EasyMocap/myeasymocap/backbone/pare/config.py
2023-06-24 22:39:33 +08:00

239 lines
8.1 KiB
Python

# -*- coding: utf-8 -*-
# Max-Planck-Gesellschaft zur Förderung der Wissenschaften e.V. (MPG) is
# holder of all proprietary rights on this computer program.
# You can only use this computer program if you have closed
# a license agreement with MPG or you get the right to use the computer
# program from someone who is authorized to grant you that right.
# Any use of the computer program without a valid license is prohibited and
# liable to prosecution.
#
# Copyright©2019 Max-Planck-Gesellschaft zur Förderung
# der Wissenschaften e.V. (MPG). acting on behalf of its Max Planck Institute
# for Intelligent Systems. All rights reserved.
#
# Contact: ps-license@tuebingen.mpg.de
import os
import time
import yaml
import shutil
import argparse
import operator
import itertools
from os.path import join
from functools import reduce
from yacs.config import CfgNode as CN
from typing import Dict, List, Union, Any
# from ..utils.cluster import execute_task_on_cluster
##### CONSTANTS #####
DATASET_NPZ_PATH = 'data/dataset_extras'
DATASET_LMDB_PATH = 'data/lmdb'
MMPOSE_PATH = '/is/cluster/work/mkocabas/projects/mmpose'
MMDET_PATH = '/is/cluster/work/mkocabas/projects/mmdetection'
MMPOSE_CFG = os.path.join(MMPOSE_PATH, 'configs/top_down/hrnet/coco-wholebody/hrnet_w48_coco_wholebody_256x192.py')
MMPOSE_CKPT = os.path.join(MMPOSE_PATH, 'checkpoints/hrnet_w48_coco_wholebody_256x192-643e18cb_20200922.pth')
MMDET_CFG = os.path.join(MMDET_PATH, 'configs/faster_rcnn/faster_rcnn_r50_fpn_1x_coco.py')
MMDET_CKPT = os.path.join(MMDET_PATH, 'checkpoints/faster_rcnn_r50_fpn_1x_coco_20200130-047c8118.pth')
PW3D_ROOT = 'data/dataset_folders/3dpw'
OH3D_ROOT = 'data/dataset_folders/3doh'
JOINT_REGRESSOR_TRAIN_EXTRA = 'models/pare/data/J_regressor_extra.npy'
JOINT_REGRESSOR_H36M = 'models/pare/data/J_regressor_h36m.npy'
SMPL_MEAN_PARAMS = 'models/pare/data/smpl_mean_params.npz'
SMPL_MODEL_DIR = 'models/pare/data/body_models/smpl'
COCO_OCCLUDERS_FILE = 'data/occlusion_augmentation/coco_train2014_occluders.pkl'
PASCAL_OCCLUDERS_FILE = 'data/occlusion_augmentation/pascal_occluders.pkl'
DATASET_FOLDERS = {
'3dpw': PW3D_ROOT,
'3dpw-val': PW3D_ROOT,
'3dpw-val-cam': PW3D_ROOT,
'3dpw-test-cam': PW3D_ROOT,
'3dpw-train-cam': PW3D_ROOT,
'3dpw-cam': PW3D_ROOT,
'3dpw-all': PW3D_ROOT,
'3doh': OH3D_ROOT,
}
DATASET_FILES = [
# Training
{
'3dpw-all': join(DATASET_NPZ_PATH, '3dpw_all_test_with_mmpose.npz'),
'3doh': join(DATASET_NPZ_PATH, '3doh_test.npz'),
},
# Testing
{
'3doh': join(DATASET_NPZ_PATH, '3doh_train.npz'),
'3dpw': join(DATASET_NPZ_PATH, '3dpw_train.npz'),
}
]
EVAL_MESH_DATASETS = ['3dpw', '3dpw-val', '3dpw-all', '3doh']
##### CONFIGS #####
hparams = CN()
# General settings
hparams.LOG_DIR = 'logs/experiments'
hparams.METHOD = 'pare'
hparams.EXP_NAME = 'default'
