EasyMocap/easymocap/neuralbody/trainer/samplers.py
2022-10-25 20:06:04 +08:00

147 lines
4.8 KiB
Python

# copy from neuralbody
from torch.utils.data.sampler import Sampler
from torch.utils.data.sampler import BatchSampler
import numpy as np
import torch
import math
import torch.distributed as dist
class ImageSizeBatchSampler(Sampler):
def __init__(self, sampler, batch_size, drop_last, sampler_meta):
self.sampler = sampler
self.batch_size = batch_size
self.drop_last = drop_last
self.strategy = sampler_meta.strategy
self.hmin, self.wmin = sampler_meta.min_hw
self.hmax, self.wmax = sampler_meta.max_hw
self.divisor = 32
def generate_height_width(self):
if self.strategy == 'origin':
return -1, -1
h = np.random.randint(self.hmin, self.hmax + 1)
w = np.random.randint(self.wmin, self.wmax + 1)
h = (h | (self.divisor - 1)) + 1
w = (w | (self.divisor - 1)) + 1
return h, w
def __iter__(self):
batch = []
h, w = self.generate_height_width()
for idx in self.sampler:
batch.append((idx, h, w))
if len(batch) == self.batch_size:
h, w = self.generate_height_width()
yield batch
batch = []
if len(batch) > 0 and not self.drop_last:
yield batch
def __len__(self):
if self.drop_last:
return len(self.sampler) // self.batch_size
else:
return (len(self.sampler) + self.batch_size - 1) // self.batch_size
class IterationBasedBatchSampler(BatchSampler):
"""
Wraps a BatchSampler, resampling from it until
a specified number of iterations have been sampled
"""
def __init__(self, batch_sampler, num_iterations, start_iter=0):
self.batch_sampler = batch_sampler
self.sampler = self.batch_sampler.sampler
self.num_iterations = num_iterations
self.start_iter = start_iter
def __iter__(self):
iteration = self.start_iter
while iteration <= self.num_iterations:
for batch in self.batch_sampler:
iteration += 1
if iteration > self.num_iterations:
break
yield batch
def __len__(self):
return self.num_iterations
class DistributedSampler(Sampler):
"""Sampler that restricts data loading to a subset of the dataset.
It is especially useful in conjunction with
:class:`torch.nn.parallel.DistributedDataParallel`. In such case, each
process can pass a DistributedSampler instance as a DataLoader sampler,
and load a subset of the original dataset that is exclusive to it.
.. note::
Dataset is assumed to be of constant size.
Arguments:
dataset: Dataset used for sampling.
num_replicas (optional): Number of processes participating in
distributed training.
rank (optional): Rank of the current process within num_replicas.
"""
def __init__(self, dataset, num_replicas=None, rank=None, shuffle=True):
if num_replicas is None:
if not dist.is_available():
raise RuntimeError("Requires distributed package to be available")
num_replicas = dist.get_world_size()
if rank is None:
if not dist.is_available():
raise RuntimeError("Requires distributed package to be available")
rank = dist.get_rank()
self.dataset = dataset
self.num_replicas = num_replicas
self.rank = rank
self.epoch = 0
self.num_samples = int(math.ceil(len(self.dataset) * 1.0 / self.num_replicas))
self.total_size = self.num_samples * self.num_replicas
self.shuffle = shuffle
def __iter__(self):
if self.shuffle:
# deterministically shuffle based on epoch
g = torch.Generator()
g.manual_seed(self.epoch)
indices = torch.randperm(len(self.dataset), generator=g).tolist()
else:
indices = torch.arange(len(self.dataset)).tolist()
# add extra samples to make it evenly divisible
indices += indices[: (self.total_size - len(indices))]
assert len(indices) == self.total_size
# subsample
offset = self.num_samples * self.rank
indices = indices[offset:offset+self.num_samples]
assert len(indices) == self.num_samples
return iter(indices)
def __len__(self):
return self.num_samples
def set_epoch(self, epoch):
self.epoch = epoch
class FrameSampler(Sampler):
"""Sampler certain frames for test
"""
def __init__(self, dataset):
inds = np.arange(0, len(dataset.ims))
ni = len(dataset.ims) // dataset.num_cams
inds = inds.reshape(ni, -1)[::30]
self.inds = inds.ravel()
def __iter__(self):
return iter(self.inds)
def __len__(self):
return len(self.inds)