# -*- coding: utf-8 -*- # Max-Planck-Gesellschaft zur Förderung der Wissenschaften e.V. (MPG) is # holder of all proprietary rights on this computer program. # You can only use this computer program if you have closed # a license agreement with MPG or you get the right to use the computer # program from someone who is authorized to grant you that right. # Any use of the computer program without a valid license is prohibited and # liable to prosecution. # # Copyright©2019 Max-Planck-Gesellschaft zur Förderung # der Wissenschaften e.V. (MPG). acting on behalf of its Max Planck Institute # for Intelligent Systems. All rights reserved. # # Contact: ps-license@tuebingen.mpg.de from __future__ import absolute_import from __future__ import print_function from __future__ import division import numpy as np import torch import torch.nn.functional as F def rot_mat_to_euler(rot_mats): # Calculates rotation matrix to euler angles # Careful for extreme cases of eular angles like [0.0, pi, 0.0] sy = torch.sqrt(rot_mats[:, 0, 0] * rot_mats[:, 0, 0] + rot_mats[:, 1, 0] * rot_mats[:, 1, 0]) return torch.atan2(-rot_mats[:, 2, 0], sy) def find_dynamic_lmk_idx_and_bcoords(vertices, pose, dynamic_lmk_faces_idx, dynamic_lmk_b_coords, neck_kin_chain, dtype=torch.float32): ''' Compute the faces, barycentric coordinates for the dynamic landmarks To do so, we first compute the rotation of the neck around the y-axis and then use a pre-computed look-up table to find the faces and the barycentric coordinates that will be used. Special thanks to Soubhik Sanyal (soubhik.sanyal@tuebingen.mpg.de) for providing the original TensorFlow implementation and for the LUT. Parameters ---------- vertices: torch.tensor BxVx3, dtype = torch.float32 The tensor of input vertices pose: torch.tensor Bx(Jx3), dtype = torch.float32 The current pose of the body model dynamic_lmk_faces_idx: torch.tensor L, dtype = torch.long The look-up table from neck rotation to faces dynamic_lmk_b_coords: torch.tensor Lx3, dtype = torch.float32 The look-up table from neck rotation to barycentric coordinates neck_kin_chain: list A python list that contains the indices of the joints that form the kinematic chain of the neck. dtype: torch.dtype, optional Returns ------- dyn_lmk_faces_idx: torch.tensor, dtype = torch.long A tensor of size BxL that contains the indices of the faces that will be used to compute the current dynamic landmarks. dyn_lmk_b_coords: torch.tensor, dtype = torch.float32 A tensor of size BxL that contains the indices of the faces that will be used to compute the current dynamic landmarks. ''' batch_size = vertices.shape[0] aa_pose = torch.index_select(pose.view(batch_size, -1, 3), 1, neck_kin_chain) rot_mats = batch_rodrigues( aa_pose.view(-1, 3), dtype=dtype).view(batch_size, -1, 3, 3) rel_rot_mat = torch.eye(3, device=vertices.device, dtype=dtype).unsqueeze_(dim=0) for idx in range(len(neck_kin_chain)): rel_rot_mat = torch.bmm(rot_mats[:, idx], rel_rot_mat) y_rot_angle = torch.round( torch.clamp(-rot_mat_to_euler(rel_rot_mat) * 180.0 / np.pi, max=39)).to(dtype=torch.long) neg_mask = y_rot_angle.lt(0).to(dtype=torch.long) mask = y_rot_angle.lt(-39).to(dtype=torch.long) neg_vals = mask * 78 + (1 - mask) * (39 - y_rot_angle) y_rot_angle = (neg_mask * neg_vals + (1 - neg_mask) * y_rot_angle) dyn_lmk_faces_idx = torch.index_select(dynamic_lmk_faces_idx, 0, y_rot_angle) dyn_lmk_b_coords = torch.index_select(dynamic_lmk_b_coords, 0, y_rot_angle) return dyn_lmk_faces_idx, dyn_lmk_b_coords def vertices2landmarks(vertices, faces, lmk_faces_idx, lmk_bary_coords): ''' Calculates landmarks by barycentric interpolation Parameters ---------- vertices: torch.tensor BxVx3, dtype = torch.float32 The tensor of input vertices faces: torch.tensor Fx3, dtype = torch.long The faces of the mesh lmk_faces_idx: