplmodel/__init__.py b/easymocap/smplmodel/__init__.py index a82eb7f..1c692df 100644 --- a/easymocap/smplmodel/__init__.py +++ b/easymocap/smplmodel/__init__.py @@ -2,9 +2,9 @@ @ Date: 2020-11-18 14:33:20 @ Author: Qing Shuai @ LastEditors: Qing Shuai - @ LastEditTime: 2021-01-20 16:33:02 - @ FilePath: /EasyMocap/code/smplmodel/__init__.py + @ LastEditTime: 2021-05-25 19:20:52 + @ FilePath: /EasyMocap/easymocap/smplmodel/__init__.py ''' from .body_model import SMPLlayer from .body_param import load_model -from .body_param import merge_params, select_nf, init_params, check_params, check_keypoints \ No newline at end of file +from .body_param import merge_params, select_nf, check_keypoints \ No newline at end of file diff --git a/easymocap/smplmodel/body_model.py b/easymocap/smplmodel/body_model.py index 6e72bca..f96dc9d 100644 --- a/easymocap/smplmodel/body_model.py +++ b/easymocap/smplmodel/body_model.py @@ -2,8 +2,8 @@ @ Date: 2020-11-18 14:04:10 @ Author: Qing Shuai @ LastEditors: Qing Shuai - @ LastEditTime: 2021-05-11 15:09:44 - @ FilePath: /EasyMocap/easymocap/smplmodel/body_model.py + @ LastEditTime: 2021-05-27 20:35:10 + @ FilePath: /EasyMocapRelease/easymocap/smplmodel/body_model.py ''' import torch import torch.nn as nn @@ -39,7 +39,7 @@ def load_regressor(regressor_path): import ipdb; ipdb.set_trace() return X_regressor -NUM_POSES = {'smpl': 72, 'smplh': 78, 'smplx': 66 + 12 + 9} +NUM_POSES = {'smpl': 72, 'smplh': 78, 'smplx': 66 + 12 + 9, 'mano': 9} NUM_SHAPES = 10 NUM_EXPR = 10 class SMPLlayer(nn.Module): @@ -120,6 +120,19 @@ class SMPLlayer(nn.Module): self.register_buffer('mHandsComponents'+key[0], val) self.use_pca = True self.use_flat_mean = True + elif self.model_type == 'mano': + # TODO:write this into config file + self.num_pca_comps = 12 + self.use_pca = True + if self.use_pca: + NUM_POSES['mano'] = self.num_pca_comps + 3 + else: + NUM_POSES['mano'] = 45 + 3 + self.use_flat_mean = True + val = to_tensor(to_np(data['hands_mean'].reshape(1, -1)), dtype=dtype) + self.register_buffer('mHandsMean', val) + val = to_tensor(to_np(data['hands_components'][:self.num_pca_comps, :]), dtype=dtype) + self.register_buffer('mHandsComponents', val) elif self.model_type == 'smplx': # hand pose self.num_pca_comps = 6 @@ -131,15 +144,29 @@ class SMPLlayer(nn.Module): self.register_buffer('mHandsComponents'+key[0], val) self.use_pca = True self.use_flat_mean = True - + + @staticmethod + def extend_hand(poses, use_pca, use_flat_mean, coeffs, mean): + if use_pca: + poses = poses @ coeffs + if use_flat_mean: + poses = poses + mean + return poses + def extend_pose(self, poses): - if self.model_type not in ['smplh', 'smplx']: + if self.model_type not in ['smplh', 'smplx', 'mano']: return poses elif self.model_type == 'smplh' and poses.shape[-1] == 156: return poses elif self.model_type == 'smplx' and poses.shape[-1] == 165: return poses - + elif self.model_type == 'mano' and poses.shape[-1] == 48: + return poses + if self.model_type == 'mano': + poses_hand = self.extend_hand(poses[..., 3:], self.use_pca, self.use_flat_mean, + self.mHandsComponents, self.mHandsMean) + poses = torch.cat([poses[..., :3], poses_hand], dim=-1) + return poses NUM_BODYJOINTS = 22 * 3 if self.use_pca: NUM_HANDJOINTS = self.num_pca_comps @@ -210,6 +237,13 @@ class SMPLlayer(nn.Module): Th=Tnew.detach().cpu().numpy() ) return res + + def full_poses(self, poses): + if 'torch' not in str(type(poses)): + dtype, device = self.dtype, self.device + poses = to_tensor(poses, dtype, device) + poses = self.extend_pose(poses) + return poses.detach().cpu().numpy() def forward(self, poses, shapes, Rh=None, Th=None, expression=None, return_verts=True, return_tensor=True, only_shape=False, **kwargs): """ Forward pass for SMPL model @@ -250,8 +284,7 @@ class SMPLlayer(nn.Module): if expression is not None and