''' @ Date: 2020-10-23 20:07:49 @ Author: Qing Shuai @ LastEditors: Qing Shuai @ LastEditTime: 2022-07-14 12:44:30 @ FilePath: /EasyMocapPublic/easymocap/estimator/SPIN/spin_api.py ''' """ Demo code To run our method, you need a bounding box around the person. The person needs to be centered inside the bounding box and the bounding box should be relatively tight. You can either supply the bounding box directly or provide an [OpenPose](https://github.com/CMU-Perceptual-Computing-Lab/openpose) detection file. In the latter case we infer the bounding box from the detections. In summary, we provide 3 different ways to use our demo code and models: 1. Provide only an input image (using ```--img```), in which case it is assumed that it is already cropped with the person centered in the image. 2. Provide an input image as before, together with the OpenPose detection .json (using ```--openpose```). Our code will use the detections to compute the bounding box and crop the image. 3. Provide an image and a bounding box (using ```--bbox```). The expected format for the json file can be seen in ```examples/im1010_bbox.json```. Example with OpenPose detection .json ``` python3 demo.py --checkpoint=data/model_checkpoint.pt --img=examples/im1010.png --openpose=examples/im1010_openpose.json ``` Example with predefined Bounding Box ``` python3 demo.py --checkpoint=data/model_checkpoint.pt --img=examples/im1010.png --bbox=examples/im1010_bbox.json ``` Example with cropped and centered image ``` python3 demo.py --checkpoint=data/model_checkpoint.pt --img=examples/im1010.png ``` Running the previous command will save the results in ```examples/im1010_{shape,shape_side}.png```. The file ```im1010_shape.png``` shows the overlayed reconstruction of human shape. We also render a side view, saved in ```im1010_shape_side.png```. """ import torch import numpy as np import cv2 from .models import hmr class constants: FOCAL_LENGTH = 5000. IMG_RES = 224 # Mean and standard deviation for normalizing input image IMG_NORM_MEAN = [0.485, 0.456, 0.406] IMG_NORM_STD = [0.229, 0.224, 0.225] def normalize(tensor, mean, std, inplace: bool = False): """Normalize a tensor image with mean and standard deviation. .. note:: This transform acts out of place by default, i.e., it does not mutates the input tensor. See :class:`~torchvision.transforms.Normalize` for more details. Args: tensor (Tensor): Tensor image of size (C, H, W) or (B, C, H, W) to be normalized. mean (sequence): Sequence of means for each channel. std (sequence): Sequence of standard deviations for each channel. inplace(bool,optional): Bool to make this operation inplace. Returns: Tensor: Normalized Tensor image. """ if not isinstance(tensor, torch.Tensor): raise TypeError('Input tensor should be a torch tensor. Got {}.'.format(type(tensor))) if tensor.ndim < 3: raise ValueError('Expected tensor to be a tensor image of size (..., C, H, W). Got tensor.size() = ' '{}.'.format(tensor.size())) if not inplace: tensor = tensor.clone() dtype = tensor.dtype mean = torch.as_tensor(mean, dtype=dtype, device=tensor.device) std = torch.as_tensor(std, dtype=dtype, device=tensor.device) if (std == 0).any(): raise ValueError('std evaluated to zero after conversion to {}, leading to division by zero.'.format(dtype)) if mean.ndim == 1: mean = mean.view(-1, 1, 1) if std.ndim == 1: std = std.view(-1, 1, 1) tensor.sub_(mean).div_(std) return tensor class Normalize(torch.nn.Module): """Normalize a tensor image with mean and standard deviation. Given mean: ``(mean[1],...,mean[n])`` and std: ``(std[1],..,std[n])`` for ``n`` channels, this transform will normalize each channel of the input ``torch.*Tensor`` i.e., ``output[channel] = (input[channel] - mean[channel]) / std[channel]`` .. note:: This transform acts out of place, i.e., it does not mutate the input tensor. Args: mean (sequence): Sequence of means for each channel. std (sequence): Sequence of standard deviations for each channel. inplace(bool,optional): Bool to make this operation in-place. """ def __init__(self, mean, std, inplace=False): super().