# EasyMocap
**EasyMocap** is an open-source toolbox for **markerless human motion capture** from RGB videos.
In this project, we provide the basic code for fitting SMPL[1]/SMPL+H[2]/SMPLX[3] model to capture body+hand+face poses from multiple views.
|Input(23 views)|:heavy_check_mark: Skeleton|:heavy_check_mark: SMPL|
|----|----|----|
|![input](doc/feng/000400.jpg)|![repro](doc/feng/skel.gif)|![smpl](doc/feng/smplx.gif)|
> We plan to intergrate more interesting algorithms, please stay tuned!
1. [[CVPR19] Multi-Person from Multiple Views](https://github.com/zju3dv/mvpose)
2. [[ECCV20] Mocap from Multiple **Uncalibrated** and **Unsynchronized** Videos](https://arxiv.org/pdf/2008.07931.pdf)
![](doc/imocap/frame_00036_036.jpg)
3. [[CVPR21] Dense Reconstruction and View Synthesis from **Sparse Views**](https://zju3dv.github.io/neuralbody/)
4. [[CVPR21] Reconstructing 3D Human Pose by Watching Humans in the **Mirror**](https://zju3dv.github.io/Mirrored-Human/)
|
|
## Installation
### 1. Download SMPL models
This step is the same as [smplx](https://github.com/vchoutas/smplx#model-loading).
To download the *SMPL* model go to [this](http://smpl.is.tue.mpg.de) (male and female models, version 1.0.0, 10 shape PCs) and [this](http://smplify.is.tue.mpg.de) (gender neutral model) project website and register to get access to the downloads section.
To download the *SMPL+H* model go to [this project website](http://mano.is.tue.mpg.de) and register to get access to the downloads section.
To download the *SMPL-X* model go to [this project website](https://smpl-x.is.tue.mpg.de) and register to get access to the downloads section.
**Place them as following:**
```bash
data
└── smplx
├── J_regressor_body25.npy
├── J_regressor_body25_smplh.txt
├── J_regressor_body25_smplx.txt
├── smpl
│ ├── SMPL_FEMALE.pkl
│ ├── SMPL_MALE.pkl
│ └── SMPL_NEUTRAL.pkl
├── smplh
│ ├── MANO_LEFT.pkl
│ ├── MANO_RIGHT.pkl
│ ├── SMPLH_FEMALE.pkl
│ └── SMPLH_MALE.pkl
└── smplx
├── SMPLX_FEMALE.pkl
├── SMPLX_MALE.pkl
└── SMPLX_NEUTRAL.pkl
```
### 2. Requirements
- python>=3.6
- torch==1.4.0
- torchvision==0.5.0
- opencv-python
- [pyrender](https://pyrender.readthedocs.io/en/latest/install/index.html#python-installation): for visualization
- chumpy: for loading SMPL model
- OpenPose[4]: for 2D pose
Some of python libraries can be found in `requirements.txt`. You can test different version of PyTorch.
## Quick Start
We provide an example multiview dataset[[dropbox](https://www.dropbox.com/s/24mb7r921b1g9a7/zju-ls-feng.zip?dl=0)][[BaiduDisk](https://pan.baidu.com/s/1lvAopzYGCic3nauoQXjbPw)(vg1z)], which has 800 frames from 23 synchronized and calibrated cameras. After downloading the dataset, you can run the following example scripts.
```bash
data=path/to/data
out=path/to/output
# 0. extract the video to images
python3 scripts/preprocess/extract_video.py ${data}
# 1. example for skeleton reconstruction
python3 code/demo_mv1pmf_skel.py ${data} --out ${out} --vis_det --vis_repro --undis --sub_vis 1 7 13 19
# 2.1 example for SMPL reconstruction
python3 code/demo_mv1pmf_smpl.py ${data} --out ${out} --end 300 --vis_smpl --undis --sub_vis 1 7 13 19 --gender male
# 2.2 example for SMPL-X reconstruction
python3 code/demo_mv1pmf_smpl.py ${data} --out ${out} --undis --body bodyhandface --sub_vis 1 7 13 19 --start 400 --model smplx --vis_smpl --gender male
# 3.1 example for rendering SMPLX to ${out}/smpl
python3 code/vis_render.py ${data} --out ${out} --skel ${out}/smpl --model smplx --gender male --undis --start 400 --sub_vis 1
# 3.2 example for rendering skeleton of SMPL to ${out}/smplskel
python3 code/vis_render.py ${data} --out ${out} --skel ${out}/smpl --model smplx --gender male --undis --start 400 --sub_vis 1 --type smplskel --body bodyhandface
```
## Not Quick Start
### 0. Prepare Your Own Dataset
```bash
zju-ls-feng
├── intri.yml
├── extri.yml
└── videos
├── 1.mp4
├── 2.mp4
├── ...
