EasyMocap/easymocap/smplmodel/body_model.py
2021-06-28 19:37:15 +08:00

396 lines
17 KiB
Python

'''
@ Date: 2020-11-18 14:04:10
@ Author: Qing Shuai
@ LastEditors: Qing Shuai
@ LastEditTime: 2021-06-28 11:55:00
@ FilePath: /EasyMocapRelease/easymocap/smplmodel/body_model.py
'''
import torch
import torch.nn as nn
from .lbs import lbs, batch_rodrigues
import os.path as osp
import pickle
import numpy as np
import os
def to_tensor(array, dtype=torch.float32, device=torch.device('cpu')):
if 'torch.tensor' not in str(type(array)):
return torch.tensor(array, dtype=dtype).to(device)
else:
return array.to(device)
def to_np(array, dtype=np.float32):
if 'scipy.sparse' in str(type(array)):
array = array.todense()
return np.array(array, dtype=dtype)
def load_regressor(regressor_path):
if regressor_path.endswith('.npy'):
X_regressor = to_tensor(np.load(regressor_path))
elif regressor_path.endswith('.txt'):
data = np.loadtxt(regressor_path)
with open(regressor_path, 'r') as f:
shape = f.readline().split()[1:]
reg = np.zeros((int(shape[0]), int(shape[1])))
for i, j, v in data:
reg[int(i), int(j)] = v
X_regressor = to_tensor(reg)
else:
import ipdb; ipdb.set_trace()
return X_regressor
def load_bodydata(model_type, model_path, gender):
if osp.isdir(model_path):
model_fn = '{}_{}.{ext}'.format(model_type.upper(), gender.upper(), ext='pkl')
smpl_path = osp.join(model_path, model_fn)
else:
smpl_path = model_path
assert osp.exists(smpl_path), 'Path {} does not exist!'.format(
smpl_path)
with open(smpl_path, 'rb') as smpl_file:
data = pickle.load(smpl_file, encoding='latin1')
return data
NUM_POSES = {'smpl': 72, 'smplh': 78, 'smplx': 66 + 12 + 9, 'mano': 9}
NUM_SHAPES = 10
NUM_EXPR = 10
class SMPLlayer(nn.Module):
def __init__(self, model_path, model_type='smpl', gender='neutral', device=None,
regressor_path=None,
use_pose_blending=True, use_shape_blending=True, use_joints=True,
with_color=False,
**kwargs) -> None:
super(SMPLlayer, self).__init__()
dtype = torch.float32
self.dtype = dtype
self.use_pose_blending = use_pose_blending
self.use_shape_blending = use_shape_blending
self.use_joints = use_joints
if isinstance(device, str):
device = torch.device(device)
self.device = device
self.model_type = model_type
# create the SMPL model
data = load_bodydata(model_type, model_path, gender)
if with_color:
self.color = data['vertex_colors']
else:
self.color = None
self.faces = data['f']
self.register_buffer('faces_tensor',
to_tensor(to_np(self.faces, dtype=np.int64),
dtype=torch.long))
for key in ['J_regressor', 'v_template', 'weights']:
val = to_tensor(to_np(data[key]), dtype=dtype)
self.register_buffer(key, val)
# add poseblending
if use_pose_blending:
# Pose blend shape basis: 6890 x 3 x 207, reshaped to 6890*3 x 207
num_pose_basis = data['posedirs'].shape[-1]
# 207 x 20670
posedirs = data['posedirs']
data['posedirs'] = np.reshape(data['posedirs'], [-1, num_pose_basis]).T
val = to_tensor(to_np(data['posedirs']), dtype=dtype)
self.register_buffer('posedirs', val)
else:
self.posedirs = None
# add shape blending
if use_shape_blending:
val = to_tensor(to_np(data['shapedirs']), dtype=dtype)
self.register_buffer('shapedirs', val)
else:
self.shapedirs = None
if use_shape_blending:
self.J_shaped = None
else:
val = to_tensor(to_np(data['J']), dtype=dtype)
self.register_buffer('J_shaped', val)
self.nVertices = self.v_template.shape[0]
