# 2023.06.15 # https://colab.research.google.com/github/googlesamples/mediapipe/blob/main/examples/hand_landmarker/python/hand_landmarker.ipynb#scrollTo=OMjuVQiDYJKF&uniqifier=1 # pip install -q mediapipe==0.10.0 import os import numpy as np import cv2 # !wget -q https://storage.googleapis.com/mediapipe-models/hand_landmarker/hand_landmarker/float16/1/hand_landmarker.task try: import mediapipe as mp from mediapipe.tasks import python from mediapipe.tasks.python import vision except: print('Please install the mediapipe by\npip install -q mediapipe==0.10.0') raise ModuleNotFoundError VisionRunningMode = mp.tasks.vision.RunningMode def bbox_from_keypoints(keypoints, rescale=1.2, detection_thresh=0.05, MIN_PIXEL=5): """Get center and scale for bounding box from openpose detections.""" valid = keypoints[:,-1] > detection_thresh if valid.sum() < 3: return [0, 0, 100, 100, 0] valid_keypoints = keypoints[valid][:,:-1] center = (valid_keypoints.max(axis=0) + valid_keypoints.min(axis=0))/2 bbox_size = valid_keypoints.max(axis=0) - valid_keypoints.min(axis=0) # adjust bounding box tightness if bbox_size[0] < MIN_PIXEL or bbox_size[1] < MIN_PIXEL: return [0, 0, 100, 100, 0] bbox_size = bbox_size * rescale bbox = [ center[0] - bbox_size[0]/2, center[1] - bbox_size[1]/2, center[0] + bbox_size[0]/2, center[1] + bbox_size[1]/2, keypoints[valid, 2].mean() ] return bbox class MediaPipe: NUM_HAND = 21 def create_detector(self): base_options = python.BaseOptions(model_asset_path=self.ckpt) options = vision.HandLandmarkerOptions(base_options=base_options, num_hands=2, running_mode=VisionRunningMode.VIDEO) detector = vision.HandLandmarker.create_from_options(options) return detector def __init__(self, ckpt) -> None: if not os.path.exists(ckpt): cmd = 'wget -q https://storage.googleapis.com/mediapipe-models/hand_landmarker/hand_landmarker/float16/1/hand_landmarker.task' print('Cannot find {}, try to download it'.format(ckpt)) print(cmd) os.system(cmd) os.makedirs(os.path.dirname(ckpt), exist_ok=True) cmd = 'mv hand_landmarker.task {}'.format(os.path.dirname(ckpt)) os.system(cmd) self.ckpt = ckpt self.detector = {} self.timestamp = 0 @staticmethod def to_array(pose, W, H): N = len(pose) if N == 0: return np.zeros((1, 21, 3)) res = np.zeros((N, 21, 3)) for nper in range(N): for i in range(len(pose[nper])): res[nper, i, 0] = pose[nper][i].x * W res[nper, i, 1] = pose[nper][i].y * H res[nper, i, 2] = pose[nper][i].visibility res[..., 0] = W - res[..., 0] - 1 return res def get_hand(self, pose, W, H): if pose is None: bodies = np.zeros((1, self.NUM_HAND, 3)) return bodies poses = self.to_array(pose, W, H) poses[..., 2] = 1. return poses def __call__(self, imgnames, images): squeeze = False if not isinstance(imgnames, list): imgnames = [imgnames] images = [images] squeeze = True # STEP 3: Load the input image. nViews = len(images) keypoints = [] bboxes = [] for nv in range(nViews): if isinstance(images[nv], str): images[nv] = cv2.imread(images[nv]) sub = os.path.basename(os.path.dirname(imgnames[nv])) if sub not in self.detector.keys(): self.detector[sub] = self.create_detector() image_ = cv2.cvtColor(images[nv], cv2.COLOR_BGR2RGB) image_height, image_width, _ = image_.shape image_ = cv2.flip(image_, 1) mp_image = mp.Image(image_format=mp.ImageFormat.SRGB, data=image_) detection_result = self.detector[sub].detect_for_video(mp_image, self.timestamp) handl2d = self.get_hand(detection_result.hand_landmarks, image_width, image_height) keypoints.append(handl2d[:1]) bboxes.append(bbox_from_keypoints(handl2d[0])) keypoints = np.vstack(keypoints) bboxes = np.stack(bboxes) if squeeze: keypoints = keypoints[0] bboxes = bboxes[0] self.timestamp += 33 # 假设30fps return { 'keypoints': keypoints, 'bbox': bboxes, }