torch.tensor L, dtype = torch.long The tensor with the indices of the faces used to calculate the landmarks. lmk_bary_coords: torch.tensor Lx3, dtype = torch.float32 The tensor of barycentric coordinates that are used to interpolate the landmarks Returns ------- landmarks: torch.tensor BxLx3, dtype = torch.float32 The coordinates of the landmarks for each mesh in the batch ''' # Extract the indices of the vertices for each face # BxLx3 batch_size, num_verts = vertices.shape[:2] device = vertices.device lmk_faces = torch.index_select(faces, 0, lmk_faces_idx.view(-1)).view( batch_size, -1, 3) lmk_faces += torch.arange( batch_size, dtype=torch.long, device=device).view(-1, 1, 1) * num_verts lmk_vertices = vertices.view(-1, 3)[lmk_faces].view( batch_size, -1, 3, 3) landmarks = torch.einsum('blfi,blf->bli', [lmk_vertices, lmk_bary_coords]) return landmarks def lbs(betas, pose, v_template, shapedirs, posedirs, J_regressor, parents, lbs_weights, pose2rot=True, dtype=torch.float32, only_shape=False, use_shape_blending=True, use_pose_blending=True, J_shaped=None): ''' Performs Linear Blend Skinning with the given shape and pose parameters Parameters ---------- betas : torch.tensor BxNB The tensor of shape parameters pose : torch.tensor Bx(J + 1) * 3 The pose parameters in axis-angle format v_template torch.tensor BxVx3 The template mesh that will be deformed shapedirs : torch.tensor 1xNB The tensor of PCA shape displacements posedirs : torch.tensor Px(V * 3) The pose PCA coefficients J_regressor : torch.tensor JxV The regressor array that is used to calculate the joints from the position of the vertices parents: torch.tensor J The array that describes the kinematic tree for the model lbs_weights: torch.tensor N x V x (J + 1) The linear blend skinning weights that represent how much the rotation matrix of each part affects each vertex pose2rot: bool, optional Flag on whether to convert the input pose tensor to rotation matrices. The default value is True. If False, then the pose tensor should already contain rotation matrices and have a size of Bx(J + 1)x9 dtype: torch.dtype, optional Returns ------- verts: torch.tensor BxVx3 The vertices of the mesh after applying the shape and pose displacements. joints: torch.tensor BxJx3 The joints of the model ''' batch_size = max(betas.shape[0], pose.shape[0]) device = betas.device # Add shape contribution if use_shape_blending: v_shaped = v_template + blend_shapes(betas, shapedirs) # Get the joints # NxJx3 array J = vertices2joints(J_regressor, v_shaped) else: v_shaped = v_template.unsqueeze(0).expand(batch_size, -1, -1) assert J_shaped is not None J = J_shaped[None].expand(batch_size, -1, -1) if only_shape: return v_shaped, J # 3. Add pose blend shapes # N x J x 3 x 3 if pose2rot: rot_mats = batch_rodrigues( pose.view(-1, 3), dtype=dtype).view([batch_size, -1, 3, 3]) else: rot_mats = pose.view(batch_size, -1, 3, 3) if use_pose_blending: ident = torch.eye(3, dtype=dtype, device=device) pose_feature = (rot_mats[:, 1:, :, :] - ident).view([batch_size, -1]) pose_offsets = torch.matmul(pose_feature, posedirs) \ .view(batch_size, -1, 3) v_posed = pose_offsets + v_shaped else: v_posed = v_shaped # 4. Get the global joint location J_transformed, A = batch_rigid_transform(rot_mats, J, parents, dtype=dtype) # 5. Do skinning: # W is N x V x (J + 1) W = lbs_weights.unsqueeze(dim=0).expand([batch_size, -1, -1]) # (N x V x (J + 1)) x (N x (J + 1) x 16) num_joints = J_regressor.shape[0] T = torch.matmul(W, A.view(batch_size, num_joints, 16)) \ .view(batch_size, -1, 4, 4) homogen_coord = torch.ones([batch_size, v_posed.shape[1], 1], dtype=dtype, device=device) v_posed_homo = torch.cat([v_posed, homogen_coord], dim=2) v_homo = torch.matmul(T, torch.unsqueeze(v_posed_homo, dim=-1)) verts = v_homo[:, :, :3, 0] return