EasyMocap/config/mvmp/detect_match_triangulate_fitSMPL.yml
2023-07-11 22:34:44 +08:00

120 lines
4.2 KiB
YAML
Raw Blame History

This file contains ambiguous Unicode characters

This file contains Unicode characters that might be confused with other characters. If you think that this is intentional, you can safely ignore this warning. Use the Escape button to reveal them.

module: myeasymocap.stages.basestage.MultiStage
args:
output: output/detect_match_triangulate
keys_keep: [cameras, imgnames]
at_step:
detect:
module: myeasymocap.backbone.yolo.yolo.MultiPerson # Use YOLO to detect multi-person
key_from_data: [images, imgnames]
args:
model: yolov5m
name: person
min_length: 150 # this two threshold control the wanted bboxes
max_length: 1000
# keypoints2d:
# module: myeasymocap.backbone.hrnet.myhrnet.MyHRNet
# key_from_data: [images, imgnames]
# key_from_previous: [bbox]
# key_keep: []
# args:
# ckpt: data/models/pose_hrnet_w48_384x288.pth
# single_person: False # This flag controls the function to detect all keypoints
keypoints2d:
module: myeasymocap.backbone.vitpose.vit_moe.MyViT
key_from_data: [images, imgnames]
key_from_previous: [bbox]
key_keep: []
args:
ckpt: data/models/vitpose+_base.pth
single_person: False # This flag controls the function to detect all keypoints
vis_2d:
module: myeasymocap.io.vis.Vis2D
skip: False
key_from_data: [images]
key_from_previous: [keypoints, bbox]
args:
name: vis_keypoints2d
scale: 0.5
match:
module: myeasymocap.operations.match_base.MatchAndTrack
key_from_data: [cameras, meta]
key_from_previous: [keypoints]
args:
cfg_match:
min_conf: 0.3
min_joints: 9
distance:
mode: epipolar
threshold: 0.05 # 用于控制匹配的内点阈值
threshold_track: 0.05 # track的匹配的内点阈值
min_common_joints: 9
cfg_svt:
debug: 0
maxIter: 10
w_sparse: 0.1
w_rank: 50
tol: 0.0001
aff_min: 0.3
triangulate:
min_view: 3 # min view when triangulate each points
min_view_body: 3 # min visible view of the body
min_conf_3d: 0.1
dist_max: 50 # pixel
dist_track: 100 # mm
cfg_track:
max_person: 100
max_missing: 3 # 最多丢失3帧就要删除
final_ranges: [[-10000, -10000, -10000], [10000, 10000, 10000]] # 最终的输出的range仅用于输出的时候的筛选
final_max_person: 100
kintree: [[2, 3], [5, 6], [3, 4], [6, 7], [11, 22], [22, 23], [11, 24], [14, 19], [19, 20], [14, 21]]
vis_kpts3d:
module: myeasymocap.io.vis.Vis3D
key_from_data: [images, cameras]
key_from_previous: [results] # 用于最后的一起优化
args:
scale: 0.5
lw_factor: 10
at_final:
write_raw: # write the raw 3d keypoints
module: myeasymocap.io.write.WriteAll
key_from_data: [results, meta]
args:
name: keypoints3d_raw
collect: # split the results of each frame to each person
module: myeasymocap.stages.collect.CollectMultiPersonMultiFrame
key_from_data: [keypoints3d, pids]
args:
key: keypoints3d
min_frame: 20
load_body_model: # 载入身体模型
module: myeasymocap.io.model.SMPLLoader
args:
model_path: models/pare/data/body_models/smpl/SMPL_NEUTRAL.pkl # load PARE model
regressor_path: models/J_regressor_body25.npy
# # 这个模块返回两个内容body_model, model; 其中的body_model是用来进行可视化的
fitting_each_person:
module: myeasymocap.stages.basestage.StageForFittingEach
key_from_previous: [model, results]
key_from_data: []
args:
stages: _file_/config/mvmp/meta_fit_SMPL.yml
keys_keep: [params]
write:
module: myeasymocap.io.write.WriteSMPL
key_from_data: [meta]
key_from_previous: [results, model]
args:
name: smpl
vis_render:
module: myeasymocap.io.vis3d.RenderAll_multiview
key_from_data: [meta, cameras, imgnames]
key_from_previous: [results, body_model]
args:
backend: pyrender
view_list: [0]
scale: 0.5
make_video:
module: myeasymocap.io.video.MakeVideo
args:
fps: 60
keep_image: False