''' @ Date: 2021-03-15 12:23:12 @ Author: Qing Shuai @ LastEditors: Qing Shuai @ LastEditTime: 2021-06-14 22:25:58 @ FilePath: /EasyMocapRelease/easymocap/mytools/file_utils.py ''' import os import json import numpy as np from os.path import join mkdir = lambda x:os.makedirs(x, exist_ok=True) mkout = lambda x:mkdir(os.path.dirname(x)) def read_json(path): assert os.path.exists(path), path with open(path) as f: data = json.load(f) return data def save_json(file, data): if not os.path.exists(os.path.dirname(file)): os.makedirs(os.path.dirname(file)) with open(file, 'w') as f: json.dump(data, f, indent=4) save_annot = save_json def getFileList(root, ext='.jpg'): files = [] dirs = os.listdir(root) while len(dirs) > 0: path = dirs.pop() fullname = join(root, path) if os.path.isfile(fullname) and fullname.endswith(ext): files.append(path) elif os.path.isdir(fullname): for s in os.listdir(fullname): newDir = join(path, s) dirs.append(newDir) files = sorted(files) return files def read_annot(annotname, mode='body25'): data = read_json(annotname) if not isinstance(data, list): data = data['annots'] for i in range(len(data)): if 'id' not in data[i].keys(): data[i]['id'] = data[i].pop('personID') if 'keypoints2d' in data[i].keys() and 'keypoints' not in data[i].keys(): data[i]['keypoints'] = data[i].pop('keypoints2d') for key in ['bbox', 'keypoints', 'handl2d', 'handr2d', 'face2d']: if key not in data[i].keys():continue data[i][key] = np.array(data[i][key]) if key == 'face2d': # TODO: Make parameters, 17 is the offset for the eye brows, # etc. 51 is the total number of FLAME compatible landmarks data[i][key] = data[i][key][17:17+51, :] data[i]['bbox'] = data[i]['bbox'][:5] if data[i]['bbox'][-1] < 0.001: # print('{}/{} bbox conf = 0, may be error'.format(annotname, i)) data[i]['bbox'][-1] = 1 if mode == 'body25': data[i]['keypoints'] = data[i]['keypoints'] elif mode == 'body15': data[i]['keypoints'] = data[i]['keypoints'][:15, :] elif mode in ['handl', 'handr']: data[i]['keypoints'] = np.array(data[i][mode+'2d']).astype(np.float32) key = 'bbox_'+mode+'2d' if key not in data[i].keys(): data[i]['bbox'] = np.array(get_bbox_from_pose(data[i]['keypoints'])).astype(np.float32) else: data[i]['bbox'] = data[i]['bbox_'+mode+'2d'][:5] elif mode == 'total': data[i]['keypoints'] = np.vstack([data[i][key] for key in ['keypoints', 'handl2d', 'handr2d', 'face2d']]) elif mode == 'bodyhand': data[i]['keypoints'] = np.vstack([data[i][key] for key in ['keypoints', 'handl2d', 'handr2d']]) elif mode == 'bodyhandface': data[i]['keypoints'] = np.vstack([data[i][key] for key in ['keypoints', 'handl2d', 'handr2d', 'face2d']]) conf = data[i]['keypoints'][..., -1] conf[conf<0] = 0 data.sort(key=lambda x:x['id']) return data def array2raw(array, separator=' ', fmt='%.3f'): assert len(array.shape) == 2, 'Only support MxN matrix, {}'.format(array.shape) res = [] for data in array: res.append(separator.join([fmt%(d) for d in data])) def myarray2string(array, separator=', ', fmt='%.3f', indent=8): assert len(array.shape) == 2, 'Only support MxN matrix, {}'.format(array.shape) blank = ' ' * indent res = ['['] for i in range(array.shape[0]): res.append(blank + ' ' + '[{}]'.format(separator.join([fmt%(d) for d in array[i]]))) if i != array.shape[0] -1: res[-1] += ', ' res.append(blank + ']') return '\r\n'.join(res) def write_common_results(dumpname=None, results=[], keys=[], fmt='%2.3f'): format_out = {'float_kind':lambda x: fmt % x} out_text = [] out_text.append('[\n') for idata, data in enumerate(results): out_text.append(' {\n') output = {} output['id'] = data['id'] for key in keys: if key not in data.keys():continue # BUG: This function will failed if the rows of the data[key] is too large # output[key] = np.array2string(data[key], max_line_width=1000, separator=', ', formatter=format_out) output[key] = myarray2string(data[key], separator=', ', fmt=fmt) for key in output.keys(): out_text.append(' \"{}\": {}'.format(key, output[key])) if key != keys[-1]: out_text.append(',\n') else: out_text.append('\n') out_text.append(' }') if idata != len(results) - 1: out_text.append(',\n') else: out_text.append('\n') out_text.append(']\n') if dumpname is not None: mkout(dumpname) with open(dumpname, 'w') as f: f.writelines(out_text) else: return ''.join(out_text) def write_keypoints3d(dumpname, results): # TODO:rewrite it keys = ['keypoints3d'] write_common_results(dumpname, results, keys, fmt='%6.3f') def write_vertices(dumpname, results): keys = ['vertices'] write_common_results(dumpname, results, keys, fmt='%6.3f') def write_smpl(dumpname, results): keys = ['Rh', 'Th', 'poses', 'expression', 'shapes'] write_common_results(dumpname, results, keys) def batch_bbox_from_pose(keypoints2d, height, width, rate=0.1): # TODO:write this in batch bboxes = np.zeros((keypoints2d.shape[0], 5), dtype=np.float32) border = 20 for bn in range(keypoints2d.shape[0]): valid = keypoints2d[bn, :, -1] > 0 if valid.sum() == 0: continue p2d = keypoints2d[bn, valid, :2] x_min, y_min = p2d.min(axis=0) x_max, y_max = p2d.max(axis=0) x_mean, y_mean = p2d.mean(axis=0) if x_mean < -border or y_mean < -border or x_mean > width + border or y_mean > height + border: continue dx = (x_max - x_min)*rate dy = (y_max - y_min)*rate bboxes[bn] = [x_min-dx, y_min-dy, x_max+dx, y_max+dy, 1] return bboxes def get_bbox_from_pose(pose_2d, img=None, rate = 0.1): # this function returns bounding box from the 2D pose # here use pose_2d[:, -1] instead of pose_2d[:, 2] # because when vis reprojection, the result will be (x, y, depth, conf) validIdx = pose_2d[:, -1] > 0 if validIdx.sum() == 0: return [0, 0, 100, 100, 0] y_min = int(min(pose_2d[validIdx, 1])) y_max = int(max(pose_2d[validIdx, 1])) x_min = int(min(pose_2d[validIdx, 0])) x_max = int(max(pose_2d[validIdx, 0])) dx = (x_max - x_min)*rate dy = (y_max - y_min)*rate # 后面加上类别这些 bbox = [x_min-dx, y_min-dy, x_max+dx, y_max+dy, 1] if img is not None: correct_bbox(img, bbox) return bbox def correct_bbox(img, bbox): # this function corrects the bbox, which is out of image w = img.shape[0] h = img.shape[1] if bbox[2] <= 0 or bbox[0] >= h or bbox[1] >= w or bbox[3] <= 0: bbox[4] = 0 return bbox def merge_params(param_list, share_shape=True): output = {} for key in ['poses', 'shapes', 'Rh', 'Th', 'expression']: if key in param_list[0].keys(): output[key] = np.vstack([v[key] for v in param_list]) if share_shape: output['shapes'] = output['shapes'].mean(axis=0, keepdims=True) return output def select_nf(params_all, nf): output = {} for key in ['poses', 'Rh', 'Th']: output[key] = params_all[key][nf:nf+1, :] if 'expression' in params_all.keys(): output['expression'] = params_all['expression'][nf:nf+1, :] if params_all['shapes'].shape[0] == 1: output['shapes'] = params_all['shapes'] else: output['shapes'] = params_all['shapes'][nf:nf+1, :] return output