# Quick Start ## Demo We provide an example multiview dataset[[dropbox](https://www.dropbox.com/s/24mb7r921b1g9a7/zju-ls-feng.zip?dl=0)][[BaiduDisk](https://pan.baidu.com/s/1lvAopzYGCic3nauoQXjbPw)(vg1z)], which has 800 frames from 23 synchronized and calibrated cameras. After downloading the dataset, you can run the following example scripts. ```bash data=path/to/data # 0. extract the video to images python3 scripts/preprocess/extract_video.py ${data} --handface # 2.1 example for SMPL reconstruction python3 apps/demo/mv1p.py ${data} --out ${data}/output/smpl --vis_det --vis_repro --undis --sub_vis 1 7 13 19 --vis_smpl # 2.2 example for SMPL-X reconstruction python3 apps/demo/mv1p.py ${data} --out ${data}/output/smplx --vis_det --vis_repro --undis --sub_vis 1 7 13 19 --body bodyhandface --model smplx --gender male --vis_smpl # 2.3 example for MANO reconstruction # MANO model is required for this part python3 apps/demo/mv1p.py ${data} --out ${data}/output/manol --vis_det --vis_repro --undis --sub_vis 1 7 13 19 --body handl --model manol --gender male --vis_smpl python3 apps/demo/mv1p.py ${data} --out ${data}/output/manor --vis_det --vis_repro --undis --sub_vis 1 7 13 19 --body handr --model manor --gender male --vis_smpl ``` # Demo On Your Dataset ## 0. Prepare Your Own Dataset ```bash ├── intri.yml ├── extri.yml └── videos ├── 1.mp4 ├── 2.mp4 ├── ... ├── 8.mp4 └── 9.mp4 ``` The input videos are placed in `videos/`. Here `intri.yml` and `extri.yml` store the camera intrinsici and extrinsic parameters. See [`apps/calibration/Readme`](../apps/calibration/Readme.md) for instruction of camera calibration. See [`apps/calibration/camera_parameters`](../apps/calibration/camera_parameters.md) for the format of camera parameters. ### 1. Run [OpenPose](https://github.com/CMU-Perceptual-Computing-Lab/openpose) ```bash data=path/to/data out=path/to/output python3 scripts/preprocess/extract_video.py ${data} --openpose --handface ``` - `--openpose`: specify the openpose path - `--handface`: detect hands and face keypoints ### 2. Run the code The input flags: - `--undis`: use to undistort the images - `--start, --end`: control the begin and end number of frames. The output flags: - `--vis_det`: visualize the detection - `--vis_repro`: visualize the reprojection - `--sub_vis`: use to specify the views to visualize. If not set, the code will use all views - `--vis_smpl`: use to render the SMPL mesh to images. - `--write_smpl_full`: use to write the full poses of the SMPL parameters ### 3. Output Please refer to [output.md](../doc/02_output.md)