hparams.RUN_TEST = False
hparams.PROJECT_NAME = 'pare'
hparams.SEED_VALUE = -1
hparams.SYSTEM = CN()
hparams.SYSTEM.GPU = ''
hparams.SYSTEM.CLUSTER_NODE = 0.0
# Dataset hparams
hparams.DATASET = CN()
hparams.DATASET.LOAD_TYPE = 'Base'
hparams.DATASET.NOISE_FACTOR = 0.4
hparams.DATASET.ROT_FACTOR = 30
hparams.DATASET.SCALE_FACTOR = 0.25
hparams.DATASET.FLIP_PROB = 0.5
hparams.DATASET.CROP_PROB = 0.0
hparams.DATASET.CROP_FACTOR = 0.0
hparams.DATASET.BATCH_SIZE = 64
hparams.DATASET.NUM_WORKERS = 8
hparams.DATASET.PIN_MEMORY = True
hparams.DATASET.SHUFFLE_TRAIN = True
hparams.DATASET.TRAIN_DS = 'all'
hparams.DATASET.VAL_DS = '3dpw_3doh'
hparams.DATASET.NUM_IMAGES = -1
hparams.DATASET.TRAIN_NUM_IMAGES = -1
hparams.DATASET.TEST_NUM_IMAGES = -1
hparams.DATASET.IMG_RES = 224
hparams.DATASET.USE_HEATMAPS = '' # 'hm', 'hm_soft', 'part_segm', 'attention'
hparams.DATASET.RENDER_RES = 480
hparams.DATASET.MESH_COLOR = 'pinkish'
hparams.DATASET.FOCAL_LENGTH = 5000.
hparams.DATASET.IGNORE_3D = False
hparams.DATASET.USE_SYNTHETIC_OCCLUSION = False
hparams.DATASET.OCC_AUG_DATASET = 'pascal'
hparams.DATASET.USE_3D_CONF = False
hparams.DATASET.USE_GENDER = False
# this is a bit confusing but for the in the wild dataset ratios should be same, otherwise the code
# will be a bit verbose
hparams.DATASET.DATASETS_AND_RATIOS = 'h36m_mpii_lspet_coco_mpi-inf-3dhp_0.3_0.6_0.6_0.6_0.1'
hparams.DATASET.STAGE_DATASETS = '0+h36m_coco_0.2_0.8 2+h36m_coco_0.4_0.6'
# enable non parametric representation
hparams.DATASET.NONPARAMETRIC = False
# optimizer config
hparams.OPTIMIZER = CN()
hparams.OPTIMIZER.TYPE = 'adam'
hparams.OPTIMIZER.LR = 0.0001 # 0.00003
hparams.OPTIMIZER.WD = 0.0
# Training process hparams
hparams.TRAINING = CN()
hparams.TRAINING.RESUME = None
hparams.TRAINING.PRETRAINED = None
hparams.TRAINING.PRETRAINED_LIT = None
hparams.TRAINING.MAX_EPOCHS = 100
hparams.TRAINING.LOG_SAVE_INTERVAL = 50
hparams.TRAINING.LOG_FREQ_TB_IMAGES = 500
hparams.TRAINING.CHECK_VAL_EVERY_N_EPOCH = 1
hparams.TRAINING.RELOAD_DATALOADERS_EVERY_EPOCH = True
hparams.TRAINING.NUM_SMPLIFY_ITERS = 100 # 50
hparams.TRAINING.RUN_SMPLIFY = False
hparams.TRAINING.SMPLIFY_THRESHOLD = 100
hparams.TRAINING.DROPOUT_P = 0.2
hparams.TRAINING.TEST_BEFORE_TRAINING = False
hparams.TRAINING.SAVE_IMAGES = False
hparams.TRAINING.USE_PART_SEGM_LOSS = False
hparams.TRAINING.USE_AMP = False
# Training process hparams
hparams.TESTING = CN()
hparams.TESTING.SAVE_IMAGES = False
hparams.TESTING.SAVE_FREQ = 1
hparams.TESTING.SAVE_RESULTS = True
hparams.TESTING.SAVE_MESHES = False
hparams.TESTING.SIDEVIEW = True
hparams.TESTING.TEST_ON_TRAIN_END = True
hparams.TESTING.MULTI_SIDEVIEW = False
hparams.TESTING.USE_GT_CAM = False
# PARE method hparams
hparams.PARE = CN()
hparams.PARE.BACKBONE = 'resnet50' # hrnet_w32-conv, hrnet_w32-interp
hparams.PARE.NUM_JOINTS = 24
hparams.PARE.SOFTMAX_TEMP = 1.
