# copy from neuralbody from torch.utils.data.sampler import Sampler from torch.utils.data.sampler import BatchSampler import numpy as np import torch import math import torch.distributed as dist class ImageSizeBatchSampler(Sampler): def __init__(self, sampler, batch_size, drop_last, sampler_meta): self.sampler = sampler self.batch_size = batch_size self.drop_last = drop_last self.strategy = sampler_meta.strategy self.hmin, self.wmin = sampler_meta.min_hw self.hmax, self.wmax = sampler_meta.max_hw self.divisor = 32 def generate_height_width(self): if self.strategy == 'origin': return -1, -1 h = np.random.randint(self.hmin, self.hmax + 1) w = np.random.randint(self.wmin, self.wmax + 1) h = (h | (self.divisor - 1)) + 1 w = (w | (self.divisor - 1)) + 1 return h, w def __iter__(self): batch = [] h, w = self.generate_height_width() for idx in self.sampler: batch.append((idx, h, w)) if len(batch) == self.batch_size: h, w = self.generate_height_width() yield batch batch = [] if len(batch) > 0 and not self.drop_last: yield batch def __len__(self): if self.drop_last: return len(self.sampler) // self.batch_size else: return (len(self.sampler) + self.batch_size - 1) // self.batch_size class IterationBasedBatchSampler(BatchSampler): """ Wraps a BatchSampler, resampling from it until a specified number of iterations have been sampled """ def __init__(self, batch_sampler, num_iterations, start_iter=0): self.batch_sampler = batch_sampler self.sampler = self.batch_sampler.sampler self.num_iterations = num_iterations self.start_iter = start_iter def __iter__(self): iteration = self.start_iter while iteration <= self.num_iterations: for batch in self.batch_sampler: iteration += 1 if iteration > self.num_iterations: break yield batch def __len__(self): return self.num_iterations class DistributedSampler(Sampler): """Sampler that restricts data loading to a subset of the dataset. It is especially useful in conjunction with :class:`torch.nn.parallel.DistributedDataParallel`. In such case, each process can pass a DistributedSampler instance as a DataLoader sampler, and load a subset of the original dataset that is exclusive to it. .. note:: Dataset is assumed to be of constant size. Arguments: dataset: Dataset used for sampling. num_replicas (optional): Number of processes participating in distributed training. rank (optional): Rank of the current process within num_replicas. """ def __init__(self, dataset, num_replicas=None, rank=None, shuffle=True): if num_replicas is None: if not dist.is_available(): raise RuntimeError("Requires distributed package to be available") num_replicas = dist.get_world_size() if rank is None: if not dist.is_available(): raise RuntimeError("Requires distributed package to be available") rank = dist.get_rank() self.dataset = dataset self.num_replicas = num_replicas self.rank = rank self.epoch = 0 self.num_samples = int(math.ceil(len(self.dataset) * 1.0 / self.num_replicas)) self.total_size = self.num_samples * self.num_replicas self.shuffle = shuffle def __iter__(self): if self.shuffle: # deterministically shuffle based on epoch g = torch.Generator() g.manual_seed(self.epoch) indices = torch.randperm(len(self.dataset), generator=g).tolist() else: indices = torch.arange(len(self.dataset)).tolist() # add extra samples to make it evenly divisible indices += indices[: (self.total_size - len(indices))] assert len(indices) == self.total_size # subsample offset = self.num_samples * self.rank indices = indices[offset:offset+self.num_samples] assert len(indices) == self.num_samples return iter(indices) def __len__(self): return self.num_samples def set_epoch(self, epoch): self.epoch = epoch class FrameSampler(Sampler): """Sampler certain frames for test """ def __init__(self, dataset): inds = np.arange(0, len(dataset.ims)) ni = len(dataset.ims) // dataset.num_cams inds = inds.reshape(ni, -1)[::30] self.inds = inds.ravel() def __iter__(self): return iter(self.inds) def __len__(self): return len(self.inds)