EasyMocap/easymocap/affinity/plucker.py
2021-08-28 20:50:20 +08:00

85 lines
2.6 KiB
Python
Raw Blame History

This file contains ambiguous Unicode characters

This file contains Unicode characters that might be confused with other characters. If you think that this is intentional, you can safely ignore this warning. Use the Escape button to reveal them.

'''
@ Date: 2021-01-25 21:27:56
@ Author: Qing Shuai
@ LastEditors: Qing Shuai
@ LastEditTime: 2021-07-28 17:18:20
@ FilePath: /EasyMocap/easymocap/affinity/plucker.py
'''
import numpy as np
def plucker_from_pl(point, line):
""" construct plucker line from a point and directions
Arguments:
point {tensor} -- N, 3
line {tensor} -- N, 3
"""
norm = np.linalg.norm(line, axis=-1, keepdims=True)
lunit = line/norm
moment = np.cross(point, lunit, axis=-1)
return lunit, moment
def plucker_from_pp(point1, point2):
line = point2 - point1
return plucker_from_pl(point1, line)
def dist_pl(query_points, line, moment):
moment_q = moment - np.cross(query_points, line)
dist = np.linalg.norm(moment_q, axis=1)
return dist
def reciprocal_product(l1, m1, l2, m2):
l1 = l1[:, None]
m1 = m1[:, None]
l2 = l2[None, :]
m2 = m2[None, :]
product = np.sum(l1*m2, axis=2) + np.sum(l2*m1, axis=2)
return np.abs(product)
def dist_pl_pointwise(p0, p1):
moment_q = p1[..., 3:6] - np.cross(p0[..., :3], p1[..., :3])
dist = np.linalg.norm(moment_q, axis=-1)
return dist
def dist_ll_pointwise(p0, p1):
product = np.sum(p0[..., :3] * p1[..., 3:6], axis=-1) + np.sum(p1[..., :3] * p0[..., 3:6], axis=-1)
return np.abs(product)
def dist_ll_pointwise_conf(p0, p1):
dist = dist_ll_pointwise(p0, p1)
conf = np.sqrt(p0[..., -1] * p1[..., -1])
dist = np.sum(dist*conf, axis=-1)/(1e-5 + conf.sum(axis=-1))
dist[conf.sum(axis=-1)<0.1] = 1e5
return dist
def computeRay(keypoints2d, invK, R, T):
# 将点转为世界坐标系下plucker坐标
# points: (nJoints, 3)
# invK: (3, 3)
# R: (3, 3)
# T: (3, 1)
# cam_center: (3, 1)
if len(keypoints2d.shape) == 3:
keypoints2d = keypoints2d[0]
conf = keypoints2d[..., -1:]
cam_center = - R.T @ T
N = keypoints2d.shape[0]
kp_pixel = np.hstack([keypoints2d[..., :2], np.ones_like(conf)])
kp_all_3d = (kp_pixel @ invK.T - T.T) @ R
l, m = plucker_from_pp(cam_center.T, kp_all_3d)
res = np.hstack((l, m, conf))
# 兼容cpp版本所以补一个维度
return res[None, :, :]
def computeRaynd(keypoints2d, invK, R, T):
# keypoints2d: (..., 3)
conf = keypoints2d[..., 2:]
# cam_center: (1, 3)
cam_center = - (R.T @ T).T
kp_pixel = np.concatenate([keypoints2d[..., :2], np.ones_like(conf)], axis=-1)
kp_all_3d = (kp_pixel @ invK.T - T.T) @ R
while len(cam_center.shape) < len(kp_all_3d.shape):
cam_center = cam_center[None]
l, m = plucker_from_pp(cam_center, kp_all_3d)
res = np.concatenate((l, m, conf), axis=-1)
return res