# indices of parents for each joints
parents = to_tensor(to_np(data['kintree_table'][0])).long()
parents[0] = -1
self.register_buffer('parents', parents)
if self.use_shape_blending:
if self.model_type == 'smplx':
# shape
self.num_expression_coeffs = 10
self.num_shapes = 10
self.shapedirs = self.shapedirs[:, :, :self.num_shapes+self.num_expression_coeffs]
elif self.model_type in ['smpl', 'smplh']:
self.shapedirs = self.shapedirs[:, :, :NUM_SHAPES]
# joints regressor
if regressor_path is not None and use_joints:
X_regressor = load_regressor(regressor_path)
X_regressor = torch.cat((self.J_regressor, X_regressor), dim=0)
j_J_regressor = torch.zeros(self.J_regressor.shape[0], X_regressor.shape[0], device=device)
for i in range(self.J_regressor.shape[0]):
j_J_regressor[i, i] = 1
j_v_template = X_regressor @ self.v_template
#
# (25, 24)
j_weights = X_regressor @ self.weights
if self.use_pose_blending:
j_posedirs = torch.einsum('ab, bde->ade', [X_regressor, torch.Tensor(posedirs)]).numpy()
j_posedirs = np.reshape(j_posedirs, [-1, num_pose_basis]).T
j_posedirs = to_tensor(j_posedirs)
self.register_buffer('j_posedirs', j_posedirs)
else:
self.j_posedirs = None
if self.use_shape_blending:
j_shapedirs = torch.einsum('vij,kv->kij', [self.shapedirs, X_regressor])
self.register_buffer('j_shapedirs', j_shapedirs)
else:
self.j_shapedirs = None
self.register_buffer('j_weights', j_weights)
self.register_buffer('j_v_template', j_v_template)
self.register_buffer('j_J_regressor', j_J_regressor)
if self.model_type == 'smplh':
# load smplh data
self.num_pca_comps = 6
from os.path import join
for key in ['LEFT', 'RIGHT']:
left_file = join(os.path.dirname(smpl_path), 'MANO_{}.pkl'.format(key))
with open(left_file, 'rb') as f:
data = pickle.load(f, encoding='latin1')
val = to_tensor(to_np(data['hands_mean'].reshape(1, -1)), dtype=dtype)
self.register_buffer('mHandsMean'+key[0], val)
val = to_tensor(to_np(data['hands_components'][:self.num_pca_comps, :]), dtype=dtype)
self.register_buffer('mHandsComponents'+key[0], val)
self.use_pca = True
self.use_flat_mean = True
elif self.model_type == 'mano':
# TODO:write this into config file
# self.num_pca_comps = 12
# self.use_pca = True
# if self.use_pca:
# NUM_POSES['mano'] = self.num_pca_comps + 3
# else:
# NUM_POSES['mano'] = 45 + 3
# self.use_flat_mean = True
self.num_pca_comps = 12
self.use_pca = True
self.use_flat_mean = True
if self.use_pca:
NUM_POSES['mano'] = self.num_pca_comps + 3
else:
NUM_POSES['mano'] = 45 + 3
val = to_tensor(to_np(data['hands_mean'].reshape(1, -1)), dtype=dtype)
self.register_buffer('mHandsMean', val)
val = to_tensor(to_np(data['hands_components'][:self.num_pca_comps, :]), dtype=dtype)
self.register_buffer('mHandsComponents', val)
elif self.model_type == 'smplx':
# hand pose
self.num_pca_comps = 6
from os.path import join
for key in ['Ll', 'Rr']:
val = to_tensor(to_np(data['hands_mean'+key[1]].reshape(1, -1)), dtype=dtype)
self.register_buffer('mHandsMean'+key[0], val)
val = to_tensor(to_np(data['hands_components'+key[1]][:self.num_pca_comps, :]), dtype=dtype)
self.register_buffer('mHandsComponents'+key[0], val)
self.use_pca = True
self.use_flat_mean = True
self.to(self.device)
@staticmethod
def extend_hand(poses, use_pca, use_flat_mean, coeffs, mean):
if use_pca:
poses = poses @ coeffs
if use_flat_mean:
poses = poses + mean
return poses
def extend_pose(self, poses):
if self.model_type not in ['smplh', 'smplx', 'mano']:
return poses
