EasyMocap/easymocap/neuralbody/renderer/lpips.py
2022-10-25 20:06:04 +08:00

70 lines
3.0 KiB
Python

import numpy as np
import cv2
import torch
import torchvision
class VGGPerceptualLoss(torch.nn.Module):
def __init__(self, resize=False):
super(VGGPerceptualLoss, self).__init__()
blocks = []
blocks.append(torchvision.models.vgg16(pretrained=True).features[:4].eval())
blocks.append(torchvision.models.vgg16(pretrained=True).features[4:9].eval())
blocks.append(torchvision.models.vgg16(pretrained=True).features[9:16].eval())
blocks.append(torchvision.models.vgg16(pretrained=True).features[16:23].eval())
for bl in blocks:
for p in bl.parameters():
p.requires_grad = False
self.blocks = torch.nn.ModuleList(blocks)
self.transform = torch.nn.functional.interpolate
self.resize = resize
self.register_buffer("mean", torch.tensor([0.485, 0.456, 0.406]).view(1, 3, 1, 1))
self.register_buffer("std", torch.tensor([0.229, 0.224, 0.225]).view(1, 3, 1, 1))
def forward(self, input, target, feature_layers=[0, 1, 2, 3], style_layers=[]):
if input.shape[1] != 3:
input = input.repeat(1, 3, 1, 1)
target = target.repeat(1, 3, 1, 1)
input = (input-self.mean) / self.std
target = (target-self.mean) / self.std
if self.resize:
input = self.transform(input, mode='bilinear', size=(224, 224), align_corners=False)
target = self.transform(target, mode='bilinear', size=(224, 224), align_corners=False)
loss = 0.0
x = input
y = target
for i, block in enumerate(self.blocks):
x = block(x)
y = block(y)
if i in feature_layers:
loss += torch.nn.functional.l1_loss(x, y)
if i in style_layers:
act_x = x.reshape(x.shape[0], x.shape[1], -1)
act_y = y.reshape(y.shape[0], y.shape[1], -1)
gram_x = act_x @ act_x.permute(0, 2, 1)
gram_y = act_y @ act_y.permute(0, 2, 1)
loss += torch.nn.functional.l1_loss(gram_x, gram_y)
return loss
class LossLPIPS(VGGPerceptualLoss):
def forward(self, inp, out):
W, H = 32, 32
target = inp['rgb'].reshape(-1, W, H, 3)
inputs = out['rgb_map'].reshape(-1, W, H, 3)
if inp['step'] % 100 == 0:
vis_all = []
for i in range(inputs.shape[0]):
target_ = target[i].detach().cpu().numpy()
inputs_ = inputs[i].detach().cpu().numpy()
vis = np.hstack([target_, inputs_])
vis = (vis*255).astype(np.uint8)
vis_all.append(vis)
vis_all = np.vstack(vis_all)
vis_all = vis_all[..., ::-1]
cv2.imwrite('debug/vis_lpips_{:08d}.jpg'.format(inp['step']), vis_all)
target = target.permute(0, 3, 1, 2)
inputs = inputs.permute(0, 3, 1, 2)
return super().forward(inputs, target)
if __name__ == '__main__':
lpips = VGGPerceptualLoss()