self.model_type == 'smplx': shapes = torch.cat([shapes, expression], dim=1) # process poses - if self.model_type == 'smplh' or self.model_type == 'smplx': - poses = self.extend_pose(poses) + poses = self.extend_pose(poses) if return_verts: vertices, joints = lbs(shapes, poses, self.v_template, self.shapedirs, self.posedirs, @@ -268,6 +301,17 @@ class SMPLlayer(nn.Module): vertices = vertices.detach().cpu().numpy() return vertices + def init_params(self, nFrames): + params = { + 'poses': np.zeros((nFrames, NUM_POSES[self.model_type])), + 'shapes': np.zeros((1, NUM_SHAPES)), + 'Rh': np.zeros((nFrames, 3)), + 'Th': np.zeros((nFrames, 3)), + } + if self.model_type == 'smplx': + params['expression'] = np.zeros((nFrames, NUM_EXPR)) + return params + def check_params(self, body_params): model_type = self.model_type nFrames = body_params['poses'].shape[0] diff --git a/easymocap/smplmodel/body_param.py b/easymocap/smplmodel/body_param.py index ca23de2..6da6e8f 100644 --- a/easymocap/smplmodel/body_param.py +++ b/easymocap/smplmodel/body_param.py @@ -2,8 +2,8 @@ @ Date: 2020-11-20 13:34:54 @ Author: Qing Shuai @ LastEditors: Qing Shuai - @ LastEditTime: 2021-04-13 20:31:49 - @ FilePath: /EasyMocapRelease/easymocap/smplmodel/body_param.py + @ LastEditTime: 2021-05-25 19:21:12 + @ FilePath: /EasyMocap/easymocap/smplmodel/body_param.py ''' import numpy as np from os.path import join @@ -29,28 +29,6 @@ def select_nf(params_all, nf): output['shapes'] = params_all['shapes'][nf:nf+1, :] return output -NUM_POSES = {'smpl': 72, 'smplh': 78, 'smplx': 66 + 12 + 9} -NUM_EXPR = 10 - -def init_params(nFrames=1, model_type='smpl'): - params = { - 'poses': np.zeros((nFrames, NUM_POSES[model_type])), - 'shapes': np.zeros((1, 10)), - 'Rh': np.zeros((nFrames, 3)), - 'Th': np.zeros((nFrames, 3)), - } - if model_type == 'smplx': - params['expression'] = np.zeros((nFrames, NUM_EXPR)) - return params - -def check_params(body_params, model_type): - nFrames = body_params['poses'].shape[0] - if body_params['poses'].shape[1] != NUM_POSES[model_type]: - body_params['poses'] = np.hstack((body_params['poses'], np.zeros((nFrames, NUM_POSES[model_type] - body_params['poses'].shape[1])))) - if model_type == 'smplx' and 'expression' not in body_params.keys(): - body_params['expression'] = np.zeros((nFrames, NUM_EXPR)) - return body_params - def load_model(gender='neutral', use_cuda=True, model_type='smpl', skel_type='body25', device=None, model_path='data/smplx'): # prepare SMPL model # print('[Load model {}/{}]'.format(model_type, gender)) @@ -76,6 +54,10 @@ def load_model(gender='neutral', use_cuda=True, model_type='smpl', skel_type='bo elif model_type == 'smplx': body_model = SMPLlayer(join(model_path, 'smplx/SMPLX_{}.pkl'.format(gender.upper())), model_type='smplx', gender=gender, device=device, regressor_path=join(model_path, 'J_regressor_body25_smplx.txt')) + elif model_type == 'manol' or model_type == 'manor': + lr = {'manol': 'LEFT', 'manor': 'RIGHT'} + body_model = SMPLlayer(join(model_path, 'smplh/MANO_{}.pkl'.format(lr[model_type])), model_type='mano', gender=gender, device=device, + regressor_path=join(model_path, 'J_regressor_mano_{}.txt'.format(lr[model_type]))) else: body_model = None body_model.to(device) diff --git a/easymocap/visualize/__init__.py b/easymocap/visualize/__init__.py index 0566748..c7b1e6b 100644 --- a/easymocap/visualize/__init__.py +++ b/easymocap/visualize/__init__.py @@ -1 +1,10 @@ -from .renderer import Renderer \ No newline at end of file +''' + @ Date: 2021-04-25 22:07:06 + @ Author: Qing Shuai + @ LastEditors: Qing Shuai + @ LastEditTime: 2021-05-27 21:09:08 + @ FilePath: /EasyMocapRelease/easymocap/visualize/__init__.py +''' +from .renderer import Renderer +from .geometry import create_cameras +from .geometry import create_mesh_pyrender \ No newline at end of file