elif self.model_type == 'smplh' and poses.shape[-1] == 156:
return poses
elif self.model_type == 'smplx' and poses.shape[-1] == 165:
return poses
elif self.model_type == 'mano' and poses.shape[-1] == 48:
return poses
if self.model_type == 'mano':
poses_hand = self.extend_hand(poses[..., 3:], self.use_pca, self.use_flat_mean,
self.mHandsComponents, self.mHandsMean)
poses = torch.cat([poses[..., :3], poses_hand], dim=-1)
return poses
NUM_BODYJOINTS = 22 * 3
if self.use_pca:
NUM_HANDJOINTS = self.num_pca_comps
else:
NUM_HANDJOINTS = 15 * 3
NUM_FACEJOINTS = 3 * 3
poses_lh = poses[:, NUM_BODYJOINTS:NUM_BODYJOINTS + NUM_HANDJOINTS]
poses_rh = poses[:, NUM_BODYJOINTS + NUM_HANDJOINTS:NUM_BODYJOINTS+NUM_HANDJOINTS*2]
if self.use_pca:
poses_lh = poses_lh @ self.mHandsComponentsL
poses_rh = poses_rh @ self.mHandsComponentsR
if self.use_flat_mean:
poses_lh = poses_lh + self.mHandsMeanL
poses_rh = poses_rh + self.mHandsMeanR
if self.model_type == 'smplh':
poses = torch.cat([poses[:, :NUM_BODYJOINTS], poses_lh, poses_rh], dim=1)
elif self.model_type == 'smplx':
# the head part have only three joints
# poses_head: (N, 9), jaw_pose, leye_pose, reye_pose respectively
poses_head = poses[:, NUM_BODYJOINTS+NUM_HANDJOINTS*2:]
# body, head, left hand, right hand
poses = torch.cat([poses[:, :NUM_BODYJOINTS], poses_head, poses_lh, poses_rh], dim=1)
return poses
def get_root(self, poses, shapes, return_tensor=False):
if 'torch' not in str(type(poses)):
dtype, device = self.dtype, self.device
poses = to_tensor(poses, dtype, device)
shapes = to_tensor(shapes, dtype, device)
vertices, joints = lbs(shapes, poses, self.v_template,
self.shapedirs, self.posedirs,
self.J_regressor, self.parents,
self.weights, pose2rot=True, dtype=self.dtype, only_shape=True)
# N x 3
j0 = joints[:, 0, :]
if not return_tensor:
j0 = j0.detach().cpu().numpy()
return j0
def convert_from_standard_smpl(self, poses, shapes, Rh=None, Th=None, expression=None):
if 'torch' not in str(type(poses)):
dtype, device = self.dtype, self.device
poses = to_tensor(poses, dtype, device)
shapes = to_tensor(shapes, dtype, device)
Rh = to_tensor(Rh, dtype, device)
Th = to_tensor(Th, dtype, device)
if expression is not None:
expression = to_tensor(expression, dtype, device)
bn = poses.shape[0]
# process shapes
if shapes.shape[0] < bn:
shapes = shapes.expand(bn, -1)
vertices, joints = lbs(shapes, poses, self.v_template,
self.shapedirs, self.posedirs,
self.J_regressor, self.parents,
self.weights, pose2rot=True, dtype=self.dtype, only_shape=True)
# N x 3
j0 = joints[:, 0, :]
Rh = poses[:, :3].clone()
# N x 3 x 3
rot = batch_rodrigues(Rh)
Tnew = Th + j0 - torch.einsum('bij,bj->bi', rot, j0)
poses[:, :3] = 0
res = dict(poses=poses.detach().cpu().numpy(),
shapes=shapes.detach().cpu().numpy(),
Rh=Rh.detach().cpu().numpy(),
Th=Tnew.detach().cpu().numpy()
)
return res
def full_poses(self, poses):
if 'torch' not in str(type(poses)):
dtype, device = self.dtype, self.device
poses = to_tensor(poses, dtype, device)
poses = self.extend_pose(poses)
return poses.detach().cpu().numpy()
def forward(self, poses, shapes, Rh=None, Th=None, expression=None,
return_verts=True, return_tensor=True, return_smpl_joints=False, only_shape=False, **kwargs):
""" Forward pass for SMPL model
Args:
poses (n, 72)
shapes (n, 10)
Rh (n, 3): global orientation
Th (n, 3): global translation
return_verts (bool, optional): if True return (6890, 3). Defaults to False.
