''' @ Date: 2020-11-19 17:46:04 @ Author: Qing Shuai @ LastEditors: Qing Shuai @ LastEditTime: 2021-01-22 16:51:55 @ FilePath: /EasyMocap/code/pyfitting/lossfactory.py ''' import torch from .operation import projection, batch_rodrigues def ReprojectionLoss(keypoints3d, keypoints2d, K, Rc, Tc, inv_bbox_sizes, norm='l2'): img_points = projection(keypoints3d, K, Rc, Tc) residual = (img_points - keypoints2d[:, :, :2]) * keypoints2d[:, :, -1:] # squared_res: (nFrames, nJoints, 2) if norm == 'l2': squared_res = (residual ** 2) * inv_bbox_sizes elif norm == 'l1': squared_res = torch.abs(residual) * inv_bbox_sizes else: import ipdb; ipdb.set_trace() return torch.sum(squared_res) class SMPLAngleLoss: def __init__(self, keypoints, model_type='smpl'): if keypoints.shape[1] <= 15: use_feet = False use_head = False else: use_feet = keypoints[:, [19, 20, 21, 22, 23, 24], -1].sum() > 0.1 use_head = keypoints[:, [15, 16, 17, 18], -1].sum() > 0.1 if model_type == 'smpl': SMPL_JOINT_ZERO_IDX = [3, 6, 9, 10, 11, 13, 14, 20, 21, 22, 23] elif model_type == 'smplh': SMPL_JOINT_ZERO_IDX = [3, 6, 9, 10, 11, 13, 14] elif model_type == 'smplx': SMPL_JOINT_ZERO_IDX = [3, 6, 9, 10, 11, 13, 14] else: raise NotImplementedError if not use_feet: SMPL_JOINT_ZERO_IDX.extend([7, 8]) if not use_head: SMPL_JOINT_ZERO_IDX.extend([12, 15]) SMPL_POSES_ZERO_IDX = [[j for j in range(3*i, 3*i+3)] for i in SMPL_JOINT_ZERO_IDX] SMPL_POSES_ZERO_IDX = sum(SMPL_POSES_ZERO_IDX, []) # SMPL_POSES_ZERO_IDX.extend([36, 37, 38, 45, 46, 47]) self.idx = SMPL_POSES_ZERO_IDX def loss(self, poses): return torch.sum(torch.abs(poses[:, self.idx])) def SmoothLoss(body_params, keys, weight_loss, span=4, model_type='smpl'): spans = [i for i in range(1, span)] span_weights = {i:1/i for i in range(1, span)} span_weights = {key: i/sum(span_weights) for key, i in span_weights.items()} loss_dict = {} nFrames = body_params['poses'].shape[0] nPoses = body_params['poses'].shape[1] if model_type == 'smplh' or model_type == 'smplx': nPoses = 66 for key in ['poses', 'Th', 'poses_hand', 'expression']: if key not in keys: continue k = 'smooth_' + key if k in weight_loss.keys() and weight_loss[k] > 0.: loss_dict[k] = 0. for span in spans: if key == 'poses_hand': val = torch.sum((body_params['poses'][span:, 66:] - body_params['poses'][:nFrames-span, 66:])**2) else: val = torch.sum((body_params[key][span:, :nPoses] - body_params[key][:nFrames-span, :nPoses])**2) loss_dict[k] += span_weights[span] * val k = 'smooth_' + key + '_l1' if k in weight_loss.keys() and weight_loss[k] > 0.: loss_dict[k] = 0. for span in spans: if key == 'poses_hand': val = torch.sum((body_params['poses'][span:, 66:] - body_params['poses'][:nFrames-span, 66:]).abs()) else: val = torch.sum((body_params[key][span:, :nPoses] - body_params[key][:nFrames-span, :nPoses]).abs()) loss_dict[k] += span_weights[span] * val # smooth rotation rot = batch_rodrigues(body_params['Rh']) key, k = 'Rh', 'smooth_Rh' if key in keys and k in weight_loss.keys() and weight_loss[k] > 0.: loss_dict[k] = 0. for span in spans: val = torch.sum((rot[span:, :] - rot[:nFrames-span, :])**2) loss_dict[k] += span_weights[span] * val return loss_dict def RegularizationLoss(body_params, body_params_init, weight_loss): loss_dict = {} for key in ['poses', 'shapes', 'Th', 'hands', 'head', 'expression']: if 'init_'+key in weight_loss.keys() and weight_loss['init_'+key] > 0.: if key == 'poses': loss_dict['init_'+key] = torch.sum((body_params[key][:, :66] - body_params_init[key][:, :66])**2) elif key == 'hands': loss_dict['init_'+key] = torch.sum((body_params['poses'][: , 66:66+12] - body_params_init['poses'][:, 66:66+12])**2) elif key == 'head': loss_dict['init_'+key] = torch.sum((body_params['poses'][: , 78:78+9] - body_params_init['poses'][:, 78:78+9])**2) elif key in body_params.keys(): loss_dict['init_'+key] = torch.sum((body_params[key] - body_params_init[key])**2) for key in ['poses', 'shapes', 'hands', 'head', 'expression']: if 'reg_'+key in weight_loss.keys() and weight_loss['reg_'+key] > 0.: if key == 'poses': loss_dict['reg_'+key] = torch.sum((body_params[key][:, :66])**2) elif key == 'hands': loss_dict['reg_'+key] = torch.sum((body_params['poses'][: , 66:66+12])**2) elif key == 'head': loss_dict['reg_'+key] = torch.sum((body_params['poses'][: , 78:78+9])**2) elif key in body_params.keys(): loss_dict['reg_'+key] = torch.sum((body_params[key])**2) return loss_dict