47 lines
1.4 KiB
Python
47 lines
1.4 KiB
Python
import torch
|
|
|
|
class Embedder:
|
|
def __init__(self, **kwargs):
|
|
self.kwargs = kwargs
|
|
self.create_embedding_fn()
|
|
|
|
def create_embedding_fn(self):
|
|
embed_fns = []
|
|
d = self.kwargs['input_dims']
|
|
out_dim = 0
|
|
if self.kwargs['include_input']:
|
|
embed_fns.append(lambda x: x)
|
|
out_dim += d
|
|
|
|
max_freq = self.kwargs['max_freq_log2']
|
|
N_freqs = self.kwargs['num_freqs']
|
|
|
|
if self.kwargs['log_sampling']:
|
|
freq_bands = 2.**torch.linspace(0., max_freq, steps=N_freqs)
|
|
else:
|
|
freq_bands = torch.linspace(2.**0., 2.**max_freq, steps=N_freqs)
|
|
|
|
for freq in freq_bands:
|
|
for p_fn in self.kwargs['periodic_fns']:
|
|
embed_fns.append(
|
|
lambda x, p_fn=p_fn, freq=freq: p_fn(x * freq))
|
|
out_dim += d
|
|
|
|
self.embed_fns = embed_fns
|
|
self.out_dim = out_dim
|
|
|
|
def embed(self, inputs):
|
|
return torch.cat([fn(inputs) for fn in self.embed_fns], -1)
|
|
|
|
def get_embedder(multires, input_dims=3):
|
|
embed_kwargs = {
|
|
'include_input': True,
|
|
'input_dims': input_dims,
|
|
'max_freq_log2': multires - 1,
|
|
'num_freqs': multires,
|
|
'log_sampling': True,
|
|
'periodic_fns': [torch.sin, torch.cos],
|
|
}
|
|
embedder_obj = Embedder(**embed_kwargs)
|
|
embed = lambda x, eo=embedder_obj: eo.embed(x)
|
|
return embed, embedder_obj.out_dim |