"""
if 'torch' not in str(type(poses)):
dtype, device = self.dtype, self.device
poses = to_tensor(poses, dtype, device)
shapes = to_tensor(shapes, dtype, device)
if Rh is not None:
Rh = to_tensor(Rh, dtype, device)
if Th is not None:
Th = to_tensor(Th, dtype, device)
if expression is not None:
expression = to_tensor(expression, dtype, device)
bn = poses.shape[0]
# process Rh, Th
if Rh is None:
Rh = torch.zeros(bn, 3, device=poses.device)
if Th is None:
Th = torch.zeros(bn, 3, device=poses.device)
if len(Rh.shape) == 2: # angle-axis
rot = batch_rodrigues(Rh)
else:
rot = Rh
transl = Th.unsqueeze(dim=1)
# process shapes
if shapes.shape[0] < bn:
shapes = shapes.expand(bn, -1)
if expression is not None and self.model_type == 'smplx':
shapes = torch.cat([shapes, expression], dim=1)
# process poses
poses = self.extend_pose(poses)
if return_verts or not self.use_joints:
vertices, joints = lbs(shapes, poses, self.v_template,
self.shapedirs, self.posedirs,
self.J_regressor, self.parents,
self.weights, pose2rot=True, dtype=self.dtype,
use_pose_blending=self.use_pose_blending, use_shape_blending=self.use_shape_blending, J_shaped=self.J_shaped)
if not self.use_joints and not return_verts:
vertices = joints
else:
vertices, joints = lbs(shapes, poses, self.j_v_template,
self.j_shapedirs, self.j_posedirs,
self.j_J_regressor, self.parents,
self.j_weights, pose2rot=True, dtype=self.dtype, only_shape=only_shape,
use_pose_blending=self.use_pose_blending, use_shape_blending=self.use_shape_blending, J_shaped=self.J_shaped)
if return_smpl_joints:
vertices = vertices[:, :self.J_regressor.shape[0], :]
else:
vertices = vertices[:, self.J_regressor.shape[0]:, :]
vertices = torch.matmul(vertices, rot.transpose(1, 2)) + transl
if not return_tensor:
vertices = vertices.detach().cpu().numpy()
return vertices
def init_params(self, nFrames=1, nShapes=1, ret_tensor=False):
params = {
'poses': np.zeros((nFrames, NUM_POSES[self.model_type])),
'shapes': np.zeros((nShapes, NUM_SHAPES)),
'Rh': np.zeros((nFrames, 3)),
'Th': np.zeros((nFrames, 3)),
}
if self.model_type == 'smplx':
params['expression'] = np.zeros((nFrames, NUM_EXPR))
if ret_tensor:
for key in params.keys():
params[key] = to_tensor(params[key], self.dtype, self.device)
return params
def check_params(self, body_params):
model_type = self.model_type
nFrames = body_params['poses'].shape[0]
if body_params['poses'].shape[1] != NUM_POSES[model_type]:
body_params['poses'] = np.hstack((body_params['poses'], np.zeros((nFrames, NUM_POSES[model_type] - body_params['poses'].shape[1]))))
if model_type == 'smplx' and 'expression' not in body_params.keys():
body_params['expression'] = np.zeros((nFrames, NUM_EXPR))
return body_params
@staticmethod
def merge_params(param_list, share_shape=True):
output = {}
for key in ['poses', 'shapes', 'Rh', 'Th', 'expression']:
if key in param_list[0].keys():
output[key] = np.vstack([v[key] for v in param_list])
if share_shape:
output['shapes'] = output['shapes'].mean(axis=0, keepdims=True)
return output