├── 8.mp4
└── 9.mp4
```
The input videos are placed in `videos/`.
Here `intri.yml` and `extri.yml` store the camera intrinsici and extrinsic parameters. For example, if the name of a video is `1.mp4`, then there must exist `K_1`, `dist_1` in `intri.yml`, and `R_1((3, 1), rotation vector of camera)`, `T_1(3, 1)` in `extri.yml`. The file format is following [OpenCV format](https://docs.opencv.org/master/dd/d74/tutorial_file_input_output_with_xml_yml.html).
### 1. Run [OpenPose](https://github.com/CMU-Perceptual-Computing-Lab/openpose)
```bash
data=path/to/data
out=path/to/output
python3 scripts/preprocess/extract_video.py ${data} --openpose --handface
```
- `--openpose`: specify the openpose path
- `--handface`: detect hands and face keypoints
### 2. Run the code
```bash
# 1. example for skeleton reconstruction
python3 code/demo_mv1pmf_skel.py ${data} --out ${out} --vis_det --vis_repro --undis --sub_vis 1 7 13 19
# 2. example for SMPL reconstruction
python3 code/demo_mv1pmf_smpl.py ${data} --out ${out} --end 300 --vis_smpl --undis --sub_vis 1 7 13 19
```
The input flags:
- `--undis`: use to undistort the images
- `--start, --end`: control the begin and end number of frames.
The output flags:
- `--vis_det`: visualize the detection
- `--vis_repro`: visualize the reprojection
- `--sub_vis`: use to specify the views to visualize. If not set, the code will use all views
- `--vis_smpl`: use to render the SMPL mesh to images.
### 3. Output
Please refer to [output.md](doc/02_output.md)
## Evaluation
In our code, we do not set the best weight parameters, you can adjust these according your data. If you find a set of good weights, feel free to tell me.
We will add more quantitative reports in [doc/evaluation.md](doc/evaluation.md)
## Acknowledgements
Here are the great works this project is built upon:
- SMPL models and layer are from MPII [SMPL-X model](https://github.com/vchoutas/smplx).
- Some functions are borrowed from [SPIN](https://github.com/nkolot/SPIN), [VIBE](https://github.com/mkocabas/VIBE), [SMPLify-X](https://github.com/vchoutas/smplify-x)
- The method for fitting 3D skeleton and SMPL model is similar to [TotalCapture](http://www.cs.cmu.edu/~hanbyulj/totalcapture/), without using point cloud.
We also would like to thank Wenduo Feng who is the performer in the sample data.
## Contact
Please open an issue if you have any questions.
## Citation
This project is a part of our work [iMocap](https://zju3dv.github.io/iMoCap/), [Mirrored-Human](https://zju3dv.github.io/Mirrored-Human/) and [Neural Body](https://zju3dv.github.io/neuralbody/)
Please consider citing these works if you find this repo is useful for your projects.
```bibtex
@inproceedings{dong2020motion,
title={Motion capture from internet videos},
author={Dong, Junting and Shuai, Qing and Zhang, Yuanqing and Liu, Xian and Zhou, Xiaowei and Bao, Hujun},
booktitle={European Conference on Computer Vision},
pages={210--227},
year={2020},
organization={Springer}
}
@inproceedings{peng2020neural,
title={Neural Body: Implicit Neural Representations with Structured Latent Codes for Novel View Synthesis of Dynamic Humans},
author={Peng, Sida and Zhang, Yuanqing and Xu, Yinghao and Wang, Qianqian and Shuai, Qing and Bao, Hujun and Zhou, Xiaowei},
journal={CVPR},
year={2021}
}
@inproceedings{fang2021mirrored,
title={Reconstructing 3D Human Pose by Watching Humans in the Mirror},
author={Fang, Qi and Shuai, Qing and Dong, Junting and Bao, Hujun and Zhou, Xiaowei},
booktitle={CVPR},
year={2021}
}
```
## Reference
```bash
[1] Loper, Matthew, et al. "SMPL: A skinned multi-person linear model." ACM transactions on graphics (TOG) 34.6 (2015): 1-16.
[2] Romero, Javier, Dimitrios Tzionas, and Michael J. Black. "Embodied hands: Modeling and capturing hands and bodies together." ACM Transactions on Graphics (ToG) 36.6 (2017): 1-17.
[3] Pavlakos, Georgios, et al. "Expressive body capture: 3d hands, face, and body from a single image." Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition. 2019.
Bogo, Federica, et al. "Keep it SMPL: Automatic estimation of 3D human pose and shape from a single image." European conference on computer vision. Springer, Cham, 2016.
[4] Cao, Z., Hidalgo, G., Simon, T., Wei, S.E., Sheikh, Y.: Openpose: real-time multi-person 2d pose estimation using part affinity fields. arXiv preprint arXiv:1812.08008 (2018)
```