148 lines
5.5 KiB
Python
148 lines
5.5 KiB
Python
import numpy as np
|
|
from easymocap.dataset.mirror import flipPoint2D
|
|
|
|
def clear_vanish_points(self, param):
|
|
"remove all vanishing points"
|
|
annots = param['annots']
|
|
annots['vanish_line'] = [[], [], []]
|
|
annots['vanish_point'] = [[], [], []]
|
|
|
|
def clear_body_points(self, param):
|
|
"remove vanish lines of body"
|
|
annots = param['annots']
|
|
for i in range(3):
|
|
vanish_lines = []
|
|
for data in annots['vanish_line'][i]:
|
|
if data[0][-1] > 1 and data[1][-1] > 1:
|
|
vanish_lines.append(data)
|
|
annots['vanish_line'][i] = vanish_lines
|
|
if len(vanish_lines) > 1:
|
|
annots['vanish_point'][i] = update_vanish_points(vanish_lines)
|
|
|
|
|
|
def calc_vanishpoint(keypoints2d, thres=0.3):
|
|
'''
|
|
keypoints2d: (2, N, 3)
|
|
'''
|
|
valid_idx = []
|
|
for nj in range(keypoints2d.shape[1]):
|
|
if keypoints2d[0, nj, 2] > thres and keypoints2d[1, nj, 2] > thres:
|
|
valid_idx.append(nj)
|
|
assert len(valid_idx) > 0, 'ATTN: cannot calculate the mirror pose'
|
|
|
|
keypoints2d = keypoints2d[:, valid_idx]
|
|
# weight: (N, 1)
|
|
weight = keypoints2d[:, :, 2:].mean(axis=0)
|
|
conf = weight.mean()
|
|
A = np.hstack([
|
|
keypoints2d[1, :, 1:2] - keypoints2d[0, :, 1:2],
|
|
-(keypoints2d[1, :, 0:1] - keypoints2d[0, :, 0:1])
|
|
])
|
|
b = -keypoints2d[0, :, 0:1]*(keypoints2d[1, :, 1:2] - keypoints2d[0, :, 1:2]) \
|
|
+ keypoints2d[0, :, 1:2] * (keypoints2d[1, :, 0:1] - keypoints2d[0, :, 0:1])
|
|
b = -b
|
|
A = A * weight
|
|
b = b * weight
|
|
avgInsec = np.linalg.inv(A.T @ A) @ (A.T @ b)
|
|
result = np.zeros(3)
|
|
result[0] = avgInsec[0, 0]
|
|
result[1] = avgInsec[1, 0]
|
|
result[2] = conf
|
|
return result
|
|
|
|
def update_vanish_points(lines):
|
|
vline0 = np.array(lines).transpose(1, 0, 2)
|
|
# vline0 = np.dstack((vline0, np.ones((vline0.shape[0], vline0.shape[1], 1))))
|
|
dim1points = vline0.copy()
|
|
points = calc_vanishpoint(dim1points)
|
|
return points.tolist()
|
|
|
|
def get_record_vanish_lines(index):
|
|
def record_vanish_lines(self, param, **kwargs):
|
|
"record vanish lines, X: mirror edge, Y: into mirror, Z: Up"
|
|
annots = param['annots']
|
|
if 'vanish_line' not in annots.keys():
|
|
annots['vanish_line'] = [[], [], []]
|
|
if 'vanish_point' not in annots.keys():
|
|
annots['vanish_point'] = [[], [], []]
|
|
start, end = param['start'], param['end']
|
|
if start is not None and end is not None:
|
|
annots['vanish_line'][index].append([[start[0], start[1], 2], [end[0], end[1], 2]])
|
|
# 更新vanish point
|
|
if len(annots['vanish_line'][index]) > 1:
|
|
annots['vanish_point'][index] = update_vanish_points(annots['vanish_line'][index])
|
|
param['start'] = None
|
|
param['end'] = None
|
|
func = record_vanish_lines
|
|
text = ['parallel to mirror edges', 'vertical to mirror', 'vertical to ground']
|
|
func.__doc__ = 'vanish line of ' + text[index]
|
|
return record_vanish_lines
|
|
|
|
def vanish_point_from_body(self, param, **kwargs):
|
|
"calculating the vanish point from human keypoints"
|
|
annots = param['annots']
|
|
bodies = annots['annots']
|
|
if len(bodies) < 2:
|
|
return 0
|
|
assert len(bodies) == 2, 'Please make sure that there are only two bboxes!'
|
|
kpts0 = np.array(bodies[0]['keypoints'])
|
|
kpts1 = flipPoint2D(np.array(bodies[1]['keypoints']))
|
|
vanish_line = annots['vanish_line'][1] # the y-dim
|
|
MIN_CONF = 0.5
|
|
for i in range(15):
|
|
conf = min(kpts0[i, -1], kpts1[i, -1])
|
|
if kpts0[i, -1] > MIN_CONF and kpts1[i, -1] > MIN_CONF:
|
|
vanish_line.append([[kpts0[i, 0], kpts0[i, 1], conf], [kpts1[i, 0], kpts1[i, 1], conf]])
|
|
if len(vanish_line) > 1:
|
|
annots['vanish_point'][1] = update_vanish_points(vanish_line)
|
|
|
|
def copy_edges(self, param, **kwargs):
|
|
"copy the static edges from previous frame"
|
|
if self.frame == 0:
|
|
return 0
|
|
previous = self.previous()
|
|
annots = param['annots']
|
|
|
|
# copy the vanish points
|
|
vanish_lines_pre = previous['vanish_line']
|
|
vanish_lines = param['annots']['vanish_line']
|
|
for i in range(3):
|
|
vanish_lines[i] = []
|
|
for data in vanish_lines_pre[i]:
|
|
if data[0][-1] > 1 and data[1][-1] > 1:
|
|
vanish_lines[i].append(data)
|
|
if len(vanish_lines[i]) > 1:
|
|
annots['vanish_point'][i] = update_vanish_points(vanish_lines[i])
|
|
|
|
def get_calc_intrinsic(mode='xy'):
|
|
def calc_intrinsic(self, param, **kwargs):
|
|
"calculating intrinsic matrix according to vanish points"
|
|
annots = param['annots']
|
|
if mode == 'xy':
|
|
point0 = annots['vanish_point'][0]
|
|
point1 = annots['vanish_point'][1]
|
|
elif mode == 'yz':
|
|
point0 = annots['vanish_point'][1]
|
|
point1 = annots['vanish_point'][2]
|
|
else:
|
|
import ipdb; ipdb.set_trace()
|
|
if len(point0) < 1 or len(point1) < 1:
|
|
return 0
|
|
vanish_point = np.stack([np.array(point0), np.array(point1)])
|
|
K = np.eye(3)
|
|
H = annots['height']
|
|
W = annots['width']
|
|
K = np.eye(3)
|
|
K[0, 2] = W/2
|
|
K[1, 2] = H/2
|
|
vanish_point[:, 0] -= W/2
|
|
vanish_point[:, 1] -= H/2
|
|
focal = np.sqrt(-(vanish_point[0][0]*vanish_point[1][0] + vanish_point[0][1]*vanish_point[1][1]))
|
|
|
|
K[0, 0] = focal
|
|
K[1, 1] = focal
|
|
annots['K'] = K.tolist()
|
|
print('>>> estimated K: ')
|
|
print(K)
|
|
calc_intrinsic.__doc__ = 'calculate K with {}'.format(mode)
|
|
return calc_intrinsic |