''' @ Date: 2020-10-23 20:07:49 @ Author: Qing Shuai @ LastEditors: Qing Shuai @ LastEditTime: 2021-03-05 13:43:01 @ FilePath: /EasyMocap/code/estimator/SPIN/spin_api.py ''' """ Demo code To run our method, you need a bounding box around the person. The person needs to be centered inside the bounding box and the bounding box should be relatively tight. You can either supply the bounding box directly or provide an [OpenPose](https://github.com/CMU-Perceptual-Computing-Lab/openpose) detection file. In the latter case we infer the bounding box from the detections. In summary, we provide 3 different ways to use our demo code and models: 1. Provide only an input image (using ```--img```), in which case it is assumed that it is already cropped with the person centered in the image. 2. Provide an input image as before, together with the OpenPose detection .json (using ```--openpose```). Our code will use the detections to compute the bounding box and crop the image. 3. Provide an image and a bounding box (using ```--bbox```). The expected format for the json file can be seen in ```examples/im1010_bbox.json```. Example with OpenPose detection .json ``` python3 demo.py --checkpoint=data/model_checkpoint.pt --img=examples/im1010.png --openpose=examples/im1010_openpose.json ``` Example with predefined Bounding Box ``` python3 demo.py --checkpoint=data/model_checkpoint.pt --img=examples/im1010.png --bbox=examples/im1010_bbox.json ``` Example with cropped and centered image ``` python3 demo.py --checkpoint=data/model_checkpoint.pt --img=examples/im1010.png ``` Running the previous command will save the results in ```examples/im1010_{shape,shape_side}.png```. The file ```im1010_shape.png``` shows the overlayed reconstruction of human shape. We also render a side view, saved in ```im1010_shape_side.png```. """ import torch from torchvision.transforms import Normalize import numpy as np import cv2 from .models import hmr class constants: FOCAL_LENGTH = 5000. IMG_RES = 224 # Mean and standard deviation for normalizing input image IMG_NORM_MEAN = [0.485, 0.456, 0.406] IMG_NORM_STD = [0.229, 0.224, 0.225] def get_transform(center, scale, res, rot=0): """Generate transformation matrix.""" h = 200 * scale t = np.zeros((3, 3)) t[0, 0] = float(res[1]) / h t[1, 1] = float(res[0]) / h t[0, 2] = res[1] * (-float(center[0]) / h + .5) t[1, 2] = res[0] * (-float(center[1]) / h + .5) t[2, 2] = 1 if not rot == 0: rot = -rot # To match direction of rotation from cropping rot_mat = np.zeros((3,3)) rot_rad = rot * np.pi / 180 sn,cs = np.sin(rot_rad), np.cos(rot_rad) rot_mat[0,:2] = [cs, -sn] rot_mat[1,:2] = [sn, cs] rot_mat[2,2] = 1 # Need to rotate around center t_mat = np.eye(3) t_mat[0,2] = -res[1]/2 t_mat[1,2] = -res[0]/2 t_inv = t_mat.copy() t_inv[:2,2] *= -1 t = np.dot(t_inv,np.dot(rot_mat,np.dot(t_mat,t))) return t def transform(pt, center, scale, res, invert=0, rot=0): """Transform pixel location to different reference.""" t = get_transform(center, scale, res, rot=rot) if invert: t = np.linalg.inv(t) new_pt = np.array([pt[0]-1, pt[1]-1, 1.]).T new_pt = np.dot(t, new_pt) return new_pt[:2].astype(int)+1 def crop(img, center, scale, res, rot=0, bias=0): """Crop image according to the supplied bounding box.""" # Upper left point ul = np.array(transform([1, 1], center, scale, res, invert=1))-1 # Bottom right point br = np.array(transform([res[0]+1, res[1]+1], center, scale, res, invert=1))-1 # Padding so that when rotated proper amount of context is included pad = int(np.linalg.norm(br - ul) / 2 - float(br[1] - ul[1]) / 2) if not rot == 0: ul -= pad br += pad new_shape = [br[1] - ul[1], br[0] - ul[0]] if len(img.shape) > 2: new_shape += [img.shape[2]] new_img = np.zeros(new_shape) + bias # Range to fill new array new_x = max(0, -ul[0]), min(br[0], len(img[0])) - ul[0] new_y = max(0, -ul[1]), min(br[1], len(img)) - ul[1] # Range to sample from original image old_x = max(0, ul[0]), min(len(img[0]), br[0]) old_y = max(0, ul[1]), min(len(img), br[1]) new_img[new_y[0]:new_y[1], new_x[0]:new_x[1]] = img[old_y[0]:old_y[1], old_x[0]:old_x[1]] if not rot == 0: # Remove padding new_img = scipy.misc.imrotate(new_img, rot) new_img = new_img[pad:-pad, pad:-pad] new_img = cv2.resize(new_img, (res[0], res[1])) return new_img def process_image(img, bbox, input_res=224): """Read image, do preprocessing and possibly crop it according to the bounding box. If there are bounding box annotations, use them to crop the image. If no bounding box is specified but openpose detections are available, use them to get the bounding box. """ img = img[:, :, ::-1].copy() normalize_img = Normalize(mean=constants.IMG_NORM_MEAN, std=constants.IMG_NORM_STD) l, t, r, b = bbox[:4] center = [(l+r)/2, (t+b)/2] width = max(r-l, b-t) scale = width/200.0 img = crop(img, center, scale, (input_res, input_res)) img = img.astype(np.float32) / 255. img = torch.from_numpy(img).permute(2,0,1) norm_img = normalize_img(img.clone())[None] return img, norm_img def estimate_translation_np(S, joints_2d, joints_conf, K): """Find camera translation that brings 3D joints S closest to 2D the corresponding joints_2d. Input: S: (25, 3) 3D joint locations joints: (25, 3) 2D joint locations and confidence Returns: (3,) camera translation vector """ num_joints = S.shape[0] # focal length f = np.array([K[0, 0], K[1, 1]]) # optical center center = np.array([K[0, 2], K[1, 2]]) # transformations Z = np.reshape(np.tile(S[:,2],(2,1)).T,-1) XY = np.reshape(S[:,0:2],-1) O = np.tile(center,num_joints) F = np.tile(f,num_joints) weight2 = np.reshape(np.tile(np.sqrt(joints_conf),(2,1)).T,-1) # least squares Q = np.array([F*np.tile(np.array([1,0]),num_joints), F*np.tile(np.array([0,1]),num_joints), O-np.reshape(joints_2d,-1)]).T c = (np.reshape(joints_2d,-1)-O)*Z - F*XY # weighted least squares W = np.diagflat(weight2) Q = np.dot(W,Q) c = np.dot(W,c) # square matrix A = np.dot(Q.T,Q) b = np.dot(Q.T,c) # solution trans = np.linalg.solve(A, b) return trans class SPIN: def __init__(self, SMPL_MEAN_PARAMS, checkpoint, device) -> None: model = hmr(SMPL_MEAN_PARAMS).to(device) checkpoint = torch.load(checkpoint) model.load_state_dict(checkpoint['model'], strict=False) # Load SMPL model model.eval() self.model = model self.device = device def forward(self, img, bbox, use_rh_th=True): # Preprocess input image and generate predictions img, norm_img = process_image(img, bbox, input_res=constants.IMG_RES) with torch.no_grad(): pred_rotmat, pred_betas, pred_camera = self.model(norm_img.to(self.device)) results = { 'shapes': pred_betas.detach().cpu().numpy() } rotmat = pred_rotmat[0].detach().cpu().numpy() poses = np.zeros((1, rotmat.shape[0]*3)) for i in range(rotmat.shape[0]): p, _ = cv2.Rodrigues(rotmat[i]) poses[0, 3*i:3*i+3] = p[:, 0] results['poses'] = poses if use_rh_th: body_params = { 'poses': results['poses'], 'shapes': results['shapes'], 'Rh': results['poses'][:, :3].copy(), 'Th': np.zeros((1, 3)), } body_params['Th'][0, 2] = 5 body_params['poses'][:, :3] = 0 results = body_params return results def init_with_spin(body_model, spin_model, img, bbox, kpts, camera): body_params = spin_model.forward(img.copy(), bbox) body_params = body_model.check_params(body_params) # only use body joints to estimation translation nJoints = 15 keypoints3d = body_model(return_verts=False, return_tensor=False, **body_params)[0] trans = estimate_translation_np(keypoints3d[:nJoints], kpts[:nJoints, :2], kpts[:nJoints, 2], camera['K']) body_params['Th'] += trans[None, :] # convert to world coordinate Rhold = cv2.Rodrigues(body_params['Rh'])[0] Thold = body_params['Th'] Rh = camera['R'].T @ Rhold Th = (camera['R'].T @ (Thold.T - camera['T'])).T body_params['Th'] = Th body_params['Rh'] = cv2.Rodrigues(Rh)[0].reshape(1, 3) vertices = body_model(return_verts=True, return_tensor=False, **body_params)[0] keypoints3d = body_model(return_verts=False, return_tensor=False, **body_params)[0] results = {'body_params': body_params, 'vertices': vertices, 'keypoints3d': keypoints3d} return results if __name__ == '__main__': pass