__init__() self.mean = mean self.std = std self.inplace = inplace def forward(self, tensor): """ Args: tensor (Tensor): Tensor image to be normalized. Returns: Tensor: Normalized Tensor image. """ return normalize(tensor, self.mean, self.std, self.inplace) def __repr__(self): return self.__class__.__name__ + '(mean={0}, std={1})'.format(self.mean, self.std) def get_transform(center, scale, res, rot=0): """Generate transformation matrix.""" h = 200 * scale t = np.zeros((3, 3)) t[0, 0] = float(res[1]) / h t[1, 1] = float(res[0]) / h t[0, 2] = res[1] * (-float(center[0]) / h + .5) t[1, 2] = res[0] * (-float(center[1]) / h + .5) t[2, 2] = 1 if not rot == 0: rot = -rot # To match direction of rotation from cropping rot_mat = np.zeros((3,3)) rot_rad = rot * np.pi / 180 sn,cs = np.sin(rot_rad), np.cos(rot_rad) rot_mat[0,:2] = [cs, -sn] rot_mat[1,:2] = [sn, cs] rot_mat[2,2] = 1 # Need to rotate around center t_mat = np.eye(3) t_mat[0,2] = -res[1]/2 t_mat[1,2] = -res[0]/2 t_inv = t_mat.copy() t_inv[:2,2] *= -1 t = np.dot(t_inv,np.dot(rot_mat,np.dot(t_mat,t))) return t def transform(pt, center, scale, res, invert=0, rot=0): """Transform pixel location to different reference.""" t = get_transform(center, scale, res, rot=rot) if invert: t = np.linalg.inv(t) new_pt = np.array([pt[0]-1, pt[1]-1, 1.]).T new_pt = np.dot(t, new_pt) return new_pt[:2].astype(int)+1 def crop(img, center, scale, res, rot=0, bias=0): """Crop image according to the supplied bounding box.""" # Upper left point ul = np.array(transform([1, 1], center, scale, res, invert=1))-1 # Bottom right point br = np.array(transform([res[0]+1, res[1]+1], center, scale, res, invert=1))-1 # Padding so that when rotated proper amount of context is included pad = int(np.linalg.norm(br - ul) / 2 - float(br[1] - ul[1]) / 2) if not rot == 0: ul -= pad br += pad new_shape = [br[1] - ul[1], br[0] - ul[0]] if len(img.shape) > 2: new_shape += [img.shape[2]] new_img = np.zeros(new_shape) + bias # Range to fill new array new_x = max(0, -ul[0]), min(br[0], len(img[0])) - ul[0] new_y = max(0, -ul[1]), min(br[1], len(img)) - ul[1] # Range to sample from original image old_x = max(0, ul[0]), min(len(img[0]), br[0]) old_y = max(0, ul[1]), min(len(img), br[1]) new_img[new_y[0]:new_y[1], new_x[0]:new_x[1]] = img[old_y[0]:old_y[1], old_x[0]:old_x[1]] if not rot == 0: # Remove padding new_img = scipy.misc.imrotate(new_img, rot) new_img = new_img[pad:-pad, pad:-pad] new_img = cv2.resize(new_img, (res[0], res[1])) return new_img def process_image(img, bbox, input_res=224): """Read image, do preprocessing and possibly crop it according to the bounding box. If there are bounding box annotations, use them to crop the image. If no bounding box is specified but openpose detections are available, use them to get the bounding box. """ img = img[:, :, ::-1].copy() normalize_img = Normalize(mean=constants.IMG_NORM_MEAN, std=constants.IMG_NORM_STD) l, t, r, b = bbox[:4] center = [(l+r)/2, (t+b)/2] width = max(r-l, b-t) scale = width/200.0 img = crop(img, center, scale, (input_res, input_res)) img = img.astype(np.float32) / 255. img = torch.from_numpy(img).permute(2,0,1) norm_img = normalize_img(img.clone())[None] return img, norm_img def solve_translation(X, x, K): A = np.zeros((2*X.shape[0], 3)) b = np.zeros((2*X.shape[0], 1)) fx, fy = K[0, 0], K[1, 1] cx, cy = K[0, 2], K[1, 2] for nj in range(X.shape[0]): A[2*nj, 0] = 1 A[2*nj + 1, 1] = 1 A[2*nj, 2] = -(x[nj, 0] - cx)/fx A[2*nj+1, 2] = -(x[nj, 1] - cy)/fy b[2*nj, 0] = X[nj, 2]*(x[nj, 0] - cx)/fx - X[nj, 0] b[2*nj+1, 0] = X[nj, 2]*(x[nj, 1] - cy)/fy - X[nj, 1] A[2*nj:2*nj+2, :] *= x[nj, 2] b[2*nj:2*nj+2, :] *= x[nj, 2] trans = np.linalg.inv(A.T @ A) @ A.T @ b return trans.T[0] def estimate_translation_np(S, joints_2d, joints_conf, K): """Find camera translation that brings 3D joints S closest to 2D the corresponding joints_2d. Input: S: (25, 3) 3D joint locations joints: (25, 3) 2D joint locations and confidence Returns: (3,) camera translation vector """ num_joints = S.shape[0] # focal length f = np.array([K[0, 0], K[1, 1]]) # optical center center = np.array([K[0, 