from typing import Any from easymocap.config import Config, load_object from easymocap.mytools.debug_utils import mywarn, log import numpy as np import time from tabulate import tabulate class Timer: def __init__(self, record, verbose) -> None: self.keys = list(record.keys()) self.header = self.keys self.verbose = verbose def update(self, timer): if not self.verbose: return contents = [] for key in self.keys: if key not in timer: contents.append('skip') else: contents.append('{:.3f}s'.format(timer[key])) print(tabulate(headers=self.header, tabular_data=[contents], tablefmt='fancy_grid')) class MultiStage: def load_final(self): at_finals = {} for key, val in self._at_final.items(): if 'module' not in val.keys(): continue if val['module'] == 'skip': mywarn('Stage {} is not used'.format(key)) continue log('[{}] loading {}'.format(self.__class__.__name__, key)) model = load_object(val['module'], val['args']) model.output = self.output at_finals[key] = model self.model_finals = at_finals def __init__(self, output, at_step, at_final, keys_keep=[], timer=True) -> None: log('[{}] writing the results to {}'.format(self.__class__.__name__, output)) at_steps = {} for key, val in at_step.items(): if val['module'] == 'skip': mywarn('Stage {} is not used'.format(key)) continue log('[{}] loading module {}'.format(self.__class__.__name__, key)) model = load_object(val['module'], val['args']) model.output = output at_steps[key] = model self.output = output self.model_steps = at_steps self._at_step = at_step self._at_final = at_final self.keys_keep = keys_keep self.timer = Timer(at_steps, verbose=timer) def at_step(self, data, index): ret = {} if 'meta' in data: ret['meta'] = data['meta'] for key in self.keys_keep: ret[key] = data[key] timer = {} for key, model in self.model_steps.items(): for k in self._at_step[key].get('key_keep', []): ret[k] = data[k] if self._at_step[key].get('skip', False): continue inputs = {} for k in self._at_step[key].get('key_from_data', []): inputs[k] = data[k] for k in self._at_step[key].get('key_from_previous', []): inputs[k] = ret[k] start = time.time() try: output = model(**inputs) except: print('[{}] Error in {}'.format('Stages', key)) raise Exception timer[key] = time.time() - start if output is not None: ret.update(output) self.timer.update(timer) return ret @staticmethod def merge_data(infos_all): info0 = infos_all[0] data = {} for key, val in info0.items(): data[key] = [info[key] for info in infos_all] if isinstance(val, np.ndarray): try: data[key] = np.stack(data[key]) except ValueError: print('[{}] Skip merge {}'.format('Stages', key)) pass elif isinstance(val, dict): data[key] = MultiStage.merge_data(data[key]) return data def at_final(self, infos_all): self.load_final() data = self.merge_data(infos_all) log('Keep keys: {}'.format(list(data.keys()))) ret = {} for key, model in self.model_finals.items(): if self._at_final[key].get('skip', False): continue for iter_ in range(self._at_final[key].get('repeat', 1)): inputs = {} model.iter = iter_ for k in self._at_final[key].get('key_from_data', []): inputs[k] = data[k] for k in self._at_final[key].get('key_from_previous', []): inputs[k] = ret[k] try: output = model(**inputs) except: print('[{}] Error in {}'.format('Stages', key)) raise Exception if output is not None: ret.update(output) return ret class StageForFittingEach: def __init__(self, stages, keys_keep) -> None: stages_ = {} for key, val in stages.items(): if val['module'] == 'skip': mywarn('Stage {} is not used'.format(key)) continue model = load_object(val['module'], val['args']) stages_[key] = model self.stages = stages_ self.stages_args = stages self.keys_keep = keys_keep def __call__(self, results, **ret): for pid, result in results.items(): print('[{}] Optimize person {} with {} frames'.format(self.__class__.__name__, pid, len(result['frames']))) ret0 = {} ret0.update(ret) for key, stage in self.stages.items(): for iter_ in range(self.stages_args[key].get('repeat', 1)): inputs = {} stage.iter = iter_ for k in self.stages_args[key].get('key_from_data', []): inputs[k] = result[k] for k in self.stages_args[key].get('key_from_previous', []): inputs[k] = ret0[k] output = stage(**inputs) if output is not None: ret0.update(output) for key in self.keys_keep: result[key] = ret0[key] return {'results': results}