hparams.PARE.NUM_FEATURES_SMPL = 64
hparams.PARE.USE_ATTENTION = False
hparams.PARE.USE_SELF_ATTENTION = False
hparams.PARE.USE_KEYPOINT_ATTENTION = False
hparams.PARE.USE_KEYPOINT_FEATURES_FOR_SMPL_REGRESSION = False
hparams.PARE.USE_POSTCONV_KEYPOINT_ATTENTION = False
hparams.PARE.KEYPOINT_ATTENTION_ACT = 'softmax'
hparams.PARE.USE_SCALE_KEYPOINT_ATTENTION = False
hparams.PARE.USE_FINAL_NONLOCAL = None
hparams.PARE.USE_BRANCH_NONLOCAL = None
hparams.PARE.USE_HMR_REGRESSION = False
hparams.PARE.USE_COATTENTION = False
hparams.PARE.NUM_COATTENTION_ITER = 1
hparams.PARE.COATTENTION_CONV = 'simple' # 'double_1', 'double_3', 'single_1', 'single_3', 'simple'
hparams.PARE.USE_UPSAMPLING = False
hparams.PARE.DECONV_CONV_KERNEL_SIZE = 4
hparams.PARE.USE_SOFT_ATTENTION = False
hparams.PARE.NUM_BRANCH_ITERATION = 0
hparams.PARE.BRANCH_DEEPER = False
hparams.PARE.NUM_DECONV_LAYERS = 3
hparams.PARE.NUM_DECONV_FILTERS = 256
hparams.PARE.USE_RESNET_CONV_HRNET = False
hparams.PARE.USE_POS_ENC = False
hparams.PARE.ITERATIVE_REGRESSION = False
hparams.PARE.ITER_RESIDUAL = False
hparams.PARE.NUM_ITERATIONS = 3
hparams.PARE.SHAPE_INPUT_TYPE = 'feats.all_pose.shape.cam'
hparams.PARE.POSE_INPUT_TYPE = 'feats.neighbor_pose_feats.all_pose.self_pose.neighbor_pose.shape.cam'
hparams.PARE.POSE_MLP_NUM_LAYERS = 1
hparams.PARE.SHAPE_MLP_NUM_LAYERS = 1
hparams.PARE.POSE_MLP_HIDDEN_SIZE = 256
hparams.PARE.SHAPE_MLP_HIDDEN_SIZE = 256
hparams.PARE.SHAPE_LOSS_WEIGHT = 0
hparams.PARE.KEYPOINT_LOSS_WEIGHT = 5.
hparams.PARE.KEYPOINT_NATIVE_LOSS_WEIGHT = 5.
hparams.PARE.HEATMAPS_LOSS_WEIGHT = 5.
hparams.PARE.SMPL_PART_LOSS_WEIGHT = 1.
hparams.PARE.PART_SEGM_LOSS_WEIGHT = 1.
hparams.PARE.POSE_LOSS_WEIGHT = 1.
hparams.PARE.BETA_LOSS_WEIGHT = 0.001
hparams.PARE.OPENPOSE_TRAIN_WEIGHT = 0.
hparams.PARE.GT_TRAIN_WEIGHT = 1.
hparams.PARE.LOSS_WEIGHT = 60.
hparams.PARE.USE_SHAPE_REG = False
hparams.PARE.USE_MEAN_CAMSHAPE = False
hparams.PARE.USE_MEAN_POSE = False
hparams.PARE.INIT_XAVIER = False
def get_hparams_defaults():
"""Get a yacs hparamsNode object with default values for my_project."""
# Return a clone so that the defaults will not be altered
# This is for the "local variable" use pattern
return hparams.clone()
def update_hparams(hparams_file):
hparams = get_hparams_defaults()
hparams.merge_from_file(hparams_file)
return hparams.clone()
def update_hparams_from_dict(cfg_dict):
hparams = get_hparams_defaults()
cfg = hparams.load_cfg(str(cfg_dict))
hparams.merge_from_other_cfg(cfg)
return hparams.clone()