import numpy as np from easymocap.dataset.mirror import flipPoint2D def clear_vanish_points(self, param): "remove all vanishing points" annots = param['annots'] annots['vanish_line'] = [[], [], []] annots['vanish_point'] = [[], [], []] def clear_body_points(self, param): "remove vanish lines of body" annots = param['annots'] for i in range(3): vanish_lines = [] for data in annots['vanish_line'][i]: if data[0][-1] > 1 and data[1][-1] > 1: vanish_lines.append(data) annots['vanish_line'][i] = vanish_lines if len(vanish_lines) > 1: annots['vanish_point'][i] = update_vanish_points(vanish_lines) def calc_vanishpoint(keypoints2d, thres=0.3): ''' keypoints2d: (2, N, 3) ''' valid_idx = [] for nj in range(keypoints2d.shape[1]): if keypoints2d[0, nj, 2] > thres and keypoints2d[1, nj, 2] > thres: valid_idx.append(nj) assert len(valid_idx) > 0, 'ATTN: cannot calculate the mirror pose' keypoints2d = keypoints2d[:, valid_idx] # weight: (N, 1) weight = keypoints2d[:, :, 2:].mean(axis=0) conf = weight.mean() A = np.hstack([ keypoints2d[1, :, 1:2] - keypoints2d[0, :, 1:2], -(keypoints2d[1, :, 0:1] - keypoints2d[0, :, 0:1]) ]) b = -keypoints2d[0, :, 0:1]*(keypoints2d[1, :, 1:2] - keypoints2d[0, :, 1:2]) \ + keypoints2d[0, :, 1:2] * (keypoints2d[1, :, 0:1] - keypoints2d[0, :, 0:1]) b = -b A = A * weight b = b * weight avgInsec = np.linalg.inv(A.T @ A) @ (A.T @ b) result = np.zeros(3) result[0] = avgInsec[0, 0] result[1] = avgInsec[1, 0] result[2] = conf return result def update_vanish_points(lines): vline0 = np.array(lines).transpose(1, 0, 2) # vline0 = np.dstack((vline0, np.ones((vline0.shape[0], vline0.shape[1], 1)))) dim1points = vline0.copy() points = calc_vanishpoint(dim1points) return points.tolist() def get_record_vanish_lines(index): def record_vanish_lines(self, param, **kwargs): "record vanish lines, X: mirror edge, Y: into mirror, Z: Up" annots = param['annots'] if 'vanish_line' not in annots.keys(): annots['vanish_line'] = [[], [], []] if 'vanish_point' not in annots.keys(): annots['vanish_point'] = [[], [], []] start, end = param['start'], param['end'] if start is not None and end is not None: annots['vanish_line'][index].append([[start[0], start[1], 2], [end[0], end[1], 2]]) # 更新vanish point if len(annots['vanish_line'][index]) > 1: annots['vanish_point'][index] = update_vanish_points(annots['vanish_line'][index]) param['start'] = None param['end'] = None func = record_vanish_lines text = ['parallel to mirror edges', 'vertical to mirror', 'vertical to ground'] func.__doc__ = 'vanish line of ' + text[index] return record_vanish_lines def vanish_point_from_body(self, param, **kwargs): "calculating the vanish point from human keypoints" annots = param['annots'] bodies = annots['annots'] if len(bodies) < 2: return 0 assert len(bodies) == 2, 'Please make sure that there are only two bboxes!' kpts0 = np.array(bodies[0]['keypoints']) kpts1 = flipPoint2D(np.array(bodies[1]['keypoints'])) vanish_line = annots['vanish_line'][1] # the y-dim MIN_CONF = 0.5 for i in range(15): conf = min(kpts0[i, -1], kpts1[i, -1]) if kpts0[i, -1] > MIN_CONF and kpts1[i, -1] > MIN_CONF: vanish_line.append([[kpts0[i, 0], kpts0[i, 1], conf], [kpts1[i, 0], kpts1[i, 1], conf]]) if len(vanish_line) > 1: annots['vanish_point'][1] = update_vanish_points(vanish_line) def copy_edges(self, param, **kwargs): "copy the static edges from previous frame" if self.frame == 0: return 0 previous = self.previous() annots = param['annots'] # copy the vanish points vanish_lines_pre = previous['vanish_line'] vanish_lines = param['annots']['vanish_line'] for i in range(3): vanish_lines[i] = [] for data in vanish_lines_pre[i]: if data[0][-1] > 1 and data[1][-1] > 1: vanish_lines[i].append(data) if len(vanish_lines[i]) > 1: annots['vanish_point'][i] = update_vanish_points(vanish_lines[i]) def get_calc_intrinsic(mode='xy'): def calc_intrinsic(self, param, **kwargs): "calculating intrinsic matrix according to vanish points" annots = param['annots'] if mode == 'xy': point0 = annots['vanish_point'][0] point1 = annots['vanish_point'][1] elif mode == 'yz': point0 = annots['vanish_point'][1] point1 = annots['vanish_point'][2] else: import ipdb; ipdb.set_trace() if len(point0) < 1 or len(point1) < 1: return 0 vanish_point = np.stack([np.array(point0), np.array(point1)]) K = np.eye(3) H = annots['height'] W = annots['width'] K = np.eye(3) K[0, 2] = W/2 K[1, 2] = H/2 vanish_point[:, 0] -= W/2 vanish_point[:, 1] -= H/2 focal = np.sqrt(-(vanish_point[0][0]*vanish_point[1][0] + vanish_point[0][1]*vanish_point[1][1])) K[0, 0] = focal K[1, 1] = focal annots['K'] = K.tolist() print('>>> estimated K: ') print(K) calc_intrinsic.__doc__ = 'calculate K with {}'.format(mode) return calc_intrinsic