155 lines
5.7 KiB
Python
155 lines
5.7 KiB
Python
import pickle
|
|
import os
|
|
from os.path import join
|
|
import numpy as np
|
|
import torch
|
|
from .lossbase import LossBase
|
|
|
|
def create_prior_from_cmu(n_gaussians, epsilon=1e-15):
|
|
"""Load the gmm from the CMU motion database."""
|
|
from os.path import dirname
|
|
np_dtype = np.float32
|
|
with open(join(dirname(__file__), 'gmm_%02d.pkl'%(n_gaussians)), 'rb') as f:
|
|
gmm = pickle.load(f, encoding='latin1')
|
|
if True:
|
|
means = gmm['means'].astype(np_dtype)
|
|
covs = gmm['covars'].astype(np_dtype)
|
|
weights = gmm['weights'].astype(np_dtype)
|
|
precisions = [np.linalg.inv(cov) for cov in covs]
|
|
precisions = np.stack(precisions).astype(np_dtype)
|
|
|
|
sqrdets = np.array([(np.sqrt(np.linalg.det(c)))
|
|
for c in gmm['covars']])
|
|
const = (2 * np.pi)**(69 / 2.)
|
|
|
|
nll_weights = np.asarray(gmm['weights'] / (const * (sqrdets / sqrdets.min())))
|
|
cov_dets = [np.log(np.linalg.det(cov.astype(np_dtype)) + epsilon)
|
|
for cov in covs]
|
|
return {
|
|
'means': means,
|
|
'covs': covs,
|
|
'precisions': precisions,
|
|
'nll_weights': -np.log(nll_weights[None]),
|
|
'weights': weights,
|
|
'pi_term': np.log(2*np.pi),
|
|
'cov_dets': cov_dets
|
|
}
|
|
|
|
class MaxMixturePrior(LossBase):
|
|
def __init__(self, num_gaussians=8, epsilon=1e-16, use_merged=True,
|
|
start=3, end=72):
|
|
super(MaxMixturePrior, self).__init__()
|
|
np_dtype = np.float32
|
|
|
|
self.num_gaussians = num_gaussians
|
|
self.epsilon = epsilon
|
|
self.use_merged = use_merged
|
|
data = create_prior_from_cmu(num_gaussians)
|
|
self.start = start
|
|
self.end = end
|
|
for key, val in data.items():
|
|
self.register_buffer(key, torch.tensor(val, dtype=torch.float32))
|
|
|
|
def get_mean(self):
|
|
''' Returns the mean of the mixture '''
|
|
mean_pose = torch.matmul(self.weights, self.means)
|
|
return mean_pose
|
|
|
|
def merged_log_likelihood(self, poses):
|
|
poses = poses[..., self.start:self.end]
|
|
diff_from_mean = poses.unsqueeze(dim=1) - self.means[None, :, :self.end-self.start]
|
|
|
|
prec_diff_prod = torch.einsum('mij,bmj->bmi',
|
|
[self.precisions, diff_from_mean])
|
|
diff_prec_quadratic = (prec_diff_prod * diff_from_mean).sum(dim=-1)
|
|
|
|
curr_loglikelihood = 0.5 * diff_prec_quadratic + self.nll_weights
|
|
min_likelihood, _ = torch.min(curr_loglikelihood, dim=1)
|
|
return min_likelihood
|
|
|
|
def log_likelihood(self, pose, betas, *args, **kwargs):
|
|
''' Create graph operation for negative log-likelihood calculation
|
|
'''
|
|
likelihoods = []
|
|
|
|
for idx in range(self.num_gaussians):
|
|
mean = self.means[idx]
|
|
prec = self.precisions[idx]
|
|
cov = self.covs[idx]
|
|
diff_from_mean = pose - mean
|
|
|
|
curr_loglikelihood = torch.einsum('bj,ji->bi',
|
|
[diff_from_mean, prec])
|
|
curr_loglikelihood = torch.einsum('bi,bi->b',
|
|
[curr_loglikelihood,
|
|
diff_from_mean])
|
|
cov_term = torch.log(torch.det(cov) + self.epsilon)
|
|
curr_loglikelihood += 0.5 * (cov_term +
|
|
self.random_var_dim *
|
|
self.pi_term)
|
|
likelihoods.append(curr_loglikelihood)
|
|
|
|
log_likelihoods = torch.stack(likelihoods, dim=1)
|
|
min_idx = torch.argmin(log_likelihoods, dim=1)
|
|
weight_component = self.nll_weights[:, min_idx]
|
|
|
|
return weight_component + log_likelihoods[:, min_idx]
|
|
|
|
def forward(self, poses, **kwargs):
|
|
if self.use_merged:
|
|
return self.merged_log_likelihood(poses).mean()
|
|
else:
|
|
return self.log_likelihood(poses).mean()
|
|
|
|
class MaxMixtureCompletePrior(object):
|
|
"""Prior density estimation."""
|
|
prior = None
|
|
mean_pose = None
|
|
def __init__(self, n_gaussians=8, start=3, end=72):
|
|
self.n_gaussians = n_gaussians
|
|
self.start = start
|
|
self.end = end
|
|
if self.prior is None:
|
|
self.prior = self.create_prior_from_cmu()
|
|
|
|
def create_prior_from_cmu(self):
|
|
"""Load the gmm from the CMU motion database."""
|
|
from os.path import dirname
|
|
np_dtype = np.float32
|
|
with open(join(dirname(__file__), 'gmm_%02d.pkl'%(self.n_gaussians)), 'rb') as f:
|
|
gmm = pickle.load(f, encoding='latin1')
|
|
if True:
|
|
means = gmm['means'].astype(np_dtype)
|
|
covs = gmm['covars'].astype(np_dtype)
|
|
weights = gmm['weights'].astype(np_dtype)
|
|
precisions = [np.linalg.inv(cov) for cov in covs]
|
|
precisions = np.stack(precisions).astype(np_dtype)
|
|
|
|
sqrdets = np.array([(np.sqrt(np.linalg.det(c)))
|
|
for c in gmm['covars']])
|
|
const = (2 * np.pi)**(69 / 2.)
|
|
|
|
nll_weights = np.asarray(gmm['weights'] / (const *
|
|
(sqrdets / sqrdets.min())))
|
|
self.means = means
|
|
self.weights = weights
|
|
self.mean_pose = weights.dot(means)
|
|
|
|
def __call__(self, body_model, body_params, info):
|
|
poses = body_params['poses']
|
|
for nf in range(poses.shape[0]):
|
|
poses[nf][self.start:self.end] = self.mean_pose[:self.end-self.start]
|
|
return body_params
|
|
|
|
def get_gmm_prior(self):
|
|
"""Getter implementation."""
|
|
return self.prior
|
|
|
|
class GMMPrior(MaxMixturePrior):
|
|
def __call__(self, pred, target):
|
|
poses = pred['poses']
|
|
poses = poses.reshape(-1, poses.shape[-1])
|
|
if self.use_merged:
|
|
return self.merged_log_likelihood(poses).mean()
|
|
else:
|
|
return self.log_likelihood(poses).mean() |