''' @ Date: 2020-11-28 17:23:04 @ Author: Qing Shuai @ LastEditors: Qing Shuai @ LastEditTime: 2021-08-22 16:11:25 @ FilePath: /EasyMocap/easymocap/mytools/vis_base.py ''' import cv2 import numpy as np import json def generate_colorbar(N = 20, cmap = 'jet'): bar = ((np.arange(N)/(N-1))*255).astype(np.uint8).reshape(-1, 1) colorbar = cv2.applyColorMap(bar, cv2.COLORMAP_JET).squeeze() if False: colorbar = np.clip(colorbar + 64, 0, 255) import random random.seed(666) index = [i for i in range(N)] random.shuffle(index) rgb = colorbar[index, :] rgb = rgb.tolist() return rgb colors_bar_rgb = generate_colorbar(cmap='hsv') colors_table = { 'b': [0.65098039, 0.74117647, 0.85882353], '_pink': [.9, .7, .7], '_mint': [ 166/255., 229/255., 204/255.], '_mint2': [ 202/255., 229/255., 223/255.], '_green': [ 153/255., 216/255., 201/255.], '_green2': [ 171/255., 221/255., 164/255.], 'r': [ 251/255., 128/255., 114/255.], '_orange': [ 253/255., 174/255., 97/255.], 'y': [ 250/255., 230/255., 154/255.], '_r':[255/255,0,0], 'g':[0,255/255,0], '_b':[0,0,255/255], 'k':[0,0,0], '_y':[255/255,255/255,0], 'purple':[128/255,0,128/255], 'smap_b':[51/255,153/255,255/255], 'smap_r':[255/255,51/255,153/255], 'smap_b':[51/255,255/255,153/255], } def get_rgb(index): if isinstance(index, int): if index == -1: return (255, 255, 255) if index < -1: return (0, 0, 0) col = colors_bar_rgb[index%len(colors_bar_rgb)] else: col = colors_table.get(index, (1, 0, 0)) col = tuple([int(c*255) for c in col[::-1]]) return col def get_rgb_01(index): col = get_rgb(index) return [i*1./255 for i in col[:3]] def plot_point(img, x, y, r, col, pid=-1, font_scale=-1, circle_type=-1): cv2.circle(img, (int(x+0.5), int(y+0.5)), r, col, circle_type) if font_scale == -1: font_scale = img.shape[0]/4000 if pid != -1: cv2.putText(img, '{}'.format(pid), (int(x+0.5), int(y+0.5)), cv2.FONT_HERSHEY_SIMPLEX, font_scale, col, 1) def plot_line(img, pt1, pt2, lw, col): cv2.line(img, (int(pt1[0]+0.5), int(pt1[1]+0.5)), (int(pt2[0]+0.5), int(pt2[1]+0.5)), col, lw) def plot_cross(img, x, y, col, width=-1, lw=-1): if lw == -1: lw = max(1, int(round(img.shape[0]/1000))) width = lw * 5 cv2.line(img, (int(x-width), int(y)), (int(x+width), int(y)), col, lw) cv2.line(img, (int(x), int(y-width)), (int(x), int(y+width)), col, lw) def plot_bbox(img, bbox, pid, vis_id=True): # 画bbox: (l, t, r, b) x1, y1, x2, y2 = bbox[:4] x1 = int(round(x1)) x2 = int(round(x2)) y1 = int(round(y1)) y2 = int(round(y2)) color = get_rgb(pid) lw = max(img.shape[0]//300, 2) cv2.rectangle(img, (x1, y1), (x2, y2), color, lw) if vis_id: font_scale = img.shape[0]/1000 cv2.putText(img, '{}'.format(pid), (x1, y1+int(25*font_scale)), cv2.FONT_HERSHEY_SIMPLEX, font_scale, color, 2) def plot_keypoints(img, points, pid, config, vis_conf=False, use_limb_color=True, lw=2): for ii, (i, j) in enumerate(config['kintree']): if i >= len(points) or j >= len(points): continue pt1, pt2 = points[i], points[j] if use_limb_color: col = get_rgb(config['colors'][ii]) else: col = get_rgb(pid) if pt1[-1] > 0.01 and pt2[-1] > 0.01: image = cv2.line( img, (int(pt1[0]+0.5), int(pt1[1]+0.5)), (int(pt2[0]+0.5), int(pt2[1]+0.5)), col, lw) for i in range(len(points)): x, y = points[i][0], points[i][1] c = points[i][-1] if c > 0.01: col = get_rgb(pid) cv2.circle(img, (int(x+0.5), int(y+0.5)), lw*2, col, -1) if vis_conf: cv2.putText(img, '{:.1f}'.format(c), (int(x), int(y)), cv2.FONT_HERSHEY_SIMPLEX, 1, col, 2) def plot_points2d(img, points2d, lines, lw=4, col=(0, 255, 0), putText=True): # 将2d点画上去 if points2d.shape[1] == 2: points2d = np.hstack([points2d, np.ones((points2d.shape[0], 1))]) for i, (x, y, v) in enumerate(points2d): if v < 0.01: continue c = col plot_cross(img, x, y, width=10, col=c, lw=lw) if putText: font_scale = img.shape[0]/2000 cv2.putText(img, '{}'.format(i), (int(x), int(y)), cv2.FONT_HERSHEY_SIMPLEX, font_scale, c, 2) for i, j in lines: if points2d[i][2] < 0.01 or points2d[j][2] < 0.01: continue plot_line(img, points2d[i], points2d[j], 2, col) row_col_ = { 2: (2, 1), 7: (2, 4), 8: (2, 4), 9: (3, 3), 26: (4, 7) } def get_row_col(l): if l in row_col_.keys(): return row_col_[l] else: from math import sqrt row = int(sqrt(l) + 0.5) col = int(l/ row + 0.5) if row*col col: row, col = col, row return row, col def merge(images, row=-1, col=-1, resize=False, ret_range=False, **kwargs): if row == -1 and col == -1: row, col = get_row_col(len(images)) height = images[0].shape[0] width = images[0].shape[1] ret_img = np.zeros((height * row, width * col, images[0].shape[2]), dtype=np.uint8) + 255 ranges = [] for i in range(row): for j in range(col): if i*col + j >= len(images): break img = images[i * col + j] # resize the image size img = cv2.resize(img, (width, height)) ret_img[height * i: height * (i+1), width * j: width * (j+1)] = img ranges.append((width*j, height*i, width*(j+1), height*(i+1))) if resize: min_height = 1000 if ret_img.shape[0] > min_height: scale = min_height/ret_img.shape[0] ret_img = cv2.resize(ret_img, None, fx=scale, fy=scale) if ret_range: return ret_img, ranges return ret_img