verts, J_transformed def vertices2joints(J_regressor, vertices): ''' Calculates the 3D joint locations from the vertices Parameters ---------- J_regressor : torch.tensor JxV The regressor array that is used to calculate the joints from the position of the vertices vertices : torch.tensor BxVx3 The tensor of mesh vertices Returns ------- torch.tensor BxJx3 The location of the joints ''' return torch.einsum('bik,ji->bjk', [vertices, J_regressor]) def blend_shapes(betas, shape_disps): ''' Calculates the per vertex displacement due to the blend shapes Parameters ---------- betas : torch.tensor Bx(num_betas) Blend shape coefficients shape_disps: torch.tensor Vx3x(num_betas) Blend shapes Returns ------- torch.tensor BxVx3 The per-vertex displacement due to shape deformation ''' # Displacement[b, m, k] = sum_{l} betas[b, l] * shape_disps[m, k, l] # i.e. Multiply each shape displacement by its corresponding beta and # then sum them. blend_shape = torch.einsum('bl,mkl->bmk', [betas, shape_disps]) return blend_shape def batch_rodrigues(rot_vecs, epsilon=1e-8, dtype=torch.float32): ''' Calculates the rotation matrices for a batch of rotation vectors Parameters ---------- rot_vecs: torch.tensor Nx3 array of N axis-angle vectors Returns ------- R: torch.tensor Nx3x3 The rotation matrices for the given axis-angle parameters ''' batch_size = rot_vecs.shape[0] device = rot_vecs.device angle = torch.norm(rot_vecs + 1e-8, dim=1, keepdim=True) rot_dir = rot_vecs / angle cos = torch.unsqueeze(torch.cos(angle), dim=1) sin = torch.unsqueeze(torch.sin(angle), dim=1) # Bx1 arrays rx, ry, rz = torch.split(rot_dir, 1, dim=1) K = torch.zeros((batch_size, 3, 3), dtype=dtype, device=device) zeros = torch.zeros((batch_size, 1), dtype=dtype, device=device) K = torch.cat([zeros, -rz, ry, rz, zeros, -rx, -ry, rx, zeros], dim=1) \ .view((batch_size, 3, 3)) ident = torch.eye(3, dtype=dtype, device=device).unsqueeze(dim=0) rot_mat = ident + sin * K + (1 - cos) * torch.bmm(K, K) return rot_mat def transform_mat(R, t): ''' Creates a batch of transformation matrices Args: - R: Bx3x3 array of a batch of rotation matrices - t: Bx3x1 array of a batch of translation vectors Returns: - T: Bx4x4 Transformation matrix ''' # No padding left or right, only add an extra row return torch.cat([F.pad(R, [0, 0, 0, 1]), F.pad(t, [0, 0, 0, 1], value=1)], dim=2) def batch_rigid_transform(rot_mats, joints, parents, dtype=torch.float32): """ Applies a batch of rigid transformations to the joints Parameters ---------- rot_mats : torch.tensor BxNx3x3 Tensor of rotation matrices joints : torch.tensor BxNx3 Locations of joints parents : torch.tensor BxN The kinematic tree of each object dtype : torch.dtype, optional: The data type of the created tensors, the default is torch.float32 Returns ------- posed_joints : torch.tensor BxNx3 The locations of the joints after applying the pose rotations rel_transforms : torch.tensor BxNx4x4 The relative (with respect to the root joint) rigid transformations for all the joints """ joints = torch.unsqueeze(joints, dim=-1) rel_joints = joints.clone() rel_joints[:, 1:] -= joints[:, parents[1:]] transforms_mat = transform_mat( rot_mats.view(-1, 3, 3), rel_joints.contiguous().view(-1, 3, 1)).view(-1, joints.shape[1], 4, 4) transform_chain = [transforms_mat[:, 0]] for i in range(1, parents.shape[0]): # Subtract the joint location at the rest pose # No need for rotation, since it's identity when at rest curr_res = torch.matmul(transform_chain[parents[i]], transforms_mat[:, i]) transform_chain.append(curr_res) transforms = torch.stack(transform_chain, dim=1) # The last column of the transformations contains the posed joints posed_joints = transforms[:, :, :3, 3] # The last column of the transformations contains the posed joints posed_joints = transforms[:, :, :3, 