EasyMocap/easymocap/visualize/skelmodel.py
2023-02-10 08:10:48 -06:00

135 lines
5.2 KiB
Python

'''
@ Date: 2021-01-17 21:38:19
@ Author: Qing Shuai
@ LastEditors: Qing Shuai
@ LastEditTime: 2021-08-24 16:42:22
@ FilePath: /EasyMocap/easymocap/visualize/skelmodel.py
'''
import numpy as np
import cv2
from os.path import join
import os
from ..dataset.config import CONFIG
def calTransformation(v_i, v_j, r, adaptr=False, ratio=10):
""" from to vertices to T
Arguments:
v_i {} -- [description]
v_j {[type]} -- [description]
"""
xaxis = np.array([1, 0, 0])
v = (v_i + v_j)/2
direc = (v_i - v_j)
length = np.linalg.norm(direc)
direc = direc/length
rotdir = np.cross(xaxis, direc)
if np.linalg.norm(rotdir) > 1e-3:
rotdir = rotdir/np.linalg.norm(rotdir)
rotdir = rotdir * np.arccos(np.dot(direc, xaxis))
rotmat, _ = cv2.Rodrigues(rotdir)
else:
rotmat = np.eye(3)
# set the minimal radius for the finger and face
shrink = min(max(length/ratio, 0.005), 0.05)
eigval = np.array([[length/2/r, 0, 0], [0, shrink, 0], [0, 0, shrink]])
T = np.eye(4)
T[:3,:3] = rotmat @ eigval @ rotmat.T
T[:3, 3] = v
return T, r, length
class SkelModel:
def __init__(self, nJoints=None, kintree=None, body_type=None, joint_radius=0.02, res=20, **kwargs) -> None:
if nJoints is not None:
self.nJoints = nJoints
self.kintree = kintree
else:
config = CONFIG[body_type]
self.nJoints = config['nJoints']
self.kintree = config['kintree']
self.body_type = body_type
self.device = 'none'
cur_dir = os.path.dirname(__file__)
faces = np.loadtxt(join(cur_dir, 'assets', 'sphere_faces_{}.txt'.format(res)), dtype=int)
self.vertices = np.loadtxt(join(cur_dir, 'assets', 'sphere_vertices_{}.txt'.format(res)))
# compose faces
faces_all = []
for nj in range(self.nJoints):
faces_all.append(faces + nj*self.vertices.shape[0])
for nk in range(len(self.kintree)):
faces_all.append(faces + self.nJoints*self.vertices.shape[0] + nk*self.vertices.shape[0])
self.faces = np.vstack(faces_all)
self.color = None
self.nVertices = self.vertices.shape[0] * self.nJoints + self.vertices.shape[0] * len(self.kintree)
self.joint_radius = joint_radius
def __call__(self, keypoints3d, id=0, return_verts=True, return_tensor=False, **kwargs):
if len(keypoints3d.shape) == 2:
keypoints3d = keypoints3d[None]
if not return_verts:
return keypoints3d
if keypoints3d.shape[-1] == 3: # add confidence
keypoints3d = np.dstack((keypoints3d, np.ones((keypoints3d.shape[0], keypoints3d.shape[1], 1))))
r = self.joint_radius
# joints
min_conf = 0.1
verts_final = []
for nper in range(keypoints3d.shape[0]):
vertices_all = []
kpts3d = keypoints3d[nper]
# limb
closet_joints = []
for nk, (i, j) in enumerate(self.kintree):
if kpts3d[i][-1] < min_conf or kpts3d[j][-1] < min_conf:
vertices_all.append(self.vertices*0.001)
continue
T, _, length = calTransformation(kpts3d[i, :3], kpts3d[j, :3], r=1)
if length > 2: # large than 2 meter
vertices_all.append(self.vertices*0.001)
continue
if length < self.joint_radius * 5:
closet_joints.append(i)
closet_joints.append(j)
vertices = self.vertices @ T[:3, :3].T + T[:3, 3:].T
vertices_all.append(vertices)
for nj in range(self.nJoints):
if self.body_type in ['bodyhand', 'bodyhandface'] and nj > 25:
r_ = r / 2
else:
r_ = r
if kpts3d[nj, -1] < min_conf:
vertices_all.append(self.vertices*0.001)
continue
vertices_all.append(self.vertices*r_ + kpts3d[nj:nj+1, :3])
vertices = np.vstack(vertices_all)
verts_final.append(vertices)
verts_final = np.stack(verts_final)
return verts_final
def to(self, none):
pass
def merge_params(self, params, share_shape=False):
keypoints = np.stack([param['keypoints3d'] for param in params])
return {'keypoints3d': keypoints, 'id': [0]}
def init_params(self, nFrames):
return {'keypoints3d': np.zeros((self.nJoints, 4))}
class SMPLSKEL:
def __init__(self, model_type, gender, body_type) -> None:
from ..smplmodel import load_model
config = CONFIG[body_type]
self.smpl_model = load_model(gender, model_type=model_type, skel_type=body_type)
self.body_model = SkelModel(config['nJoints'], config['kintree'])
def __call__(self, return_verts=True, **kwargs):
keypoints3d = self.smpl_model(return_verts=False, return_tensor=False, **kwargs)
if not return_verts:
return keypoints3d
else:
verts = self.body_model(return_verts=True, return_tensor=False, keypoints3d=keypoints3d[0])
return verts
def init_params(self, nFrames):
return np.zeros((self.body_model.nJoints, 4))