2], K[1, 2]]) # transformations Z = np.reshape(np.tile(S[:,2],(2,1)).T,-1) XY = np.reshape(S[:,0:2],-1) O = np.tile(center,num_joints) F = np.tile(f,num_joints) weight2 = np.reshape(np.tile(np.sqrt(joints_conf),(2,1)).T,-1) # least squares Q = np.array([F*np.tile(np.array([1,0]),num_joints), F*np.tile(np.array([0,1]),num_joints), O-np.reshape(joints_2d,-1)]).T c = (np.reshape(joints_2d,-1)-O)*Z - F*XY # weighted least squares W = np.diagflat(weight2) Q = np.dot(W,Q) c = np.dot(W,c) # square matrix A = np.dot(Q.T,Q) b = np.dot(Q.T,c) # solution trans = np.linalg.solve(A, b) return trans class SPIN: def __init__(self, SMPL_MEAN_PARAMS, checkpoint, device) -> None: model = hmr(SMPL_MEAN_PARAMS).to(device) checkpoint = torch.load(checkpoint) model.load_state_dict(checkpoint['model'], strict=False) # Load SMPL model model.eval() self.model = model self.device = device def forward(self, img, bbox, use_rh_th=True): # Preprocess input image and generate predictions img, norm_img = process_image(img, bbox, input_res=constants.IMG_RES) with torch.no_grad(): pred_rotmat, pred_betas, pred_camera = self.model(norm_img.to(self.device)) results = { 'shapes': pred_betas.detach().cpu().numpy() } rotmat = pred_rotmat[0].detach().cpu().numpy() poses = np.zeros((1, rotmat.shape[0]*3)) for i in range(rotmat.shape[0]): p, _ = cv2.Rodrigues(rotmat[i]) poses[0, 3*i:3*i+3] = p[:, 0] results['poses'] = poses body_params = { 'Rh': poses[:, :3], 'poses': poses[:, 3:], 'shapes': results['shapes'], } results = body_params return results def __call__(self, body_model, img, bbox, kpts, camera, ret_vertices=True): body_params = self.forward(img.copy(), bbox) # TODO: bug: This encode will arise errors in keypoints kpts1 = body_model.keypoints(body_params, return_tensor=False)[0] body_params = body_model.encode(body_params) # only use body joints to estimation translation nJoints = 15 keypoints3d = body_model.keypoints(body_params, return_tensor=False)[0] kpts_diff = np.linalg.norm(kpts1 - keypoints3d, axis=-1).max() # print('Encode and decode error: {}'.format(kpts_diff)) trans = solve_translation(keypoints3d[:nJoints], kpts[:nJoints], camera['K']) body_params['Th'] += trans[None, :] if body_params['Th'][0, 2] < 0: print(' [WARN in SPIN] solved a negative position of human {}'.format(body_params['Th'][0])) body_params['Th'] = -body_params['Th'] Rhold = cv2.Rodrigues(body_params['Rh'])[0] rotx = cv2.Rodrigues(np.pi*np.array([1., 0, 0]))[0] Rhold = rotx @ Rhold body_params['Rh'] = cv2.Rodrigues(Rhold)[0].reshape(1, 3) # convert to world coordinate if False: Rhold = cv2.Rodrigues(body_params['Rh'])[0] Thold = body_params['Th'] Rh = camera['R'].T @ Rhold Th = (camera['R'].T @ (Thold.T - camera['T'])).T body_params['Th'] = Th body_params['Rh'] = cv2.Rodrigues(Rh)[0].reshape(1, 3) keypoints3d = body_model.keypoints(body_params, return_tensor=False)[0] results = {'body_params': body_params, 'keypoints3d': keypoints3d} if ret_vertices: vertices = body_model(return_verts=True, return_tensor=False, **body_params)[0] results['vertices'] = vertices return results def init_with_spin(body_model, spin_model, img, bbox, kpts, camera): body_params = spin_model.forward(img.copy(), bbox) body_params = body_model.check_params(body_params) # only use body joints to estimation translation nJoints = 15 keypoints3d = body_model(return_verts=False, return_tensor=False, **body_params)[0] trans = estimate_translation_np(keypoints3d[:nJoints], kpts[:nJoints, :2], kpts[:nJoints, 2], camera['K']) body_params['Th'] += trans[None, :] # convert to world coordinate Rhold = cv2.Rodrigues(body_params['Rh'])[0] Thold = body_params['Th'] Rh = camera['R'].T @ Rhold Th = (camera['R'].T @ (Thold.T - camera['T'])).T body_params['Th'] = Th body_params['Rh'] = cv2.Rodrigues(Rh)[0].reshape(1, 3) vertices = body_model(return_verts=True, return_tensor=False, **body_params)[0] keypoints3d = body_model(return_verts=False, return_tensor=False, **body_params)[0] results = {'body_params': body_params, 'vertices': vertices, 'keypoints3d': keypoints3d} return results if __name__ == '__main__': pass