3] joints_homogen = F.pad(joints, [0, 0, 0, 1]) rel_transforms = transforms - F.pad( torch.matmul(transforms, joints_homogen), [3, 0, 0, 0, 0, 0, 0, 0]) return posed_joints, rel_transforms def dqs(betas, pose, v_template, shapedirs, posedirs, J_regressor, parents, lbs_weights, pose2rot=True, dtype=torch.float32, only_shape=False, use_shape_blending=True, use_pose_blending=True, J_shaped=None): ''' Performs Linear Blend Skinning with the given shape and pose parameters Parameters ---------- betas : torch.tensor BxNB The tensor of shape parameters pose : torch.tensor Bx(J + 1) * 3 The pose parameters in axis-angle format v_template torch.tensor BxVx3 The template mesh that will be deformed shapedirs : torch.tensor 1xNB The tensor of PCA shape displacements posedirs : torch.tensor Px(V * 3) The pose PCA coefficients J_regressor : torch.tensor JxV The regressor array that is used to calculate the joints from the position of the vertices parents: torch.tensor J The array that describes the kinematic tree for the model lbs_weights: torch.tensor N x V x (J + 1) The linear blend skinning weights that represent how much the rotation matrix of each part affects each vertex pose2rot: bool, optional Flag on whether to convert the input pose tensor to rotation matrices. The default value is True. If False, then the pose tensor should already contain rotation matrices and have a size of Bx(J + 1)x9 dtype: torch.dtype, optional Returns ------- verts: torch.tensor BxVx3 The vertices of the mesh after applying the shape and pose displacements. joints: torch.tensor BxJx3 The joints of the model ''' batch_size = max(betas.shape[0], pose.shape[0]) device = betas.device # Add shape contribution if use_shape_blending: v_shaped = v_template + blend_shapes(betas, shapedirs) # Get the joints # NxJx3 array J = vertices2joints(J_regressor, v_shaped) else: v_shaped = v_template.unsqueeze(0).expand(batch_size, -1, -1) assert J_shaped is not None J = J_shaped[None].expand(batch_size, -1, -1) if only_shape: return v_shaped, J # 3. Add pose blend shapes # N x J x 3 x 3 if pose2rot: rot_mats = batch_rodrigues( pose.view(-1, 3), dtype=dtype).view([batch_size, -1, 3, 3]) else: rot_mats = pose.view(batch_size, -1, 3, 3) if use_pose_blending: ident = torch.eye(3, dtype=dtype, device=device) pose_feature = (rot_mats[:, 1:, :, :] - ident).view([batch_size, -1]) pose_offsets = torch.matmul(pose_feature, posedirs) \ .view(batch_size, -1, 3) v_posed = pose_offsets + v_shaped else: v_posed = v_shaped # 4. Get the global joint location J_transformed, A = batch_rigid_transform(rot_mats, J, parents, dtype=dtype) # 5. Do skinning: # W is N x V x (J + 1) W = lbs_weights.unsqueeze(dim=0).expand([batch_size, -1, -1]) verts=batch_dqs_blending(A,W,v_posed) return verts, J_transformed #A: B,J,4,4 W: B,V,J def batch_dqs_blending(A,W,Vs): Bnum,Jnum,_,_=A.shape _,Vnum,_=W.shape A = A.view(Bnum*Jnum,4,4) Rs=A[:,:3,:3] ws=torch.sqrt(torch.clamp(Rs[:,0,0]+Rs[:,1,1]+Rs[:,2,2]+1.,min=1.e-6))/2. xs=(Rs[:,2,1]-Rs[:,1,2])/(4.*ws) ys=(Rs[:,0,2]-Rs[:,2,0])/(4.*ws) zs=(Rs[:,1,0]-Rs[:,0,1])/(4.*ws) Ts=A[:,:3,3] vDw=-0.5*( Ts[:,0]*xs + Ts[:,1]*ys + Ts[:,2]*zs) vDx=0.5*( Ts[:,0]*ws + Ts[:,1]*zs - Ts[:,2]*ys) vDy=0.5*(-Ts[:,0]*zs + Ts[:,1]*ws + Ts[:,2]*xs) vDz=0.5*( Ts[:,0]*ys - Ts[:,1]*xs + Ts[:,2]*ws) b0=W.unsqueeze(-2)@torch.cat([ws[:,None],xs[:,None],ys[:,None],zs[:,None]],dim=-1).reshape(Bnum, 1, Jnum, 4) #B,V,J,4 be=W.unsqueeze(-2)@torch.cat([vDw[:,None],vDx[:,None],vDy[:,None],vDz[:,None]],dim=-1).reshape(Bnum, 1, Jnum, 4) #B,V,J,4 b0 = b0.reshape(-1, 4) be = be.reshape(-1, 4) ns=torch.norm(b0,dim=-1,keepdim=True) be=be/ns b0=b0/ns Vs=Vs.view(Bnum*Vnum,3) Vs=Vs+2.*b0[:,1:].cross(b0[:,1:].cross(Vs)+b0[:,:1]*Vs)+2.*(b0[:,:1]*be[:,1:]-be[:,:1]*b0[:,1:]+b0[:,1:].cross(be[:,1:])) return Vs.reshape(Bnum,Vnum,3)